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On a functional equation with divergent solutions

by M. KuczmA (Katowice)

In our preceding paper [1] we have dealt with the linear functional
equation

(1) o[f(2)]—g(2)p(2) = h(2)

under the assumption that the functions f(z), g(2) and h(z) are analytic
in a neighbourhood of the origin, f(0) =0, g(0) =0 and f'(0) = 0. We
have proved that every formal solution (!) of equation (1) is actual, i.e.
has a positive radius of eonvergence. In the present note we are going
to show that this conclusion is not longer valid if we drop the assump-
tion f'(0) = 0.

We shall confine our attention to the particular case of (1)

(2) @ (82)—2%(2) = h(2).

In the sequel we are always assuming that k(2) is an analytic function
in a neighbourhood of the origin, with an expansion

(3) h(z) = ) aner,
n=0

¢ > 1 is a positive integer, and
(4) 0<|s]<1.

At first let us note the following
THEOREM 1. Equation (2) has a unique formal solution.
Proof. Let us write

=2}

(5) p(2) = D eaen .

n=0

(1) A formal solution of equation (1) is a formal power series that inserted into the
equation satisfies it formally.



174 M. Kuczma

Inserting (3) and (5) into (2) we obtain

(=] o <] o0
Z cnsﬂzn—Z Cp—g?™ = 2 anz™,
n=0 n=q n=0
whence
(6) chn = 87 "ay for n =0, ..,¢g—1,
(7) Cn =8 ™an+0Cn—q) for n>gq.

Relations (6) and (7) allow us to determine the sequence ¢, uniquely.

However, series (5) may have the radius of convergence equal
to zero. Below (Theorems 2 and 3) we shall exhibit two examples of func-
tional equations of form (2) with divergent formal solutions.

Let us write

(8) n==k+1,

where the integers k¥ > 0 and 0 <! < ¢—1 are uniquely determined by =.
By the successive use of (6) and (7) we obtain

k&
(9) Crg+l = Z “ I S‘f"")aiﬁz .
im0 j=i

Writing
k
(10) ma = ) Ua+D) = (k—i+1) (S0 +1),
i=1
we obtain from (9)
(11) Cn = Ckg+l = Zk,’ $~™igrr .,

1=0
For every fixed n the exponents mg; form a decreasing sequence
(12) Mpg = Mpt 2> ... 2= Mnk .

It follows from (8) and (10) that

(13) lim ™ .

n—00

whenever ¢ is fixed (independent of n).
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THEOREM 2. If 8 48 real, 0 < s <1, h(z) =0 and
(14) Arga, =0 =const, n=0,1,2, ..,

then the formal solution of equation (2) has the radius of comvergence equal
to zero.

Proof. Let ag,;z be the first non-zero coefficient in series (3). In
view of (14) we may write (11) as

k
(15) On = Crgrr =€ D 8 ™aigull
1=0

where ¢ is the constant with [¢] =1, Arge = 6. Since all summands
occurring under the )’ sign in (15) are real and non-negative, we have
the estimation for [ = L:

lergrrl = 8" " |aggrr| for k> K

(n = kg+L), whence in view of (13)

. ketL,——
lim = ' |exg+L] = oo
k—o00 .
and

. n,—-
lim supy|ep] = o0,
n—>o0

which was to be proved.
In particular, for 6 =0 or 6 = =, we have the following

COROLLARY. If s is real, 0 < 8 < 1, h(2) 3£ 0, and all a, are real and
of a constant sign, then the formal solution of equation (2) has the radius
of convergence equal to zero.

However, in Theorem 2 it is not enough to assume that (14) holds
for n sufficiently large (cf. the example in the end of the paper).

THEOREM 3. Let A and M < 1 be positive constants and suppose that

AV 171— Is]
16 M : .
(16) = max (l/lsl"“+1 lg|?~!
If
(17) |an] = AM™ for n =0,1,2,...,

then the formal solution of equation (2) has the radius of convergence equal
lo zero.
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Proof. Condition (17) means that a, = e, AM", where |ey| = 1.
Condition (16) implies that either

(18) M < W_llﬁ <1,
8
or
1— |s]
19 M < .
( ) Islq—l
Formula (11) may be written as
k
Cn = Cpgel = A 2 s—mnichH Eiqel = AMl mno( l+2 s'Inno—mniMiqsqu) .
=0 =1

Now,
k

k
1 _ . _ .
| E 8mno mliquq.H‘ < E Isl‘mno mntM'tq‘
i=1

i=1

If condition (18) is fulfilled, then we have according to (4) and (12)

2 Islmno mnlMlq < ]slmno—mm Z MW

t=1
< lslmno—‘mnl E Mlq Is]‘mno—’mnl Mq
i=1 1-M*

Taking I = q—1, we get by (10)

Mpo— Mpy = q—l .

But
o Mot
sl — - =9<1
I
in view of (18). Hence
k -
(20) 2 s”""""’"‘M"'efm_J <9<,

§=1

If condition (19) is fulfilled, then

k . k ad lsl‘mno—mnl
§ ' Islmm—mthq < M E Islmno—mﬂ( < M'I Z ]311 MQI—M .
i=1 i=1

j=mMpo—Mn1
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We take again ! = ¢—1. By (19)

js1° " ar
M“’l_ i d<1,
and we arrive again at estimation (20).
Thus we have for n = kq+¢—1

len]| = |Crg+q-1]
k
Eqo1+ 2 smno—mncqusiq_l_q_ll
i=1
k ¢
> AN 5|71 — | D M e )

=1

=AM [T

and by (20)
|cal = |Ckgiq—1] =AM 5|77 (1 —9) .

Hence we obtain according to (13)

. ka+q-1
;lm Vitkgtq-1| = oo,
1e.
lim sup n]/ |en) = oo,
which was to be proved.
The example of the function

(21) h(z) = M+ (M —M™)", M>0,
n=1

shows that in Theorem 3 condition (17) cannot be replaced by the
asymptotic relation

|an]| ~AM", n-—>oo.
Here we have

n-+1 o 70
tim 2L Y im [Msn—1] =1,

n—oo n—00

but the equation
(22) P(s2)—2p(2) = h(2)
with the right-hand side given by (21) has the convergent solution

(23) pl2) = D) M.
n=0
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The same example (with s real, 0 < 8 < 1) shows that in Theorem 2
it is not enough to assume that (14) holds from some term on. Here we
have M s"— M" = M™(Ms"—1) < 0 for n sufficiently large, and never-
theless equation (22) with the right-hand side given by (21) has convergent
solution (23).

Finally let us note that condition (4) is essential in Theorems 2 and 3.
If |s] > 1, then we may write equation (2) in the form

(24) @(2) = s~ % (s72) + h(s72),

where now 387! << 1. According to results of Smajdor [2] and [3], the
formal solution of equation (24) has a positive radius of convergence.
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