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On a minimum principle in several complex variables
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Abstract. A domain Q in C” (n > 2) is said to satisfy the minimum principle if every
bounded holomorphic [unction on Q whose boundary values are in modulus essentially
bounded below by a positive quantity is itself bounded below in modulus on Q. The polydisc
is shown to satisfy this minimum principle.

1. Let Q be a bounded domain in C" (n > 1) with a piecewise smooth
boundary 0Q. Denote by H*(f2) the space of bounded holomorphic func-
tions f on © and let u be surface (1e. Hausdorff 2n—1) measure on 0.
Every f in H*(€2) has non-tangential boundary values u-almost everywhere
on Q2. Let f* denote the L*(u) boundary value function on 0Q. We say
that the minimum principle holds on Q if, whenever fe H*(2) and
|f* = 6 > 0, u-almost everywhere on 89, it follows that [f| = § on Q. Of
course, the minimum principle never holds for a domain Q in C'. If f is
continuous on the closure of Q, then, as n > 1, each of the level sets
L,={zeQ: f(z) = f(p)} for peQ is non-compact and the closure of L,
meets dQ. Thus, for continuous functions f, ilslg lf(2) = zlegg |f*(z)]. The

minimum principle asserts the same relation, with “inf” replaced by “essential
inf” on 0Q, for a general function in H*(Q). This argument shows, for
continuous f on Q, that f(Q) = f(6R). Rudin has given an equivalent
formulation of the minimum principle which reduces to this in the continuous
case; namely, for fe H*(Q), f(2) = ess range f*.

It is not known for what domains Q the minimum principle holds.
The modest purpose of this note is to show that it does hold for the
polydisc. It would be interesting to decide this question for strictly pseudo-
convex domains and, in particular, for the ball. Our verification for the
polydisc employs the fact that the Bergman-Shilov boundary is, in this case,
the torus and sheds no light on the problem for the ball.

Recall that fe H*(Q) is an inner function if |f*| = 1, u a.e. Whenever
the minimum principle holds in €, it follows that every inner function



12 H. Alexander

in Q is constant. For the ball (n > 1) this also is not known. For the
polydisc, an alternate proof was given in [1].

2. To fix some notation, let U be the open unit disc in the complex
plane and let T be its boundary. Then U" is the polydisc in C" and T",
the n-torus, is the Bergman-Shilov boundary of U". Let u be “surface”
measure on ¢U” and let ¢ be normalized Haar measure on T". If fe H* (U"),
then f* is its u almost everywhere defined boundary value function on oU"
and f** will denote its ¢ almost everywhere defined boundary value function
on T". Then f**(p)= 11_1};1 f(rp) for o almost all peT"; see [2]. Let

P,(0) = (1—r%)/(1—2r cos 0+r*) be the Poisson kernel on the unit disc.

THEOREM. The minimum principle holds on U" for n > 1; ie., if fe H*(U")
and |f* =26 >0, u ae., then |f| =6 on U™

By a Fubini argument, it is enough to verify this for n = 2.

Lemma 1. For almost all 0, f*(e*. se'®) exists for ail s, 0 < s < 1, and
all 9,0 < ¢ < 2m, is the lim f(re'’, se’®) and, moreover,

r—1
. ) 1 2 L
(1) f*(e° se') = . [ f** (e ") P(p—t)dt.
T o
Proof. For all 6, ¢ and s < r < 1 we have the Poisson integral formula
. ] 2n P2 g2
0 o igy _ 0 i
(2) fre ,se“’)_ﬁc‘!'f(re ,re‘)mdt.

By Fubini’s theorem, for almost all 8,

f**(e, ") = lim f (re®®, re")  for almost all t.
r—+1

Hence the Lebesgue bounded convergence theorem applied to the right-hand
side of (2) yields the desired conclusions. [J

Thus, for almost all 0, there is a well-defined bounded measurable function
fow) = f*(e*, w) defined for all |w| < 1.

LEMMA 2. f,(w) is a holomorphic function of we U.

Proof. For a fixed 0 for which f; is defined, put g,(w) = f((1—1/n) €', w)
for {w| < 1. Then {g,} is a normal family of holomorphic functions in U
and g, — f, pointwise. Hence f; is holomorphic. []

By hypothesis |f*| > 6, u a.e. Hence, for almost all 8, |f,(w) = & for
almost all we U with respect to planar measure on U. As f; is holomorphic,
we conclude that for almost all 6, |fy(w)| = é for all |w] < 1. For such 0,
let hy = 1/fs; hg is a bounded holomorphic function on U.

LEMMA 3. |f**| = 6, 0 ae. on T
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Proof. By (1), for almost all 0, s < 1,

2r

fo(se®) = _211? {! f** (e, e") P, (¢ —1t)dt.

Hence, for almost all 8, f**(e', ¢*’) = lim f,(se’*) for almost all ¢. Since
s—+1

|fo(w) = 6 for almost all 6 and for all w, we conclude, by Fubini, that
|f**| = 0, 0 ae. [
Define g = 1/f**e L™ (T?); |gll < 1/0.
LEMMA 4. ge H®(T?).
Proof. It suffices to show, for every pair of integers (m,n) with either
m > 0 or n > 0, that
I=[g-em e™dfdp =0; see [2].

T2

Without loss of generality, suppose n > 0. Then, by Fubini,
I = [e™([e" gdp)dd. Now, for almost all 6, hy(w) = 1/fy(w) for we U
and so, for almost all 8, g(e*, ¢*) = lim hy(re’®) for almost all ¢. Hence,
for almost all 6, !

[ e g (e, e)dp = lin} [ €™ hy(re)de = 0

(the last integral being zero because n > 0 and hye H*(U)). Thus I = 0. [

Proof of the Theorem. Let Ge H®(U?) be the holomorphic extension
of g; 1G(2) < lglle, < 1/8 for ze U2 Then, as (Gf)** = gf** = 1,0 ae,
we have Gf =1 on U?% Hence |f(z)] = 1/|G(z)] = 6 for ze U%. Q.E.D.

Remark. One might ask whether this result can be made quantitative
by showing that there is a constant ¢ > 0 such that if Fe H*(U?), |F|, = 1,
and F(0) = 0, then u{zedU?: |F*(z)] > 4} > c. This, however, is false:
Consider F,(z, w) = 4(z"+w"). Since |F,| » 4 on 8U*\T? as n > oo, it follows
that u{zedU?: |[F¥(z)) > 3} = 0.
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