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A SILENT-SILENT DUEL
WITH RANDOMLY DETECTED OPPONENTS

L. Introduction. There are many papers on duels (see [4]) where
Various kinds of uncertainty were introduced. In this paper we consider
@ modifjed model of a silent-silent duel in which the opponents are detected
f’”t Tandom moments of time determined by the values of two independent
Markov chains. We assume that the accuracy functions of both players
AT¢ equal. Under some assumptions concerning the transition density
Unction of the Markov chains we prove that it is optimal for both players
;i fire the bullet at the first detection moment after a fixed moment

€[0,1].

First, we describe the game model. Each of two opponents has the
Chance to shoot his only bullet at one of the random moments when his
°PDonent is detected in the time interval [0,1]. The random detection
Moments are determined by the values of two independent Markov
Chaing {&, n>1} (i =1,2) with the same density of the transition
proba.bility p(x,y) satisfying the condition p(x,y) =0 for 0 <<y < 2.

We also assume that the probability [ p(x,y)dy that no detection in
1

the time interval (z, 1] occurs is positive and that only a finite number
of .detection moments may occur in the interval [0, 1]. Next, the prob-
&bllity of hitting the opponent (accuracy function) depends on time
and js equal for both players. We may assume the accuracy function to
be Pty — t, t €[0,1]. The random pay-off for the first player is +1

only he survives the duel and —1 if only the second player survives.
Othel'Wise, the pay-off is zero. We see that each time the opponent is
detected the player has to decide whether he should shoot or wait for
& better opportunity. The game is over when at least one of the players
1S hit or when ¢ — 1.
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2. Normal form of the game. Let us define a player’s strategy in
the considered game. A pure behaviour strategy is a measurable function
m: [0,1]->[0,1], where =(x) is the probability that the player shoots
his bullet provided the opponent is detected at the moment z e [0, 1]

Let L, be the space of all summable functions on [0, 1] and L; its
dual. We introduce the space (L, o(L;,L,)), where o(L;j, L,) is the
w*-topology in L,. Now, if IT is the set of all measurable functions
n: [0,1]—[0, 1], then from the well-known Alouglu-Bourbaki theorem
we have

LEMMA 1. The strategy set II is compact in (L;, o(L;, Ly)).

Now define the pay-off function for the game. First, we introduce
the probability space (2, #,P,) for every m € II. Let X = [0, o0) and
A ={0,1}. We denote by X and U the ¢-algebras of Borel subsets in X
and A, respectively. Now, we put

Q=XxAxXx4Ax... and £ =XQQURXRMAR...

and we denote by P, the unique probability measure on (2, #) deter-
mined by the transition density function p and a strategy = € I (see [2]).

Next, we consider the projections &, and a, from 2 onto the n-th
state space X and the action space 4, respectively. We also notice that
every strategy = eIl determines a randomized Markov stopping time

7 =inf{n >1] a,(w) = 0}

and the Markov chain (&,, #;,P;), where #; = o{§;, @;; k <n} and
for r e X, B e X we have

Pi{&eB} = [1—a(@)] [p(@,9)dy, Pi{&¢X} = n().
B

Evidently, we put =(z) =1 for x> 1.

Now, let &, be the random moment of time at which the player shoots
his bullet. The event F = {w € 2| &,(w) >1} means that the player did
not shoot in the time interval [0, 1]. The above considerations are valid
for both players and under the assumption of independence we have
the random pay-off ¢: Q2 x 2-+{—1, 0,1} for the first player defined by

¢ = Ig,zmk( 11’ 532) +Ilg.g '51 —IExﬁfiz,
where

x—y+ay fo<r<y<]l,
k(z,y) =10 f0<r=y<1,
—y+o—2y HO0y<ao<l,
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and I z 18 the indicator function of the event B = Q x Q. Now, the pay-off
function of the game is given by

K (7)) = [ 9Py XPryy  (my 70) €I XIL.

2x 2

:Ze also observe that if F, is the distribution function of & (i =1,2),
hen

(1) K(a,, =z, = [adF, (2)— [ydF.,,(y)+

1

+ [@dF, (2) [yaF,,(9)~2 [ [ ydF,, (y)dF (@),

0
The distribution function ¥, is determined by
T

Fo(0) = [ a@f()at, [0, ),

0

Where f(t) satisfies the following integral equation:

@) fl@) = p(0, )+ [ fOL—n(t)]p(t, z)dt
if 5 ¢ [0,1], and

f(@) =p(0, @)+ [ f)[L—=(t)]p(t,2)dt

1 2el1, o).

Assuming that p is bounded on [0,1]x[0,1] and that
2(0, -) is square integrable on [0, 1], we prove the existence and unique-
less of the solution of equation (2).

Let us introduce the normal form I' = (I1, I, K) for the considered
8ame, where K is given in (1). In an analogous way as in [1] we can prove
Fh&t the pay-off function K is continuous on I7 xIT if p(-, z) p(0, )
18 an element of L, continuously depending on « € [0,1]. Similarly, we can
Prove that for every probability measure x on I7 there is an equiv-
alent strategy p, e IT resulting in the same distribution function for
¢ as in the case of the mixed strategy u. Now, applying the Glickberg
theorem (see [1]), we obtain

LevmA 2. If the transition density p satisfies the above-stated assump-
tions, then the game I' = (II,II, K) has a solution.

3. Associated optimal stopping problem. First, using equality (1)
We find that, for every (=, m,) ‘e IT X II,
1

E(myy o) = [g(@ | my)dF, (@)~ [yaF, (),
°

’ 0

S — Zastos. Mat. 18.2
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where

1 z

o1+ [yaF. ()2 [yaF. )| i ae[0,1],
0 0

0 if x>1.

(3) g@|m) =

Assume that the second player’s strategy =, € IT is fixed. We notice that
the problem
(4) sup K (7, 7,)

7y ell
is equivalent to the problem of determining the optimal randomized
stopping time 7, in the optimal stopping problem of the Markov chain
{&,,n>1} with the gain function (3) and the operator T defined by

1
Tu(a) = [u(y)p(e,y)dy, e[0,1],
T
where % is a bounded measurable non-negative funection.
We use Theorem 21 from [3] which implies that it is sufficient to
consider only the class of non-randomized Markov stopping times. To
solve problem (4) we discuss the optimality equation

(8) v(z) = max{g(z | =), Tv(v)}, «e[0,1].
We introduce the function
To(x | =
(6) G| m) = 2@L) 0,1y,
g(z | 7,)

and we find that

lim G(z | 7,) = +00 and lim G(z|=,) = 0.

z—0+ z—>1"

Moreover, we see that

v
1y [udF, ()

(™) G| m) = W) =2 [ e p(2, ),
where ’

(®) W(a) = f%p(w,y)dy

and

1 z
a(@ | m) =1+ [ ydF,, (y)—2 [ yaF,,(y).
(1} 0
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Now, assume that for 0 <z <y <1

op (z,
(9) —%—@ <p(z,2)p®,y).

From (9) it follows that the equation W(x) = 1 has a unique root w*
(0,1), and by (7) we have G(x | %,) < 1 for every « e [w*, 1] and =, e IT.

Let fy(x) be the solution of equation (2) for =(x) = 0. We find easily
that, for every m, ell,

(10) fol@=>f(@), @ec(0,1).

We assume that the following condition is valid:
(11) 1— ftfo(t)dt—2w2fo(w) >0, xe(0,w").
0

NeXt, we evaluate

12)  g'(@ | @) = a(@ | m) + @[ —2am,(@)f,, ()]

= [ yma(9)fa, ) Ay +1 — [ Y7o (9)F s, (4) By — 202 7, (3) ,, (2)

>1— [ yfa,(y)dy —20°F,,(2).
0
Now, if condition (11) is satisfied, then from (10) and (12) we obtain
(13) g(@|7)>0, ze(0,w"),
for every =, € II. Using (6) we get

9(y | =) Op(w,y) dy—

¢@lm) = —pla,a)+ [ To T

_g@lm) [ g lm)
9(z | =) : g(x | m,)

p(z,y)dy.

We infer from (9) and (13) that for every =, € IT the inequality
G (@ | 7) < p(x, x)[G(x | =) —1], xe(0,w"),

holds. Hence, we have
LeMuA 3. If conditions (9) and (11) are satisfied, then for every =, € IT
there exists a unique point 2,, € (0, w") such that
G@|m) <1 if #e(z,, 1]
and
Gz |=,) >1 if 2€[0, 2,).
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We also notice that the solution of the functional equation (5) is
given by
’032(90) ={g(w|“2) .if we(z,z,l],
Tv,, (v) it # €[0,2,].

Using Lemmas (P1) and (P2) from [2] as well as our Lemma 2, we
see that against any fixed strategy =, € IT the best the first player can
do is to apply the strategy n(x) = I[z,,z,ll(m)’ where I is the indicator
function of the subset [2,,,1]. Thus, the associated optimal stopping
problem helped to distinguish a simple subclass of behaviour strategies
in the game considered. In the sequel, we seek the optimal strategies
for both players in that subclass of strategies.

4. Reduced game over the unit square and its solution. The simple
class of behaviour strategies established in the previous section is described
by a parameter in [0, 1]. Therefore, we may consider the reduced game

([0,1], [0, 1], K), where K is a restriction of K, e.g. K Iz 010 IWo:ll)
= K(wo, Yo)y %oy Yo € [0,1]. Let us consider the case 0 < yo <z, < 1.
From (1) we get

(14)  K(zo,90) = [af,,(@)ds— f uf,, () dy +

+ f f (@) A f Yfyy (¥) Ay —2 f f Yy (4) 84S, () da.

Since the game is symmetrw, the necessary condltlon for the existence
of a pure optimal strategy for both players takes the form

oK
15 — =0.
(15) 0 2 (@0, o) = 9, (%o, o)
For 0 <y,<2y<1, from (14) we obtain
0]{ . 1 1
o (702 90 = Ty {1+ f o)y ][~ + f 2p (3, ) da| +
o ’ 1 x ’
+22, f Yfy,(y) dy —2 f @ f?/fyo(y)dyp(wo,w)dw}
Yo o Yo -
and
oK I - : - -
e @090 = (w0l | = [1+ [ ol @[ —vot [vp(ve, vy +

s [y [EXCET

Zo E2))
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Conditions (18) imply

18) g1+ f of 5, (@) dar| — [1+ f & gy () A —

0 To

—2 fyf%(y)dy]p(wo, z)dw = 0,

Where

fu(@ =20, 0+ [ fOp(, 0)dt, @ e[, 1],

and
f(@) =p(0,2)-+ [ ft)p(t, 2)dt, wel0,x].

We discuss now the existence and uniqueness of the solution of equa-
tion (16) Denote by S{z,) the left-hand side of (16). We check easily that
S(w*) > 0, where w* is the root of the equation W(x) = 1 and the function
W is given by (8). We also see that

1 1 1 x
8(0) = — [ap(0,2)dw |1+ [ap(0, 2)ds] +2 [z [yp(0, y)dy p(0, »)do
< —flwp(O,w)da;[l—flxp(o,w)dx] < 0.

Thus, it remains to examine the monotonicity property of the function
8(x,) on (0, w*). One could -find various sufficient conditions for the
Uniqueness of the solution z* of equation (16). Let us study the derivative

(17) 8'(xy) =1+ j$fzo(w)d$+wofxo(mo)[—"I’o‘i' fwP(mo; w)dm]+
+wo[1+ fl yfxo(y)dy]p(wo,wo) —Jzy (%) fl w[—wo+

+ fyp (@, Y)Y + 22— 2 fyp(wo,y)dy] (®o, x)dx —

o

fl [1+ fl Uf o (4) dy —2 f yfzo(y)dy]m;—"o’)

o o
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Using once again condition (9) in (17) we see that

(18) 8 (@0) = P (%0, 20) S (@) +1+ [ af, (@) dw+

Lo

+ (@) [~ — f ap @y, @) da)'| +

1 x
+2 [@ [yp (o, y)dyp (w0, @) da.

) x

From (11) we obtain the inequality
1
14 [ af, (@)do—2af, () >0, @ €(0,w").
o

Hence it is sufficient to assume that, for x,e (0, w®),

1 1 xr
(19) & —( fap(z,, 2)da) +2 [@ [yp(@o, y)dyp(@y, ®)dz >0,
Zo

Ty Xo

From (18) we have 8'(x,) > p (%), 2,)S(z,) in (0, w*), and the uniqueness
of z* follows.

To prove the optimality of the strategy &* it is sufficient to show
that for 2* < x, and y, < 2* the conditions
0% (08" <0, S (at ) <O
0%,

(20) 3

are satisfied. First, let us introduce some auxiliary functions:

1
R(m) = —@+ [ap (@, @)dz, z,€[0,1],
To

1

*(@) = [yf.(y)dy, wela’1],
(21) =

N(@o) = [a®*(@)p (@, 2)ds—2, 0" (z), € [a" 1],

Zo
M(z,) = N(xo) R (), @€ [x%1].
Using the notation from (21) and relation (16) we obtain
0K

. @os %) = 2fy (@) B~ (27) [B(wg) N (") —R(a") N (2,)], @, € [, 1],
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and

aK * * - * *
Tgp @90 = A E G| [90"0) (B2 00 1)~

~Rlyp@", 0y}, Yoc[0,0"].

Now, let us study the following properties of the function M (x,),
T € [a7, 17

(i) lim M (z,) = —oo,
(i) lim M (z,) = + oo,
(i) M(1) = *(1),
(iv) M (mg) < * (@) < B*(1) < M(a*), @, (¥ 1],
(v) M(zg) > M(a%), ¢ [a* w").

We prove properties (iv) and (v). Let z, € (w*, 1]. Then R(wx,) < 0
and M (g,) < @*(w,) by the definition of M (wx,). Since @*(1) <1 and
M(s*) = 0.5[1+8*(1)] by (16), we have 0.5 [L+B*(1)]> *(1) and
{iv) holds. Now, let =z, e [z*, w*) and C(z,) = 2R(x,)[M (z,) — M (z*)].
We obtain

C(z,) = 2N (2)) —R(zo) [1+9*(1)], @, € [4", w*],
Where ((x*) = 0 and C(w*) > 0. Next, we evaluate
C' (@g) = [1+ oD (0, %) J[L +P*(1) —20%(w0) ] —

0p (4, )

o, dx.

202, (@) + f & [20*(3) —1 —8%(1)]

Zo

Using assumption (9) we get
O’ (2g) = 14D (1) — 20 (w,) — 205 fra () + 2 (Toy #0) C (@)

Finally, from (11) we have C'(x,) > p (@, ,)C (2,), and since R(x,) >0,
We obtain property (v).

It is easy to notice that properties (iv) and (v) imply the first ine-
Q}lahty in (20). In order to obtain the second inequality in (20) it is suffi-
Clent to assume that, for x € [0, w*),

(22) _Q__ p(z,9)
0r R(x)

>0, 0<wo<y<l,
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or

o (z,9) =0, O0<a<y<l.

Thus we have proved the following

THEOREM. If the assumptions of Lemmas 1-3 and the conditions (19)
and (22) are satisfied, then the optimal strategy for both players in the con-
sidered game s uniquely determined by the solution of equation (16).

We give a simple example of the game. Let p(z,y) = I(y—2)
where I is the indicator function of [0,1]. Then f(x) = €% fxo(a;) = ™
for « e [x,, 1] and R(z,) = 0.5[1 —22,—2]. We also find that w* = V2 —1
and equation (16) takes the form

(24) [1—2xy—a2]a; (1 —af)™ ! = e,
The solution of equation (24) is #* = 0.2851.
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