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Introduction. There are several inequivalent concepts of equivalence of
fields with respect to quadratic forms. We will focus our attention on the
equivalences related to Witt and Witt—Grothendieck rings of quadratic
forms. Two fields F and K are said to be W R-equivalent (GR-equivalent) if
the Witt (Grothendieck) rings W(F) and W(K) (G(F) and G(K)) are
isomorphic. Although WR-equivalence is relatively easy to handle, the GR-
equivalence is not since Grothendieck ring isomorphisms do not — in
general — preserve dimensions, forms or hyperbolic planes (see Chapter IV
in [6] and also Lemma 3.3 below).

More satisfactory in this respect is the notion of a strong equivalence.
We say F and K are strongly GR-equitvulent (strongly W R-equivalent) if there
exists a ring isomorphism G(F)- G(K) (W(F)- W(K)) sending 1-
dimensional forms over F onto 1-dimensional forms over K, or, in other
words. a ring isomorphism inducing a natural isomorphism of groups of
square classes of the two fields (see [6] for a detailed discussion).

Now the fundamental thing is that WR-equivalence coincides with
strong W R-equivalence (Harrison—Cordes, see [1]).

As the examples mentioned above suggest, the two GR-equivalences
seem to be more apart and only in [7] we have proved that for non-real
fields the two GR-equivalences coincide (but they do not coincide — in
general — with WR-equivalences; see Example 1.3 below). The case of
formally real fields requires a different approach and has been left open. It is
the aim of this paper to fill in this lacuna. We prove here that for formally
real fields not only GR- and strong GR-equivalences coincide but the GR-
equivalences turn out to be identical with W R-equivalences. On examining
the matter more closely we have noticed that all the arguments work all
right in the more general setup of Marshall's abstract Witt rings ([4]).

Thus in Section 1 we define abstract Grothendieck rings and rephrase
all the necessary results of the classical theory to the abstract case. In Section
2 we analyze the relationship between abstract Grothendieck rings, abstract
Witt rings and quaternionic structures. The paper culminates in Section 3
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where the main results on the relationship between ring isomorphisms and
category isomorphisms of abstract Grothendieck rings are proved.

1. Abstract Grothendieck rings. First we recall the concept of an
abstract Witt ring as introduced in [4]. This is a pair (R, Gg), where R is a
commutative ring with 1 and G is an elementary 2-group contained in R,
the multiplicative group of invertible elements of R. We require that —1e Gy
and the following axioms are to hold.

WI1. R is additively generated by Gg.

W2. R satisfies the Arason—Pfister properties AP(1) and AP(2).

Here AP(k) means: for a,, ..., a,€Gg,

r=a,+...+a,el*, n<2*=r=0

where I is the ideal of R generated by all elements a+b, a, be Gy.
W3. If aj+...+a,=b,+... +b,, n=>3, a;, b;eGg, then there are
a,b,cs,...,c,eGg such that

a,+...+a,=a+c3+...+c, and a,+a=>b,+b.

The motivating example is R = W (F), the Witt ring of anisotropic quadratic
forms over a field F of characteristic not 2.

The following axiomatizes the abstract counterpart of the Witt—
Grothendieck~ring G(F) of a field F.

Definition. An abstract Grothendieck ring (AGR, for short) is a pair
(R, ®), where R is a commutative ring with 1 and ® is an elementary 2-
group contained in R’ such that the following two axioms hold:

GlL. fay+..4a,=b+...+b,, a;,b;e®, n>1, m=>1, then n=m.

G2. There is an element ee ® such that Z-(1+¢) is an ideal in R and
the quotient R=R/Z-(1+e) is an abstract Witt ring with Gz = {a
+Z{l+e): ac®).

For any field F of characteristic not two, the Grothendieck ring G(F) is
an AGR with G = F'/F2,

ProposiTioN 1.1. R is additively generated by ®.

Proof. For AeR, h(A)=a,+...+a,+Z(1+¢), where h is the
canonical homomorphism R — R, and a,, ..., a,€ ® (a consequence of W1).
Thus 4 =a,+ ... +a,+2z(1 +e¢), for some integer :.

Every element ee ® such that G2 holds is said to be a hyperbolic
element of ® (or, of R). On the other hand, every element ec & such that
Z-(1+¢) is an ideal in R is said to be a universal element of % (or, of R).

ProposiTION 1.2. ee ® is a universal element if and only if 1+e = x+ xe
Jor every xe ®.

Proof. If e is universal and xe ®, then x-(1+e) =z-(1+e¢) for some
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ze Z. By G1, z = 1. Conversely, Proposition 1.1 and 1+e = x+ xe for every
xe ® imply that Z-(1+e) is the principal ideal generated by 1+e.

In general, there are many universal elements in R. In the Grothendieck
ring G(F) of a field F, {(e>e G(F) is universal if and only if the form (1, e) is
universal, and {(—1) is a standard hyperbolic element. However, we shall
prove (Corollary 3.5) that for any formally real field F the universal and
hyperbolic elements of G(F) coincide. More precisely, for any formally real
field F and any universal form {1, e¢) over F, the quotient G(F)/Z {1, e) is
isomorphic to the Witt ring W(F). On the other hand, for non-real fields two
hyperbolic elements can produce non-isomorphic Witt rings as the following
example shows.

Example 1.3. Let F be a field with the property that all binary
quadratic forms over F are universal and assume additionally that the level
s(F) = 2. Consider R = G(F). For e = (—1), R is the classical Witt ring
W (F), and since s = 2, the additive order of 1eR is 4. Now for e = (1), the
additive order of 1eR is 2. Hence the two quotients of R are not
isomorphic. Let us remark that the second quotient of R is a Witt ring too.
It is isomorphic to the Witt ring of a field K with the group of square classes
of the same cardinality as that of F, with s(K) = 1 and all binary forms over
K universal. Note also that G(F) = G(K). (See [3], Theorem 3.5, p. 44 for the
structure results and [1], p. 407, [2], (3.8) and [5], p. 55-56 for the
constructions of F and K))

For A=a +...4+a,—-b,—... -b,, a;, b;e ®, put dim A = n—m. This
defines a ring homomorphism dim: R — Z (it is well defined by G1) split by
the unique ring homomorphism Z — R. This proves the first part of the
following.

ProrosiTioN 14. (i) R = Z-1@Ker dim, as additive group.
(i) Ker dim is additively generated by the set {1—a: ac ®}.

Proof. (ii) O-dimensional elements of R are ) (a,—b,), with a;, b,e 6,
and a—-b=1-b—(1-a).

Recall that for a Witt ring R any ring homomorphism 7: R — Z is said
to be a signature of R. For an AGR we have just defined the dimension
homomorphism dim: R—Z. A signature of R will be any ring
homomorphism ¢: R — Z different trom the dimension homomorphism. For
a ring homomorphism ¢: R > Z to be a signature it is necessarv and
sufficient that there is an element xe ® such that 6(x) = —1. Observe also
that o(e) = —1 for every universal element ec 6. Indeed, e? = 1 implies o (e)
= +1, and if o(e) = 1, then, by Proposition 1.2, universality implies (x) = 1
for every xe ®, a contradiction.

It follows o (1 +€) = 0, so that ¢ factorizes through every R = R/Z (1 +e),
where e is universal, ie, ¢ =toh, where 1: R— Z is a ring homomor-
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phism (a signature if R is a Witt ring, i.e, if e is hyperbolic). The set of
all signatures of R will be denoted by X (‘R).

ProposiTiON 1.S. (i) R=Z -1®Ker o, as additive group, for any
oe X (R).

(ii) Let e be any universal element of . Then Ker o is. additively
generated by the set (1+el U l—a: ae® and 6(a) =1).

Proof. (i) o is split by the unique ring homomorphism Z - R.

(i) Take a typical AeKero, A =a,+ ... +a,—b,— ... =b,, a;, b;e ®.
Without loss of generality n > m; hence A =a,—-b;+ ... +a,—b,+a,+,+
+ ... +a,. Now, playing with the following four identities exactly the same
way we did in [6], p. 12-13, one represents A through the generators
specified in (ii). The identities are as follows:

() a=b=1-b—-(1-a);

(2) a—b=¢eb—ea=1-ea—(1—eb);

3) a—b=a+eb—(1+¢);

(4) a+bh=u—ch+1+ec.

(Recall that if 6(a) = —1, then o(ea) = 1.)

We shall need a little deeper result on the additive structure of an AGR.

ProrosiTioN 1.6. For 6e X(R) put U =KerdimnKero and T=1!1
—a: ae® and a(a) =1|. Then

(1) U is additively generated by T,

(i) Ker dim = Z(1 —e)@U, for any universal element ¢ ;

(iii) Ker a = Z(1 +e)PU, for any universal element ec .

Proof. (i) Let (T) be the additive span of T. By Propositions 1.4(ii)
and 1.5(ii), T < U, hence also (T) < U. Suppose now A U. Then AeKer o
and by 1.5(i), 4 =z(1+e)+ ) +(1—a;), where zeZ and 1—g;e T Since
AeKer dim, 0 =dim 4 = 2z, whence z =0 and Ae(T). Thus U =(T).

(it) First observe that Ker dim is additively generated by |l—e! UT.
Indeed. if 1 —a¢ T then 1 —¢ae T and 1 —a = 1 —e—(1—ea). By Proposition
1.4 (ii) we are done. This also shows that Ker dim = Z(1 —e)+ U. Now if
AeKerdim, A =z(1—-e)+u, zeZ, uc U, then o(u) =0 and o(A) = 2z. Thus
z is uniquely determined, and so is u. This proves (ii).

(iii) By Proposition 1.5(i), Kere =Z(1+¢)+U. If AcKero, A=
z(1+e)+u, zeZ, ueU, then dim u = 0 and dim A = 2z. Thus z is uniquely
determined, and so is u. This proves (iii).

Remark. When ‘R has no signatures one can also prove that if e is
hyperbolic, then 1 —e generates a direct summand in Ker dim. The order of
1 —e is then finite and equal to the level | of the Witt ring R = R/Z(1 +e).
The proof requires some extra work and can be adapted from the classical
case discussed in [6], Theorem IIL.1.

We shall also use the following fact on prime ideals of an AGR.
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ProrosiTiION 1.7. The prime ideals Ker dim and Ker o, where 6 € X (‘R),
are all distinct and are the complete set of minimal prime ideals of ‘R.

Proof. Fix a hyperbolic element ee . First observe that Ker dim is
the unique minimal prime ideal p with the property that 1+e¢p. For
suppose either p is a prime ideal contained in Ker dim or p is a minimal
prime ideal with 1+e¢p. In either case (1+e)(1 —a) = 0 implies 1 —aep, for
every ae 5. Thus p contains all the generators of Ker dim (Proposition 1.4
(i))) and so p = Ker dim. It follows that Ker dim is a minimal prime ideal
and the unique one with 1+e¢p. Further, Ker o is the inverse image of the
minimal prime ideal Ker t of R (cf. [4], Corollary 4.18, p. 82). Hence. if
Ker o, 0 X (R), are minimal prime ideals, these are all the minimal prime
ideals in R containing 1+e (i.e, containing the kernel of the canonical
homomorphism ‘R — R).

Suppose p = Ker 6, where p is a prime ideal. By what we have proved
above on Ker dim, we can assume 1+eep. Take any ae & with o(a) = 1.
Since (1+a)(1—a) =0 and 1+a¢Ker 6, we have 1 —aep. Thus p contains
all the generators of Ker ¢ determined in Proposition 1.5(ii), and so p
= Ker ¢. This finishes the proof.

2. AGRs and Q-structures. A Q-structure is determined by a surjective
mapping q: GxG - Q, where G is an elementary 2-group with a
distinguished element ¢ G and Q is a pointed set with distinguished point
0eQ, satisfying the following axioms:

QL. q(a, b) = q(b, a);

Q2. q(a, ea) = 0;

Q3. q(a, b) =4q(a, ¢) < q(a, bc) = 0;

Q4. g(a, b) =q(c,d) = IxeG such that q(a, b) =q(a, x) = q(c, x).

Every Witt ring R determines a Q-structure (cf. [4], Proposition 4.2, p.
65) and every Q-structure determines a Witt ring ([4], p. 39) whose
associated Q-structure is isomorphic to the given one. Here by a morphism
between two Q-structures (G. Q, g, ¢) and (G, Q', 4’, ¢) we mean a group
homomorphism a: G— G’ such that a(e) =¢ and ¢q(a, b) =0 implies
q'(xa, ab) = 0. This makes the class of all Q-structures into a category 2.%.
Also the class of Witt rings is made into a category o/ ¥ # when we define a
morphism between two Witt rings R and S to be a ring homomorphism
a: R— S such that a(Gg) =« Gs. /¥R and 2% are naturally equivalent
([4], Theorem 4.5, p. 68).

We define a morphism between two AGRs R and S to be a ring
homomorphism a: R — & such that a(®(R)) = (). This makes the class
of AGRs into a category .&/%A4. We say R and E are isomorphic as AGRs if
R and & are isomorphic objects of ./%4. In terminology of [6, 7], two
fields F and K are strongly GR-equivalent if the Grothendieck rings G(F)
and G(K) are isomorphic as AGRs.
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As in the case of Witt rings, every AGR determines a Q-structure,
although not necessarily a unique one. Given R we take G = G(R), Q
=Q(R)={(1-a)(1-b)eR: a, be G(R)} and define q by q(a, b) =(1—a) x
x(1—>b). The distinguished elements are 0 = q(1, 1) in Q and any universal
element e in G.

ProrosiTioN 2.1. (i) For any AGR, (®(R), Q(R), g, e) defined above is
a Q-structure.
(ii) Suppose ec ®(R) is a hyperbolic element. Then the Q-structure

associated to R is isomorphic to the Q-structure associated to the Witt ring R
=R/Z(1+e).

Proof. Here proof of (i) is virtually the same as that of Proposition 4.2
in [4], p. 65, and to prove (ii) observe that the groups ®(R) and Gg
= {a+Z(1+¢€): aec ®(R)} are isomorphic via h(a) =a+Z(1+e), and h(e)
= —1+Z(1+e). Moreover, if qg: Gg xGgr — Qg is the mapping of the
Q-structure associated to R, then the canonical homomorphism h: R — R
sends q(a, b) into gg(h(a), h(b)). Hence q(a, b) = 0 implies gg(h(a), h(b)) =0,
as required.

Since R can have non-isomorphic associated Witt rings (see Example
1.3), it can also have non-isomorphic associated Q-structures. But any Q-
structure associated to R, whose distinguished element ee G(R) is
hyperbolic, determines R completely. This follows immediately from the
following. :

ProposITION 2.2. Suppose the distinguished elements ec ®(R) and
e, € &(S) of Q-structures associated to R and S are hyperbolic. Then each Q-
structure morphism a: &(R) - G(S) lifts uniquely to a morphism a: R - S.
More precisely, let «': R— S be the unique lifting of a to a morphism of Witt
rings and h, h, be the canonical homomorphisms R — R and S — S. Then there
is a unique morphism a: R — & satisfying hyoa=0a'0h.

Proof. Since ®(R) generates R additively, if a lifts at all, it lifts
uniquely and

a(@a,; + ... +a,—b,—...-b,)=aa,+ ... +aa,—ab,— ... —ab,,
for a;, bje G(R).
We only have to check that a is well defined, ie., if
A:=a;+...+a,—b;—...—b, =0,
then -
B:=aa,+ ... +aa,—ab,— ... —ab, =0.

A = 0 implies dim A = 0 and Ae Z(1+e). Hence also dim B = 0. Now « can
be viewed as the morphism of Q-structures associated to R and S and by
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Corollary 4.4, [4], p. 68, a lifts to a morphism «’: R —» S and
W(A+Z(1+e))=a'(a;+ ... +a,+eb,+ ... +eb,+ Z(1 +¢))
=aa;+ ... taa,+e a(h))+ ... +e, a(by)+ Z(1+¢y)
=B+Z(1+e)).

Now AeZ(1+e) implies Be Z(1+e,) and since dim B = 0, we conclude B
=0 (by Gl1). This proves the lifting exists. Finally,

h,oa(A) = h,(B) = B+ Z (1 +e¢;) = a'oh(A),

as required.

CoroLLARY 23. If a: G(R)— G(S) is a Q-structure isomorphism, then
a: R— S is an isomorphism of AGRs.

3. Isomorphisms of AGRs. In this section we study the relationship
between ring isomorphisms of AGRs and isomorphisms in the category .o/%.4.
The main result (Theorem 3.2) establishes that under some mild conditions
the two types of morphisms coincide. The key idea is to rectify in some sense
a given ring isomorphism R — & to assure sending a given universal element
of M onto a given universal element of & (Lemma 3.3). This has also an
interesting application in the classical case (Corollary 3.5).

We begin with the following generalization of Theorem IV.3.2 from [6].

ProposITION 3.1. Let R and S be two AGRs and suppose the associated
Witt rings R =R/Z(1+e) and S = S/Z(1+e,) satisfy AP(3). Then the
Jollowing statements are equivalent.

(i) R and S are isomorphic as rings and a(e) =e, for one such
isomorphism a.

(i) R and S are isomorphic as rings.

(iii) R and S are isomorphic as abstract Witt rings.

(iv) R and S are isomorphic as abstract Grothendieck rings and a(e) = e,
for one such isomorphism a.

Proof. (i) = (ii) « sends Z(1+e) onto Z(1+e;) and induces a ring
isomorphism R - §.

(i) = (iil) is Marshall’s Proposition 4.6 in [4], p. 70.

(i) = (iv) By [4], Corollary 44, p. 68, (iii) implies that the Q-structures
associated to R and S are isomorphic. By Proposition 2.1, the Q-structures
associated to R and S are isomorphic and so, by Corollary 2.3, there exists
an isomorphism a: R —» S of AGRs. It remains to prove that a(e) = e,. By
Proposition 2.2,

hioa(e) =a’oh(e) =a'(—1g) = — 15 = h,(e,).
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It follows that a(e¢) and ¢, both belong to the same coset of Ker h; = Z(1+e¢,).
A comparison of dimensions gives a(e) = ¢,. This proves (iv).

(iv) = (i) is trivial. ‘

THEOREM 3.2. Let R and & be two ubstract Grothendieck rings with the
following two properties.

(a) Each M and & has ar least one signature.

(b) The associated Witt rings R and S satisfy AP(3).

Then the following statements are equivalent.

(i) R and & are isomorphic as rings.

(i) R and S are isomorphic as rings.

(iii) R and S are isomorphic as abstract Wit rings.

~

(iv) R and & are isomorphic as abstract Grothendieck rings.
On using Proposition 3.1 we need only the following result.

LEMMA 3.3. Under the assumption (a) above, if R and < are isomorphic
as rings and ec O(R), e, € () are arbitrary universal elements, then there
exists a ring isomorphism a: R —» S such that x(e) = e,.

Proof. Suppose f: R —» & is a given ring isomorphism and fi(e) # e, .
f maps minimal prime ideals of R onto minimal prime ideals of . If
p(Ker dimy) # Ker dim;, then, by Proposition 1.7, there is a signature ¢, on
S such that B(Ker dimy) = Ker g,, and a signature ¢ on R such that
B(Ker ) = Ker dim;. The other case is when f(Ker dimy) = Ker dim;.
Then again take any signature ¢ on ‘R and let o, be the signature on & such
that B(Ker o) = Ker o,. In either case put

U =KerdimynKeroe and U, =Ker dim;:Ker g,.

These are ideals in R and &, respectively, and by Propositions 1.4 and 1.6,
R=Z'1DZ(1+e)PU,
S=Z1®Z(1+e,)DU,.
Observe that g(Z-1)=Z-1 and B(U)=U,.
We define now an additive isomorphism «: ‘R — S by putting

x(D=1, a(l+e)=1+e;, 2y =Hl.

It is easy to check that x is, in fact, a ring isomorphism. We claim that
(3.3.1) x((1+e)-u)=x2(1+e)x(u), for ueU,
(3.3.2) 2((1+€)?) = (x(1 + e))>.

Recall that Z(1+e¢) and U are ideals of R, hence
(1+e)-ueZ(l+e)-U cZ(l+e¢)nU =0,
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and similarly
1(l+e)a)=(+e¢) BweZ(l+e)- U, cZ(l+e¢,)nU, =0.

This proves (3.3.1). Further, (1+¢)? = 2(1+e¢), whence (3.3.2). Thus z is the
desired ring isomorphism.

CoroLLARY 34. If N has a signature, then for any two universal ele-
ments e and e, of ‘R the associated rings R = R/Z(1+e) and S = R/Z(1 +e¢,)
are isomorphic. Thus any universal element is hyperbolic and R has exactly
one associated Witt ring (up to isomorphism).

Proof. By Lemma 3.3, there is an automorphism of R sending ¢ into
¢, and this induces the required isomorphism of R and S.

CorOLLARY 3.5. Ler F be a formally real field and (1,t> be any
universal binary form over F. Then Z ¢1,t) is an ideal in the Grothendieck
ring G (F) and the quotient G(F)/Z (1, t) is isomorphic to the Witt ring W (F)
of the field F.

Proof. Apply Corollary 3.4 with R =G(F), e=¢(—1) and ¢, = (t).
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