AGASSIZ SUM OF ALGEBRAS

BY

G. GRÄTZER AND J. SICHLER (WINNIPEG, MANITOBA)

A colimit-type construction of an algebra over a system of algebras without nullary operations indexed by a semilattice was introduced by Płonka in [2]. Lakser, Padmanabhan and Platt generalized it to the concept of Płonka sum described in [1]; Płonka sum applies also to algebras having nullaries. Both constructions are very natural and have already found numerous applications.

In the present note* we would like to generalize these concepts still further. The new concept of Agassiz sum does not impose any restrictions on the indexing algebra and a corresponding extension of the principal result of [2] remains valid also in the case of Agassiz sums.

Let K be a class of algebras of type τ, and let I (I for Indexing Algebras) be a class of algebras of type ϱ. The only assumption we make is that algebras of I have a nullary operation whenever algebras of K do.

To every polynomial symbol p of type τ we assign a polynomial symbol $N(p)$ of type ϱ (N for the Name of the Polynomial) satisfying

(i) the variables of p and $N(p)$ are the same;
(ii) N preserves composition, that is,

$$N(p(q_1, \ldots, q_k)) = N(p)(N(q_1), \ldots, N(q_k))$$

is an identity in I.

These two conditions say that N is a product-preserving functor from the theory of K into the theory of I.

Let K, I and N be given and let B be an algebra of the indexing class I. Let $R \subseteq B^2$ be a transitive relation on the underlying set B of the algebra B such that

(a) if $j = h(b_1, \ldots, i, \ldots, b_n)$ for some algebraic operation h of B and for some $b_1, \ldots, b_n \in B$, then $\langle i, j \rangle \in R$.

* The work of both authors was supported by the National Research Council of Canada.
An Agassiz system S of algebras over B is a family $(A_i : i \in B)$ of algebras from K together with a family $(f_{ij} : \langle i, j \rangle \in R)$ of homomorphisms $f_{ij} : A_i \to A_j$ such that

(b) $f_{jk} \circ f_{ij} = f_{ik}$ whenever $\langle i, j \rangle, \langle j, k \rangle \in R$.

Form the disjoint union $A = \bigcup (A_i : i \in B)$ and define an algebra of type τ on A as follows. Let p be an n-ary polynomial symbol and $n \geq 1$. For $a_1, \ldots, a_n \in A$, let b_1, \ldots, b_n be the (uniquely determined) elements of B such that $a_i \in A_{b_i}$, and let $b = N(p)(b_1, \ldots, b_n)$. By (a), $\langle b_i, b \rangle \in R$, so we can set $a_i^* = f_{b_i,b}(a_i)$. All a_i^* are in A_b; we write

$$p(a_1, \ldots, a_n) = p_{A_b}(a_1^*, \ldots, a_n^*).$$

If p is nullary, then $N(p) = \mathbb{N}(p)$ is nullary and we define p on A to be the value of $p_{A_{\mathbb{N}(p)}}$. Let A be the algebra on the set A whose operations have just been defined. The algebra A is called the Agassiz sum of S and denoted by $A = \lim_N(S)$.

Example 1. Let the algebras of K have no nullary operations and let I be the class of semilattices. For a polynomial symbol p, set

$$N(p) = ((x_1 \vee x_2) \vee \ldots) \vee x_k,$$

where x_1, \ldots, x_k are all the variables of p. If the relation R is the partial ordering of a semilattice B, then the Agassiz sum of the corresponding Agassiz system is the sum described in [2].

Example 2. If nullary operations are permitted to appear in the algebras of Example 1, the Plonka sum of [1] is obtained.

Example 3. The direct product $A \times B$ of two algebras of the same type is obtained as the Agassiz sum with the naming functor $N(p) = p$ of an Agassiz system consisting of $|B|$ copies of the algebra A and of all the canonical isomorphisms between them.

A large variety of examples can be constructed from

Proposition. Let I be the class of semigroups and let I_0 be the class of semigroups with 0. For a polynomial symbol p of type τ, write $N(p) = ((x_1 \cdot x_2) \cdot \ldots) \cdot x_k$, where x_1, \ldots, x_k lists all variables of p (with repetition) in the order of their occurrence. If p is nullary, set $N(p) = 0$. Then N satisfies (i) and (ii) for any class K.

Let $\lim_N(K, I)$ denote the class of all isomorphic copies of all Agassiz sums with given K, I and N. Let $\text{Id}(K)$ be the set of all identities that hold in K. An identity $p = q$ in $\text{Id}(K)$ is N-regular if $N(p) = N(q)$ holds in I. Let $\text{Id}_N(K)$ be the set all N-regular identities.

Theorem. $\text{Id}(\lim_N(K, I)) = \text{Id}_N(K)$.

If this theorem is specialized to the case described in Example 1, it becomes the main result of [2]. A result of [1] is obtained if that theorem is applied to Example 2.
Observe that \(\text{Id}_N(K) = \text{Id}(K) \cap \text{Id}(I) = \text{Id}(K \cup I) \) whenever \(K \) and \(I \) are of the same type and the functor \(N \) is trivial. Let \(K \) and \(I \) be equational classes of the same type. It is natural to ask under what conditions can every algebra of \(K \vee I \) be represented as an Agassiz sum. S. M. Lee has shown that this happens in several cases of pairs of equational classes of idempotent semigroups.

Problem 1. Let \(K \) and \(L \) be equational classes of algebras of the same type and let \(K \subseteq L \). What conditions are sufficient for the existence of an equational class \(I \) and a naming functor \(N \) with \(L = \text{lim}_N(K, I) \)? (P 892)

An identity \(p = q \) is *regular* if the same variables occur on both its sides. Thus, in Example 1 we always get \(\text{Id}(\text{lim}_N(K, I)) \) as a well-defined subset of \(\text{Id}(K) \).

Problem 2. Under what conditions can \(\Sigma \subseteq \text{Id}(K) \) be represented in the form \(\Sigma = \text{Id}(\text{lim}_N(K, I)) \) for some \(I \) and \(N \)? (P 893)

REFERENCES

UNIVERSITY OF MANITOBA

WINNIPEG, MANITOBA, CANADA

Reçu par la Rédaction le 28. 3. 1973