FASC. 1

INFINITARY VARIETIES OF STRUCTURES CLOSED UNDER THE FORMATION OF COMPLEX STRUCTURES

BY

G. GRÄTZER (WINNIPEG, MANITOBA)
AND S. WHITNEY* (EDMONTON, ALBERTA)

1. Results. Let $\mathfrak{A} = \langle A; F, R \rangle$ be a structure. Let Com A denote the power set of A and Com⁺ $A = \text{Com } A - \{O\}$. For $f \in F$, define

$$f(A_0, \ldots) = \{f(a_0, \ldots) \mid a_0 \in A_0, \ldots\},\$$

where $A_0, ... \in \text{Com} - A$. For $r \in R$, define:

 $r(A_0, ...)$ holds iff for any i and $b \in A_i$ there are

$$a_0 \in A_0, \ldots, a_i \in A_i, \ldots$$

such that $a_i = b$ and $r(a_0, ..., a_i, ...)$ holds.

(Observe that this agrees with the definition of set equality on Com A.) Let Com \mathfrak{A} denote the resulting structure $\langle \text{Com } A; F, R \rangle$. Then $\langle \text{Com}^+ A; F, R \rangle$ is a substructure; it will be denoted by $\text{Com}^+ \mathfrak{A}$. (These definitions agree with the usual definitions given in the finitary case in the literature; see the References. This definition of relations on Com \mathfrak{A} appeared first in [6].)

A variety of structures is a class defined by a set of atomic formulae, i.e., formulae of the form $r(p_0, ...)$, where $r \in R$ or r is the equality sign =, and $p_0, ...$ are polynomials; if r is the equality sign, $r(p_0, p_1)$ stands for $p_0 = p_1$.

A polynomial p is *linear* iff every variable appearing in p occurs exactly once. An atomic formula $r(p_0, ...)$ is *linear* iff $p_0, ...$ are all linear; it is regular iff the same set of variables occurs in all p_i . Now we can state the characterization theorem for varieties closed under Com.

THEOREM 1. A variety K is Com closed (that is, if $\mathfrak{A} \in K$, then Com $\mathfrak{A} \in K$) iff it is definable by regular linear atomic formulae.

^{*} The research of the first-named author was supported by the National Research Council. The second-named author was aided by an Izaak W Ion Killam Memorial Postdoctoral (Research) Fellowship at the University of Alberta, Edmonton.

To state the analogous result for Com^+ closed varieties we need one more concept. Let K be a variety and let $\Phi = r(p_0, ...)$ ($r \in R$ or r is the equality sign) be an atomic formula. Φ is almost linear in K iff for any ordinal n less than the arity of r there is an atomic formula $\Psi = r(u_0, ..., u_n, ...)$ holding in K such that u_i is linear for $i \le n$ and Φ can be obtained from Ψ by identifying variables (that is, substituting variables by variables).

THEOREM 2. A variety K is Com^+ closed iff it is definable by a set of atomic formulae each almost linear in K.

Observe that if the relations are finitary, then "almost linear" can be replaced by "linear".

COROLLARY. Let K be a variety with finitary relations. Then K is Com⁺ closed iff it is definable by linear formulae.

In general, the Corollary does not hold.

THEOREM 3. There is a variety K that is closed under Com⁺ but cannot be defined by linear formulae.

Various special cases of these results appear in the literature. Theorem 1 for varieties of finitary algebras defined by a single identity appears in [2]; see also [4]. The Corollary for finitary algebras was proved in [1] and, independently, in [5].

2. The Basic Lemma. All the results are based on one lemma. Before formulating it we state an observation from [2].

LINEARITY LEMMA. Let $\mathfrak{A} = \langle A; F, R \rangle$ be a structure and let $p(x_0, ..., x_n, ...)$ be a linear polynomial in which all variables $x_0, ..., x_n, ...$ do occur. Then

$$p(A_0, ..., A_n, ...) = \{p(a_0, ..., a_n, ...) \mid a_0 \in A_0, ..., a_n \in A_n, ...\}.$$

Observe that this does not hold if p is not linear; for instance, if $\mathfrak{A} = \langle A; \cdot \rangle$ is a groupoid, $p(x, y) = x^2 \cdot y$, then

$$p(A_0, A_1) = \{a_0 \cdot a'_0 \cdot a_1 \mid a_0, a'_0 \in A_0, a_1 \in A_1\}.$$

Using the "linearization" $p^* = x_1 \cdot x_2 \cdot y$ of $p = x^2 \cdot y$ we see that

$$,\ p(A_0,\,A_1)=p^*(A_0,\,A_0,\,A_1),$$

and to compute $p^*(A_0, A_0, A_1)$ we can use the Linearity Lemma.

Let us call, in general, p^* a generalization of p if p can be obtained from p^* by identifying variables. If, in addition, p^* is linear, we call it a linearization of p. This leads to the following

COROLLARY. Let $t(x_0, ..., x_i, ...)$ be a linearization of $p(y_0, ..., y_n, ...)$. Then

$$p(A_0, ..., A_i, ...) = \{t(b_0, ..., b_n, ...) \mid b_n \in A_i \text{ for } y_n = x_i\}.$$

Now we come to the crucial lemma:

BASIC LEMMA. Let K be a Com^+ closed variety. Let $r(p_0, ..., p_n, ...)$ hold in K. Then for any ordinal n less than the arity of r we can find polynomials $p'_0, ..., p'_i, ...$ such that

- (i) $r(p'_0, ..., p'_i, ...)$ holds in K;
- (ii) for all i, p'_i is a generalization of p_i ;
- (iii) p'_n is linear.

Proof. Let X be an infinite set of variables such that |X| exceeds the arity of polynomials and relations. Let \mathfrak{P} be the free algebra over X modulo the identities p = q holding in K. We define the relations r on \mathfrak{P} by

$$r(p_0, ...)$$
 in \mathfrak{P} iff $r(p_0, ...)$ holds in K ,

thus obtaining the structure $\mathfrak{P} = \langle P; F, R \rangle$. Obviously, $\mathfrak{P} \in K$. Since K is Com^+ closed, $\operatorname{Com}^+ \mathfrak{P} \in K$. Thus $r(p_0(X_0, ...), ...)$ holds in $\operatorname{Com}^+ \mathfrak{P}$ for all nonempty subsets $X_0, X_1, ...$ of X. Let

$$p'_n(x_0, ..., x_i, ..., x_{00}, x_{01}, ..., x_{i0}, x_{i1}, ...)$$

be a linearization of $p_n(x_0, ...)$; we obtain p_n from p'_n by setting

$$x_0 = x_{00} = x_{01} = \ldots, \ldots, x_i = x_{i0} = x_{i1} = \ldots, \ldots$$

Let Z be the set of all variables occurring in $r(p_0, ..., p'_n, ...)$. For each $x_i \in Z$ not occurring in p'_n we choose a singleton $(x_i)_0 = \{z_i\}$ in X; for each x_i in p_n we choose a set

$$(x_i)_0 = \{z_{ij} \mid j = 0, \ldots\} \cup \{z_i\}$$

such that the correspondence $x_{ij} \rightarrow z_{ij}$ is one-to-one in j; we can further assume that all the sets chosen are pairwise disjoint.

Since all these sets are nonempty,

$$r(p_0((x_0)_0, (x_1)_0, \ldots), \ldots, p_n((x_0)_0, \ldots), \ldots)$$

holds in $Com^+ \mathfrak{P}$.

Obviously,

$$b = p'_n(z_0, z_1, \ldots, z_{00}, z_{01}, \ldots, z_{i0}, z_{i1}, \ldots)$$

belongs to $p_n((x_0)_0, (x_1)_0, ...)$; so, by the definition of the relation r on $Com^+ \mathfrak{P}$, there are elements $a_i \in p_i((x_0)_0, (x_1)_0, ...)$ such that $r(a_0, ..., a_i, ...)$ in \mathfrak{P} and $a_n = b$.

By the Corollary to the Linearity Lemma, there are linear polynomials

$$p_0'', \ldots, p_{n-1}'', p_{n+1}'', \ldots$$

such that, for $i \neq n$, $a_i = p_i''(x_0, x_1, ...)$, where $x_0, x_1, ... \in X$ and p_i'' is a linearization of p_i . For $i \neq n$, define $p_i' = p_i''(x_0, x_1, ...)$. Since the x_i are not

necessarily distinct, p'_i is not necessarily linear. However, no two distinct variables of p_i are equated, hence p'_i is a generalization of p_i . For p_n , we choose p'_n so that there is no identification, hence p'_n is linear. This completes the proof of the lemma.

3. Proof of results. To prove Theorem 1, let K be a variety defined by regular linear atomic formulae.

If $\mathfrak{A} \in K$ and A_0, \ldots, A_n, \ldots are nonempty subsets of A, then (by the Linearity Lemma) any element of $p_n(A_0, \ldots)$ is of the form $p_n(a_0, \ldots, a_n, \ldots)$, where $a_i \in A_i$ for all i. Thus $r(p_0(A_0, \ldots), \ldots)$ is verified with the elements $p_i(a_0, \ldots) \in p_i(A_0, \ldots)$. This proves that K is closed under Com^+ . Now, if the formulae are regular and if at least one of the A_j 's is empty, then by regularity all $p_i(A_0, \ldots)$ are empty and $r(\emptyset, \ldots, \emptyset, \ldots)$ holds by definition. This shows that K is closed under Com.

Conversely, let K be closed under Com. Then every formula $r(p_0, ...)$ holding in K is regular. Indeed, if, say, x_i occurs in p_j but not in p_k $(j \neq k)$, then take $\mathfrak{A} \in K$ and set $x_i = 0$ and $x_n = A$ for all $n \neq i$. Then $p_i = 0$ and $p_k \neq 0$, contradicting $r(p_0, ...)$ for Com \mathfrak{A} .

Now let $r(p_0, ...)$ hold in K. Let us apply the Basic Lemma to K, $r(p_0, ...)$, and n = 0. By the Basic Lemma, we can assume that p_0 is linear. As we noted above, $r(p_0, ...)$ is regular. Hence p_0 and p_i have the same variables. This implies that p_i is also linear; indeed, if it is not, and, say, x_j occurs in p_i more than once, then the Basic Lemma gives us an $r(p_0, ..., p'_n, ...)$ holding in K in which x_j is replaced by at least two x_{jk} , contradicting that $r(p_0, ..., p'_n, ...)$ must also be regular.

Thus for every $\Phi = r(p_0, ...)$ holding in K we found a linear regular $\Phi' = r(p'_0, ...)$ from which Φ can be derived. Hence K can be defined by linear regular atomic formulae. This completes the proof of Theorem 1.

To prove Theorem 2, let K be defined by almost linear atomic formulae. Let $\mathfrak{A} \in K$: we claim that $\operatorname{Com}^+ \mathfrak{A} \in K$. Indeed, if $r(p_0, \ldots)$ is an almost linear formula holding in K, we have to show that $r(p_0(A_0, \ldots), \ldots)$ holds in $\operatorname{Com}^+ \mathfrak{A}$ for nonempty $A_0, \ldots \subseteq A$. Let $n \ge 0$ be fixed. By almost linearity, there is an $r(p'_0, \ldots, p'_n, \ldots)$ holding in K such that p'_i is a generalization of p_i and p'_n is linear. Thus any $h \in p'_n(A_0, \ldots)$ is of the form $h = p'_n(a_0, \ldots)$, where $a'_i \in A_i$ for all i. Thus for $c_i = p'_i(a_0, \ldots)$ in $p'_i(A_0, \ldots)$ we have $r(c_0, \ldots, h, \ldots)$ in \mathfrak{A} . showing $r(p'_0, \ldots, p'_n, \ldots)$ in $\operatorname{Com}^+ \mathfrak{A}$. However, $r(p_0, \ldots)$ is derivable from $r(p'_0, \ldots)$, hence $r(p_0, \ldots)$.

The converse statement follows from our Basic Lemma by observing that a generalization of a linear polynomial is also linear. This completes the proof of Theorem 2.

4. An example. Let r be an ω -ary relation and let \cdot be a binary operation; we write xy for $x \cdot y$ and x^2 for xx.

Let K be the variety defined by the following set of atomic formulae:

$$r(x_0^2, x_2^2, x_4^2, ...),$$

 $r(x_0 x_1, x_2^2, x_4^2, ...),$
 $r(x_0 x_1, x_2 x_3, x_4^2, ...),$

These formulae establish that $r(x_0^2, x_2^2, x_4^2, ...)$ (and all the others) is almost linear. Hence, by Theorem 2, K is Com⁺ closed.

To show that K cannot be defined by linear atomic formulae, take $X = \{x_0, x_1, \ldots\}$. Let G be the free groupoid over X. We define r on G as follows:

 $r(g_0, g_1, ...)$ (for $g_0, g_1, ... \in G$) iff there is an $n \ge 0$ such that $g_m = (g'_m)^2$ for all $m \ge n$.

Obviously, $\mathfrak{G} = \langle G; \cdot, r \rangle \in K$.

We claim that there is no linear atomic formula holding in K, except those of the form p = p, where p is a linear polynomial. Indeed, if p and q are distinct groupoid polynomials, then $p \neq q$ in \mathfrak{G} . Hence p = q does not hold. If $r(q_0, q_1, ...)$ is linear and holds in K, then $r(q_0, q_1, ...)$ must hold in \mathfrak{G} . Thus, by the definition of r in \mathfrak{G} , for some n we have $q_n = (q'_n)^2$, contradicting linearity. This completes the proof of Theorem 3.

REFERENCES

- [1] M. N. Bleicher, H. Schneider and R. L. Wilson, *Permanence of identities on algebras*, Algebra Universalis 3 (1973), p. 72-93.
- [2] N. D. Gautam, The validity of equations of a complex algebra, Archiv ftir Mathematische Logik und Grundlagenforschung 3 (1957), p. 117-124.
- [3] G. Grätzer, Universal algebra, Princeton, N. J., 1968; second expanded edition, New York, N. Y., 1979.
- [4] A. Shafaat, On varieties closed under the construction of power algebras, Bulletin of the Australian Mathematical Society 11 (1974), p. 213-218.
- [5] S. Whitney, Model classes for linear theories (Abstract), Notices of the American Mathematical Society 21 (1974), A-317, A-500.
- [6] Théories linéaires, Ph. D. thesis, Université Laval, Québec, 1977.

UNIVERSITY OF MANITOBA WINNIPEG, MANITOBA

UNIVERSITY OF ALBERTA EDMONTON, ALBERTA

Recu par la Rédaction le 29. 2. 1980