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INFINITARY VARIETIES OF STRUCTURES
CLOSED UNDER THE FORMATION OF COMPLEX STRUCTURES
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1. Results. Let A =<{A4; F, R) be a structure. Let Com 4 denote the
power set of 4 and Com* 4 = Com A—|Q!. For f<F, define

f(Ao, ...) = :.f(ao, ...)laoeA(), ...:,

where A,....€Com—A4. For reR, define:
r(Ag, ...) holds iff for any i and he A, there are

ag€Agy, ..., €A, ...

such that a, =b and r(ag, ..., a;, ...) holds.

(Observe that this agrees with the definition of set equality on Com A.)
Let Com U denote the resulting structure (Com A; F, R>. Then
(Com* A; F, R) is a substructure; it will be denoted by Com™ . (These
definitions agree with the usual definitions given in the finitary case in the
literature; see the References. This definition of relations on Com 2 ap-
peared first in [6].)

A variety of structures is a class defined by a set of aromic formulae, i.c.
formulae of the form r(p,, ...), where reR or r is the equality sign =, and
Po. ... are polynomials; if r is the equality sign, r(po, p,) stands for p, = p,.

A polynomial p is linear iff every variable appearing in p occurs exactly
once. An atomic formula r(py....) is linear iff p,, ... are all linear; it is
regular iff the same set of variables occurs in all p;. Now we can state the
characterization theorem for varieties closed under Com.

THeOREM 1. A variety K is Com closed (that is, if We K, then Com A e K)
iff it is definable by regular linear atomic formulae.
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To state the analogous result for Com™ closed varieties we need one
more concept. Let K be a variety and let & =r(py, ...) (reR or r is the
equality sign) be an atomic formula. @ is almost linear in K iff for any ordinal
n less than the arity of r there is an atomic formula ¥ =r(u, ..., u,, ...)
holding in K such that u; is linear for i < n and @ can be obtained from ¥
by identifying variables (that is, substituting variables by variables).

THEOREM 2. A variety K is Com™* closed iff it is definable by a set of
atomic formulae each almost linear in K.

Observe that if the relations are finitary, then “almost linear” can be
replaced by “linear”.

CoRroOLLARY. Let K be a variety with finitary relations. Then K is Com*
closed iff it is definable by linear formulae.

In general, the Corollary does not hold.

Tueorem 3. There is a variety K that is closed under Com™ but cannot be
defined by linear formulae.

Various special cases of these results appear in the literature. Theorem 1
for varieties of finitary algebras defined by a single identity appears in [2];
see also [4]. The Corollary for finitary algebras was proved in [1] and,
independently, in [5].

2. The Basic Lemma. All the results are based on one lemma. Before
formulating it we state an observation from [2].

LINEARITY LEMMA. Let U ={A; F,R) be a structure and let
p(xo, ..., X, ...) be a linear polynomial in which all variables x,, ..., x,, ... do
occur. Then '

p(Ao, ..., 4,, ..)={p(ag, ..., a,, ..) l ag€ Ay, ..., a,€A,, ...}.

Observe that this does not hold if p is not linear ; for instance, if A = (4; )
is a groupoid, p(x,y) = x?'y, then
P(Ao, Ay) = {ao-ap-a, 1 ag, age Ag, a, €A, }.

Using the “linearization” p* = x;-x,'y of p=x2-y we see that

. P(Ag, A1) = p*(Ao, Ao, Ay),

and to compute p*(A,, Ay, A;) we can use the Linearity Lemma.
Let us call, in general, p* a generalization of p if p can be obtained from
p* by identifying variables. If, in addition, p* is linear, we call it a lineariz-
ation of p. This leads to the following
- CoOROLLARY. Let t(xg, ..., X;, ...) be a linearization of p(¥os ---s V> +-)-
Then
p(Ao, ..., A;, ..) = {t(bo, ..., by, ..) 1 b€ A; for y, = x;}.
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Now we come to the crucial lemma:

Basic LEMMA. Let K be a Com™ closed variety. Let r(p, ..., Py, --.) hold
in K. Then for any ordinal n less than the arity of r we can find polynomials
Pos ---5 Pi» --. such that

@ r(po, ---, P, ...) holds in K,

(i) for all i, p; is a generalization of p;;

(iii) p;, is linear. \

Proof. Let X be an infinite set of variables such that |X| exceeds the
arity of polynomials and relations. Let *B be the free algebra over X modulo
the identities p = q holding in K. We define the relations r on ‘B by

r(po, -..) in P iff r(py, ...) holds in K,

thus obtaining the structure B = (P; F, R). Obviously, BeK. Since K is
Com* closed, Com™ Be K. Thus r(py(Xo, -..), ...) holds in Com™ *B for all
nonempty subsets X,, X,, ... of X. Let

Pa(X0s -5 Xis -5 X005 X015 -« - Xigs Xigs ---)
be a linearization of p,(x,, ...); we obtain p, from p, by setting
X0 =X00 =X = :ce5 s Xi T Xjg = Xj1 = .00ty ...

Let Z be the set of all variables occurring in r(p,, ..., p,, ...). For each
x;€Z not occurring in p, we choose a singleton (x;); = {z;} in X ; for each x;
in p, we choose a set

(x;)0 = {zij 1j=0, } v {zi}

such that the correspondence x;; —z; is one-to-one in j; we can further

assume that all the sets chosen are pairwise disjoint.
Since all these sets are nonempty,

r(po((xo)o, (xl)o, . ..), ceey pn((xo)o, .o .), . ..)
holds in Com™ P.
Obviously,
b = p;(ZO, Zl, ceey zOO’ 201, ceey zio, z“, ...)

belongs to p,((xo)o, (X1)o, ---); 80, by the definition of the relation r on
Com™ B, there are elements g; € p;((xo)o, (X1)o, ---) such that r(ao, ..., «;, ...)
in B and a, =b.

By the Corollary to the Linearity Lemma, there are linear polynomials

77 7 77
Po- Tec Pn-15 Pn+1> ---

such that, for i #n, a; = p/'(xo, Xy, ...), Where x5, x;,...€X and p; is a
linearization of p;. For i # n, define p; = p’(x,, X,, ...). Since the x; are not
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necessarily distinct, p; is not necessarily linear. However, no two distinct
variables of p;, are equated. hence p; is a generalization of p;,. For p,, we
choose p, so that there is no identification, hence p, is linear. This completes
the proof of the lemma.

3. Proof of results. To prove Theorem 1, let K be a variety defined by
regular linear atomic formulae.

If MeK and A,, ..., A,, ... are nonempty subsets of A, then (by the
Linearity Lemma) any element of p,(A,, ...) is of the form p,(a,, ..., a,, -..),
where a,€ A; for all i. Thus r(po(A,, ...), ...) is verified with the elements
pilag, ...Yep;(Ay, -..). This proves that K is closed under Com™. Now, if the
formulae are regular and if at least 'one of the A4;s is empty, then by
regularity all p,(A,, ...) are empty and r(Q, ..., @, ...) holds by definition.
This shows that K is closed under Com.

Conversely. let K be closed under Com. Then every formula r(p,. ...)
holding in K 1s regular. Indeed. if, say, x; occurs in p; but not in p, (j # k),
then take Ne K and set x; = O and x, = A4 for all n #i. Then p; =0 and
p. # O, contradicting r(p,, ...) for Com .

Now let r(p,,...) hold in K. Let us apply the Basic Lemma to K,
r(po. --.). and n = 0. By the Basic Lemma, we can assume that p, is linear.
As we noted above, r(p,, ...) is regular. Hence p, and p, have the same
variables. This implies that p; is also linears;-indeed, if it is not, and, say, x;
occurs in p, more than once, then the Basic Lemma gives us an
F(Pus --- Pu, ---) holding in K in which x; is replaced by at least two x,
contradicting that r(p,, -.., p,, ...) must also be regular.

Thus for every @ = r(p,, ...) holding in K we found a linear regular ¢’
= r(py, -..) from which @ can be derived. Hence K can be defined by linear
regular atomic formulae. This completes the proof of Theorem 1.

To prove Theorem 2, let K be defined by almost linear atomic formulae.
Let Ne K: we claim that Com* NeK. Indeed, if r(p,, ...) is an almost linear
formula holding in K, we have to show that r(py(4o,...),...) holds in
Com™ W for nonempty A,, ... < A. Let n > 0 be fixed. By almost linearity,
there is an r(py, ..., p», --.) holding in K such that p} is a generalization of p,
and p;, is linear. Thus any bep,(A4,, ...) is of the form b = p(a,, ...), where
a;€ A; for all i. Thus for ¢; = pj(ay, ..) in p/(Ao, ...) we have r(co, ..., h, ...)
in 2L showing r(py, ..., p,, ...) in Com™ . However, r(p,, ...) is derivable
from r(py, ...), hence r(p,, ...).

The converse statement follows from our Basic Lemma by observing
that a generalization of a linear polynomial is also linear. This completes the
proof of Theorem 2.

4. An example. Let r be an w-ary relation and let - be a binary
operation: we write xy for x-y and x? for xx.
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Let K be the variety defined by the following set of atomic formulae:

2 L2
r(x3, x3, x2,..),
2 2
r(xqoxy, X3, X3, -..),

"(xoxl, X3 X3, xi, “'),

--------------

These formulae establish that r(x2, x2, x2,...) (and all the others) is
almost linear. Hence, by Theorem 2, K is Com™ closed.

To show that K cannot be defined by linear atomic formulae, take X
= {Xg, X, ---}. Let G be the free groupoid over X. We define r on G as
follows:

r(go, 91, --.) (for go, gy, ...€G) iff there is an n > 0 such that g,, = (g,)*
for all m > n.

Obviously, ® = (G; -, r)>eK.

We claim that there is no linear atomic formula holding in K, except
those of the form p = p, where p is a linear polynomial. Indeed, if p and ¢
are distinct groupoid polynomials, then p#q in . Hence p=gq does
not hold. If r(q,, q,, ...) is linear and holds in K, then r(q,, q,, ...) must
hold in ®. Thus, by the definition of r in ®, for some n we have g, = (q,)%
contradicting linearity. This completes the proof of Theorem 3.
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