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DISTRIBUTION OF THE MAXIMUM ARTERIAL BLOOD-PRESSURE
IN THE HUMAN POPULATION(Y)

1. Introduction. It is known that many medical scientists have
different opinions about the limits of the maximum arterial blood-pres-
sure in a population of healthy people. As a rough rule it is often accepted
that the normal maximum blood-pressure should be a 100 plus the number
of the years of the person. So, for example, the maximum blood-pressure
of a person 50 years old should amount to 150 mm Hg.

On the other hand, the blood-pressure measurements carried out
on a great number ot people show that this value should be considerably
smaller: in above instance amounting to about 140 mm Hg.

P. D. Oldham, a British physician, in his note [13] writes that so
far there are age and sex as only considered reasons for the level of
blood-pressure, but there are still many other factors to be taken into
account. The task which is put forward before contemporary medicine
is, as Mr. Oldham stresses, to come to the rule for making a distinetion
between the normal pressure and the abnormal one, i. e. the high or low
blood pressure, and thus to change many prevailed till now unsatisfactory
and uncontrolled rules one of which I quoted at the beginning.

I was enabled through the kindness of the physicians of the 2-nd
Clinic of Internal Diseases of the Medical Academy in Wroclaw, Poland
to gather necessary informations. They render available to me the results
of 10 000 measurements of the arterial bloodpressure .gathered during
the period of six years on the population inhabiting Wroclaw county (2).

(1) This paper originated from discussion on the Wroeclaw seminar on applied
mathematics led by the late Professor Julian Perkal. The author is truly indebted
to Professor Perkal for his help in getting the experimental material, for many valuable
hints, and for critical discussion during the research and preparation of the paper.

(?) The measurements were carried out on the patients of the Thyroid Gland
Laboratory. A great part of them, if not all, were ill people and the observed blood-
-pressure distribution was probably somewhat different from that of total popula-
tion. This is the reason for the necessity of a thorough criticism before any practical
application of numerical results presented in the paper. The available material did

not permit to obtain the reliable practical criteria but it was sufficient to work out

the efficient statistical method now ready to be applied as soon as the appropriate
data are collected.
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I have decided to limit my study to the measurements taken on
men from 30 to 40 years old. That way I got a sample conta,lmng 2639
measurements of the arterial blood-pressure.

2. Statistical analysis of the data. The distribution of frequencies
of the maximum arterial blood-pressure is given in Table 1.

Although the parameters of asymmetry are rather small (y, = 0,056
and y, = 0,013) we suppose that the observed distribution of frequenues
is composed of three distributions,

(2.1) f=oefitefatesfs (er+eteg =1),

where f,, f; and f; are densities of probabilities of the low, normal and
high maximum arterial blood-pressure(?). On the ground of the central
limit theorem we assume that the density f, is a density of Gauss-Laplace
distribution. We cannot extend the same supposition to the distribu-
tions of the low and high pressure, because we have no biological reasons
for that: the low and high pressures, being pathological symptoms, are
caused by one, two or several factors present in organism, and therefore
they do not satisfy the conditions for the central limit theorem.

TABLE 1
Maximum ~ Frequencies
blood-pressure | Abs. freq. | Rel. freq. Cum. freq.

80 1 0,0004 0,0004
85 2 0,0008 0,0012
90 8 0,0030 0,0042
95 b 0,0019 0,0061
100 34 0,0129 0,0190
105 31 0,0117 0,0307
110 165 0,0625 0,0932
115 98 0,0371 0,1303
120 668 0,2531 0,3834
125 268 0,1015 0,4849

- 130 738 0,2796 0,7645
135 201 0,0761 0,8406
140 314 0,1189 0,9595
145 - 24 0,0091 0,9686
150 45 0,0171 0,9857
156 8 0,0030 0,9887
160 20 0,0075 0,9962
165 1 ' 0,0004 0,9966
170 b 0,00619 0,99856
176 1 0,0004 0,9989
180 : 2 0,0008 0,9997

2639

(®) It is known that a unimodal symmetrical distribution often does not cha-
raocterize a homogeneity (see [1] and [9]).
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Since the appearance of the empiric distribution does not suggest
the assumption of the mixture of three distributions (Fig. 1), we confirme
it using the normal paper. It is easily seen (Fig. 2) that distribution of
the maximum arterial blood-pressure consists of the three distributions.
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Fig. 1

So far the problem of distinguishing the central part from the mixture
of the three hypothetical distributions has no solution. Pearson [16]
gave an algorithm for the separation of two mixed normal distributions,
but, even in this case, analytical difficulties are such that the algorithm,
which demands computation of several higher moments, has no practical
meaning. As we cannot accept that low and high pressures have a normal
distribution, it is useless to generalize Pearson’s method for which the
assumption of normally distributed components is substantial.
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The method applied in this paper requires first a performing of the
following programme: from the empirical distribution form a both sides
truncated sample and, assuming it be a double truncated sample of the Gauss
population, estimate its parameters: the mean and the variance(*).

Having these estimations we will be able to construct the Gauss
curve and to compare it with the empirical one. The differences of the
ordinates of the empirical and Gauss distribution will allow us to form
distributions of the low and high blood-pressure. After all this is done.
it will remain only to make a conclusion it is to work out details of the
diserimination rule, and to estimate its consequences. The conclusion.
which we give on the patient, can be subjected to two kinds of errors:
with a probability « we declare an ill man as a healthy one, with a pro-
bability § we declare a healthy man as an ill one.

3. Estimation of the parameters of the normal distribution by the
double truncated sample. A density of the probability distribution of
the random variable corresponding to the maximum arterial blood-
pressure with truncated normal distribution may be represented in the
form

(o¥2m) " exp{— (z—n)*|20"}

for a<a2<b,
(3.1) fi(x) = Pla <x <b) :

0 for 2<a and 2z >0b.

If we perform a translation x = y+a and express the limits of the
truncated distribution in standardized units,

b—p

a— d
‘u~ 522“6——51“‘;7

(3.2) El - -
(03

where d = b—a, then from equation (3.1) we get

(o¥2r)exp|—}((y+a—p) o)’}
gly) = P&, <(z—p)fo < &)

0 for y<0and y>d

for 0<y<d,

(¢) The problem of the estimation of parameters of a-general population by
means of truncated sample has been dealt with by Pearson and Lee [14] and Pear-
son [15], Fisher [10], Hald [11], Stevens [19] and Cochran [2]. Cohen [3], [4] genera-
lized all the cases of the truncated sample, using results of the above-mentioned
forerunners; he estimated the mean and the variance by using the method of maxi-
mum likelihood. Des Raj in [7] and in [8] has come to the same results using the
method of the moments. The author’s method is based on the results contained in
these papers.
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or
o . EEVQW-)-IGXP{—%(§1+y/a)2} for 0<y<d,
(3.3) ¢(y) = D(&,)—D(&y)

0 for y < 0 and y > d,
where

1 t w2
D(t) = 75 fexp{—— 2}du.

Let us suppose now that our empirical distribution between a and b
represents a simple sample with n elements x,, x,, ..., 2,. Having per-
formed the translation & = y-+a, we get the values ¥, ¥5,..., ¥,. The
likelihood function for this sample is a function of the parameters &,
and ¢. It can be expressed in the form

1/oV2x 1\ v;\?
(3.4 Lz[ ] ex {—— (5 +—)}.
! S(E)—d(E)] T\ 2 _2 T
The system of equations
OlogL dlogL
3.5 — =20 d : =0
) 651 an Jo

gives the maximum likelihood estimates £, and ¢. The first equation
leads to

o A 1
| o) -0 +§1]+?,=, b =0
If by
Lo
Yy = Py Y;

we denote the first moment of the truncated and translated empirical
distribution of the maximum arterial blood-pressure, we get the first
equation in the form

(3.6) 6(Zy—Zy+E)4v, =0,
where )
(3.7) g= L),

D (&,)— (&)

The second equation in a similar way may be reduced to the form

A n 1
(3.8) de—O"‘“Eﬂ'r";"’z =0,

where », is the second moment of the sample.
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Equations (3.6) and (3.8) will give the maximum likelihood estima-
tes &, and ¢ of the parameters &, and o. In view of (3.2) the maximum
likelihood estimate g of the parameter u may be obtained from the equa-
tion
(3.9) o = a—ck,.

The solution of equations (3.6) and (3.8) needs, however, the appli-
cation either of the graphic methods of nomogramic character or of an
algebraic method of the iterative character. We shall apply here an ite-
rative procedure which gives approximate values with necessary exact-
ness [18]. For this reason let us transform equations (3.6) and (3.8) to
a more convenient form. If we express ¢, according to (3.2), by

) d
(3.10) & ==

62—51

and put this into equations (3.6) and (3.8), we get

(3.11) Z,—Z,—& = (52—51)%’
and
(3.12) d2Z,(E,— &) —a2+Em,d(E,—E,) +va(E,—E))2 = 0.

From (3.11) we get
A A A ‘Vl
& = Zl—Z2—(EZ—§1) E‘
and putting this into (3.12) we come to the square equation in ég—élz
(313) (5, —&) (n—)+ (6, —E) (&2, +0dZ, —,dZ,) —& = 0.

We are only interested in one root of equation (3.13),

(3.14) §&,—§,

V02— Zy—v,dZ , +V (v, 02 y— A2 Z y—v,AZ ) +4d% (vy—1?)

2(1’2—"%)7 ’

because it easy to see that the second root is negative and, by defini-
tion, £, is greater than £,. From (3.11) and (3.13) we get

Y1
Z1_Z2+ ;i‘ '52
(3.15) £, = —

1—w»,/d
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and

(3.16) & = Z—Tar T

X (0 @y — ALy — 2, A%, +V (9, AT y— ATy — v, A7, )+ 42 (v, —17) |

Equations (3.15) and (3.16) may be solved by an iterative procedure,

(317) ég‘:'F 1) __ 7("') A("') 4 —

(3.18) ECHD = D

where £ (j =1,2) is the i-th approximation for g, and Z) is the
value of Z; ca,lculated from (3.7) for & = EM.

Although there are some other methods, especially graphic ones [18],
to obtain the initial values & and £", according to my opinion, the
normal paper (Fig. 2) gives the values p'” and ¢® near enough to the
estimates # and ¢. Using formulas (3.2) we may then calculate the ini-
tial values £® and &P.

For the preliminary values u® and ¢® we take values read on the
normal paper:

(3.19) w9~ 126 mm Hg, %~ 10 mm Hg.
The values of a and b we also get on the normal paper:
(3.20) ¢ = 115 mm Hg, b = 140 mm Hg,

and d = 140—115 = 25 mm Hg.

The values of the moments v, = 12,7066 and », = 204, 6305 have
been taken from Table 1, and the initial values &% =—1,1, &0 = 1,4
are determined according to formulas (3.2).

The first approximations for &, and £, we get from (3.17) and (3.18).
Using the statistical table for normal distribution [21] we compute:
Z® = 0,2916 and Z{” = 0,2003.

Now, according to (3.17) and (3.18) we have & — 1,2800 and
£D = —1,1373 and first approximations for # and &, according to (3.10)
and (3.9), are

(3.21) oV =10,3421 and u" = 126,7588.
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Since the asymptotic variance-covariance matrix of x and ¢ may
be approximated as

0%logL 0*logL \ -1

0t oo
| 9402 0*logL
- Judo 00”
where
0*log L n . . ~ ,
_a_ﬁif_ = = (BoboA B2y~ 2 1),
d2logL n [ v +2& v, +2dZ, |
e p -
nd , I . -
+7{[(aTd—M)(Aefz’{”Zz)_‘(““/‘)Z142J7
0%logL nd - ) )
6A g: = 3 (§2Z2+Z§—Z122)—_2‘,
udo o G
we have
(0,509 0,327)
K =
0,327 0,077
and

H(m) = 0,509, &(g) = 0,077, cos(u, 6) ~ 0,327.

4. Construction of the Gauss distribution with parameters x and o
as distribution of the normal maximum arterial blood-pressure and selection
of the low and high maximum arterial blood-pressure. Let us introduce
the following symbols:

A; — the random event that the individual taken at random has
the blood-pressure equal to 8045k (in mm Hg) or, more exactly, has
a blood-pressure in the interval

[80+5k—2.5, 80+5k+2,5 mm Hg], %k =0,1,2,...,20.

P(A;) — the probability of the realization of the event A;. (We
accept that the probabilities P(4;) are approximatively equal to the
empirical relative frequencies.)

P(Ay/N) — the probability of the realization: of the event 4, under
the condition that the pressure is normal (N). (These probabilities are
computed from the statistical table [21].)

P(Ay/L) — the probability of the realization of the event A; under
the condition that the pressure is lower (L).

P(Ay/H) — the probability of the realization of the event A4, under
the condition that the pressure is higher (H).
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According to the Bayes formula we come to the following:

P(A,/N)P
(4.1) P(N|Ay) = ( ;3/(11) ) (N),
k
P(A,/LYP(L
(4.2) P(L|A;) = (;/(A)k)( ),
P4
(4.3) P(H|Ay) — ;’Zf(ﬂ’

It is obvious that
(1.4) P(N[Ax)+P(L[Ax)+P(H|Ax) = 1.

If we accept that for 115 < z < 140 we have the frequencies of
the normal distribution exclusively, then we may calculate the proba-
bility P(N) from the condition

(4.5) Dy = P(Ax)—P(N). P(Ax/N) =0 (7 <k <11),

whence P(N) -= 0,8733.
In Table 2 we have the probabilities P(Ay), P(N)P(Ax/N) and the
differencies D;..

TABLE 2
Ag P(Ag) P(N)P(Ak/N) Dy
80 0,0004 0,0000076 0,00003
85 0,0012 0,0000573 0,00114
90 0,0039 0,0003877 0,0035
95 0,0062 0,0016 0,0046
100 0,0184 0,0063 0,0121
105 0,0252 0,0190 0,0062
110 | 0,0754 0,0457 0,0297
115 l 0,0928 0,0897 0,0029
120 0,1464 0,1347 —
125 ! 0,1492 0,1633 —
130 0,1656 0,1579 -
135 0,1168 0,1220 ! —
140 :  0,1000 0,0762 | 0,0239
145 0,0448 0,0367 0,0081
150 0,0310 0,0136 0,0175
155 0,0073 0,0045 0,0030
160 0,0058 0,0010 0,0048
165 0,0025 0,0002 0,0024
170 0,0019 0,00003 0,0019
175 0,0004 0,000003 ' 0,0004
180 0,0008 0,0000008 0,000079
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By the aid of the differencies Dy from Table 2, we get the probabilities
P(L), P(N) and P(H), i.e. the coefficients ¢,, ¢, and ¢; in formula (2.1):
¢, = P(L) = 0,0601,

(4.6) ¢, = P(N) = 0,8733,
¢; = P(H) = 0,0620.
By the aid of formulas (4.1), (4.2) and (4.3) we get Table 3.

TABLE 3
Ap 100P (N/Ax) ©/, | 100P(L/Ak) %/, | 100P(H/Ax)°/,
80 1,89 98,11 ~
85 4,76 95,24 —
90 9,94 90,06 —
95 26,51 73,49 -
100 34,40 65,60 -
105 75,54 24,46 -
110 60,57 39,43 _
115 96,83 3,17 -
120 100 — .
125 100 — —
130 100 - -
135 100 ~ -
140 76,15 - 23,85
145 81,87 — 18,13
150 43,94 — 56,06
155 61,01 38,99
160 18,06 . 81,94
165 8,38 91,62
170 1,61 89,39
175 0,87 ~ 99,13
180 0,11 - 99,89

Table 3 shows the percentages of healthy people aged from 30 to
10 and ill persons with high and low blood-pressure for every value of
the maximum arterial blood-pressure. So, for example, when a man aged
from 30 to 40 has maximum arterial blood-pressure 155 mm Hg, then
with the probability 0,6101 we declare this man as healthy, i.e. that he
has a normal maximum arterial blood-pressure and with the probability
0,3899 that he has a high maximum arterial blood-pressure(°).

In that way Table 3 shows the results of this study.

(®) The author wants once more to draw the attention of the reader to the
possibility of substantial bias of the numerical results due to the selection of empi-
rical data (see footnote (2), p. 99). Although all results may be different if the whole
analysis was repeated on the ground of a representative sample of total population,
one may expect that this would effect more the frequencies of low, normal and high
blood-pressure, P (L), P(N) and P(H), rather than the critical limits @, b and the
parameters x4 and o.












