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Continuous solutions of a linear homogeneous
functional equation

by RomaN Wxerzyk (Katowice)

Abstract. In this paper we investigate continuous solutions of equation (1)
in the case where condition (iii) is satfisfied. A necessary condition for continuous
solutions of equation (1) is given as well as the construction of all continuous solutions
in a certain particular case.

In the present paper we are concerned with continuous solutions
of the functional equation

(1) e[f(#)] = g(@)-@(x),

where ¢ is the unknown real or complex valued function. A theory of
continuous solutions of (1) has been developed in [2], where suitable
references may be found. '

LevMMA 1. Let X and Y be a regular topological space and & metric
space, respectively, let @,: X — Y, n € N (where N is the set of all positive
integers), and G: X — Y be arbitrary functions and let % be a family of
open subsets of X. If {G,},n 95 almost uniformly convergent(*) to G on every
set in U, then {@,},cn 18 a.u.c. o G on (J%.

Proof. If # = {U,, U,}, then, in view of the regularity of X, for
every compact subset K « U; uU, of X and for every « € K there oxists
an open set U, = X such.that e U, and OlU, < U; or 1T, < U,.

From the covering {U,: ®# e K} of K we may choose afinite sub-
covering {V,,..., V,}. Put .

K, =EnU{0lV;: QIV, = U}, i=1,2.

It follows directly from this definition that K, are compact, K; = U,
i=1,2, and K = K,UK,. Hence the sequence {G,},.n uniformly con-
verges to ¢ on K.

(1) Le. uniformly convergent on every compact subset. In the sequel we shall
abbreviate this to a.u.c.
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By induction this extends to the case where # = {U,, ...; U,} is

a finite family of open sets.
Now, for the general case, let us suppose that K is a compact subset

of X such that K = (J%. Then there exists a subfamily {U,, ..., U,} of %
n .
such that K = | ) U;, and so on account of the previous considerations

1=1
we get our result.

Applying this lemma we have the following

LeMMA 2. If X and Y are a regular topological space and o metrio
- 8pace, respectively, and if G,: X - ¥, neN, and G: X - Y are arbitrary
Jfunctions, then there exisls the greatest (m th@ sense of inolusion) open subset U
of X such that @, is a.u.c. to G in U.

Proof. By Lemma 1, it is enough to take U = | %, where % is the
family of all open subsets of X on which @, 18 a.u.c. to G.

Considering equation (1) in an interval I =[£, a), where —oo< §
< 6 oo(?), we agsume the following hypotheses regarding thé given

functlons
i) f+ I - I is a continuous and strictly Jncrea,smg funetion such

tha,t §<f(w <o for » e(&, a);

(ii) The funection g: I - 2, where J denotes the field of all real
numbers or the field of all complex numbers, is continuous in I and dif-
ferent from zero in (&, a).

Moreover, we put

n—1

(2). G, =[] gof', meN,
10

where f* denotes the i-th iterate of f.

We assume:

(iii) There exists a non-void open subinterval J of I such that the
sequence {@,},.y of functions defined by (2) is a.u.c. on J to the zero func-
tion. »

Let U denote the union of all open (relatively to I) subsets of I on
which tho sequence {@,},.n i8 a.u.c. to zero. By hypothesis (iii) U is non-
void. Moreover, it follows from Lemma 1 that {G,},.y i a.n.c. on U to
zero. In the sequel the set U will play a crucial role.

THEOREM 1. Under hypotheses (i)—(ili) for every continuous solution
@: I = o of (1) we have

p(@) =0 for zeI\T.

() All our considerations remain true in the case wheve the fixed point & of
the function fis an inner point of I or the right endpoint of 7.
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Proof. Let g: I — 2 be a continnous solution of (1). Then (see [2],
Theorem 2.2) @ (&) = 0, and so if p(z;) 7% 0 for an x, € I, then there exist
positive real numbers ¢ and 6 such that (—8+a2,, 6 +2,] = I and

(3) lp(@)l = ¢ for me(— 424, 6-+2y).

Moreover, because {f"},.n i8 a.mc. to & on I, we may assume that there
exists an m, € N such that

(4) el (@] <ce, n=n, ve(x,—38,r+38).
Since
qﬂ[f"(w)] =@, () 9(z), meN,zel,

it follows from (3) and (4) that
G (@) < e, n=ny, ©e(v—0, 2 +0),

l.e,, {Gu}nen tends to the zero function uniformly in (w,—4, 2,4+ d) and
80 @, € U. This ends the proof.
~ For an , € (&, a) arbitrarily fixed, we write I, = [f(%,), %].
Under the additional hypothesis that the sequence {@,},.n is bounded
on UnlI, (which is essential as it i3 shown in Example 2) we can give the
general continuous solution of (1) (cf. remark on page 50 in [2]).

Namely, we have the following

THEEOREM 2. Suppose that hypotheses (i)—(iii) are fulfilled amd that the
sequence (G}, v 78 bounded on the set Unl,:

(5) G (2)) < M, neN,weUnly;
then for every continuous function gy: Iy — X fulfilling the conditions

@0 Lf (@) = g(20) - o(20)
and

(6) o(®) =0 for e I\U,
there exists exactly one continuous function @: I — " which 18 a solution of (1)
and suoh that

(7 p(®) = @), zel,.

Proof. It follows from Theorem 2.1 in [2] that ¢, may be uniquely
extended onto IN{{} to a continuous solution of (1). Moreover, in view
of Theorem 2.2 of [2], we may extend it further to a solution ¢: I = &~
of (1) putting (&) = 0. Hence it is enough to prove that

limg(z) = 0.
a—&
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"To this end we decompose the open (in I,) set UnlI, into a union
of open (in I;) and disjoint intervals

(8) U(‘\In = UIJn

k=1

where a e NU {oo}, and we talke any positive real number X such that
9) max {|g,(2): o e I} < K.

\

Fix an ¢ > 0. It follows from the continuity of ¢, in I, that there
exigts a positive. real number § such that

e
(10) lz—%| << d implies  [po(®) —@p(T)| < I z,% e .

Recalling (8) we get the existence of a %k, € NV such that
(11) I < 8, &>k,

where |-| denotes the Lebesgue measure. Moreover, there exist eclosed
intervals J;, k =1, ..., &, fulfilling

(12) gy < I, [T Nyl < 6, e =1,..., I,

and such that if either #, or f(a,) belongs to I,, then it belongs also to J,.
Putting

)
Jo = UJIn

k=1

we gee that J, is a compact subset of UnI, and so we can find an n,eN
such that

(13) G (@) < =, n=mny, ved,

To complete the proof let us take an arbitrary = e (&, f"0(x,)). Then:
there exist an z* € I, and an index = > n, such that » = f*(a*). It follows
from (1) and (2) that

(14) @(z) = @y (2*) @ (z*).
There are four possibilities:
(a) z* € I,\NU;

(b) there exists a k> k, such that z* € I;
(¢)  there exists a &k < k&, such that o* e I}, \dJ;

(d) z* e J,.
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In case (a) we have p(z) =0 in view of (14) and (6), and in. particular
(15) , lp(2)] < e.

In case (b) inequality (15) follows from (14}, (8), (8), (11), (6) and (10).

In case (¢) we have (15) by (14), (5), (12), (6) and (10), whereas recal-
ling (14), (13) and (9) we have (15) also in case (d).

It follows from Theorem 1 that under condition (5) the construction
described in Theorem 2 yields all the continuous solutions of equation (1)
on I.

We conclude these considerations with two examples.

ExamPre 1 (cf. [1], Example 1). Take I = [0, 1), f(2) = px, v eI,
0<p<l, '
Sin (2= -log, )

1+log,=

g(x) =1+ for z € (0, 1),

U

and ¢(0) =1. We have f"(x) =p"z and g[f"(w)]'= 1+—'n,-|—'u—|—l’

where v = log,@, 4 = 8in2-n-v. Hence

n—1

U
G, (z) = H(l ’:-I—’U-l—l)'

1=0

For this sequence we have U = | J (p*t!, p**t?) and inequality (5)

Ie=0
is fulfilled with M = 1.
Thus from Theorem 2 we obtain all continuous solutions of equation (1)
with the functions f, ¢ given above. ,
The second example shows that without (5) Theorem 2 may be false.
‘BXAMPLE 2. Let I = (0, o], f(z) =2x+1, v €l (here & = 4 o0)
and ’

1 for # = 4 o0,
2 for x €(0,1],
1—2 1
" o+ 2n + for we(n—l,fn—l—}-—],
n—1 n—1 n
-1 1 1
g(@)={2 forme(n—l—}——,fn——),
7 n 7
3 - 1 1
dx—dn+1+— for e |n—— n——1|,
) M 2n
' 1
ntd for me[n———,n],wheren=2,3,...
n 2n
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The function g is continuous on interval I. Further, we have
f"(x) =2+n, wel,neN,

and
U =kU (k, k+1),
=0
whereas (5) i8 not fulfilled because
: - (k+1 k42 k+n
gan(k) _71;21 B k1 7|;-|-fn,_1) =T
for ke N.

The function gy(z) =}—lo—3$|, defined on I, = [1,f(1)] = [1, 2], is
continuous and ¢y(1l) = ¢, (2) ='0.
Let ¢ be the unique extension of ¢, to a continuous solution of equation
1

(1) in (0, co). We have for the sequence w;, =k-+2— 5 i 7 D)

1
i ) =1lim@, (2 — - ———— e [2 — ——————
Lo (@) ,3326"“(2 2-(7a+2)) ""’( 2-(k+2))

i (7» 1\,
i \2  2-(5+2)
On the other hand, for the sequence ¥, = k-2, ke N, we have

oY) = G (2) @o(2) =0,
whence lim ¢(y;) = 0. Thus the limit lime(x) does not exist, i.e., ¢

k—o0 T—>00

cannot be extended onto I = (0, oo] to a continuous function.

In this. example only certain continuous functions ¢, fulfilling @,(1)
= @y(2) = 0 can Dbe extended from [1, 2] to a continuous solution ¢ of
equation (1) in. the whole I.

If condition (5) is not fulfilled, the construction of the general con-
tinuous solution of equation (1) on I is not known.
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