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1. The essence of a homomorphism theorem seems to be the intrinsic
characterization of — roughly speaking — ‘‘all homomorphic images”.
This is obvious in the case of algebras (4,f) = (4, (filia) of type
A = (Ky)ig, i.e. of sets A together with fundamental operations f;: A - A
(where the arities K; as well as the index-domain I may be arbitrary
finite or infinite sets). A homomorphism

p: (4, f) > (B,9)

into an algebra (B, g) = (B, (¢:)iz) of the same type 4, g;: BXi—B, is
a mapping ¢: A — B such that

1) ¢(fa)) = gi(poa)

for each index ieI, each sequence aeA%% ie., a: K; - A. A congruence
relation of an algebra (A, f) is an equivalence relation, R, in 4, compatible
with the algebraic structure f, i.e., for each iel, a, a’ e A%,

(2)  if (a, ax) <R, for each keK;, then (f;(a), fi(a’)) R (in other words, R
is a subalgebra of the cartesian product (4, f) X (4, f)).
One then has the following three basic statements:

I. Each homomorphism ¢:(4,f) - (B, g) induces in (4, f) a con-
gruence relation B = R,.

II. Each congruence relation R in (4, f) is induced by a surjective
homomorphism ¢: (4, f) - (B, g).
(Take, e.g., the natural homomorphism m = ng onto the factor algebra

(A4,f)|R = (AR, f|R), where the factor structure f/|R is obtained by the
usual definition by representatives.)

* Fulbright-Hayes Scholar 1967/68.
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ITI. For a surjective homomorphism ¢:(4,f) > (B,g9) and an
arbitrary homomorphism y:(4,f) - (C, h), there is a — necessarily
unique — homomorphism w: (B, g) - (C, k) such that » = woe, if and
only if R, = R,.

The usual standard factorization is a rather special cagse of statement
ITI: Given an arbitrary homomorphism ¢:(4,f) - (C, k), one takes
as ¢ the mnatural homomorphism =:(4,f) - (4, f)/R, where R = R,.
Then vy = wom; furthermore, since R, = E,, the homomorphism o
is injective, hence an isomorphism onto the subalgebra im y = im = < (C, h).
This is what is usually called the Homomorphism Theorem. One might
well ask the question if the natural homomorphism =: (4, f) - (4, f)/R
actually does or does not yield any information that could not be obtained
by an arbitrary (surjective) homomorphism vy:(4,f) - (C, k) with
“kernel” B — no matter what the nature of the elements of C. If there
is no additional information obtainable from # = ngz, why this traditional
enthusiasm for the standard factorization? Why pass, from a given
surjective homomorphism y, to its isomorphic copy =p?

For a precise formulation of the intrinsic characterization of ‘all
homomorphic images”, we are considering a certain algebra (4, f), and
we introduce, into the class of all surjective homomorphisms ¢: (4, f) —
— (B, g9), v:(4,f) - (, h),..., a quasi-ordering & :

(3) ¢ & v if and only if there is a — necessarily unique — homomorphism
w: (B, g) = (C, h) such that v = woe.

(If so, we may call ¢ a right factor of vy, or say that ¢ dominates v.)
For this reflexive and transitive relation, an obvious equivalence theorem
of Bernstein type holds:

(4) ¢ &y & ¢ if and only if there is an isomorphism w: (B, g) - (C, h)
such that p = woe.

(We may call ¢ and y ¢somorphic and write ¢ ~ y.) Then we can
restate III (restricted to surjective homomorphisms):

(5) ¢ & v if and only if R, = R,.

In particular,
(6) p=~ v if and only if R, = R,.

-Hence, together with the basic statements I and II, we have a one-
one correspondence between all congruence relations of (4,f) and all
classes of isomorphic surjective homomorphisms from (4, f) onto other

algebras of the same type. By (5), this one-one correspondence can be
considered as an order anti-isomorphism.
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2. So far, we have summarized the well-known situation in the theory
of complete, or full algebras, where all fundamental operations, f;, are
everywhere defined, domf; = A%i, The situation becomes much more
complicated if we pass to the case of partial algebras, (A, f), where dom
f; « A% (even dom f; = @ is admitted). Here, one even has to reformu-
late the definition of homomorphisms; instead of equation (1), one has
the homomorphism implication:

(7) it fi(a) = a, then g;(poa) = ¢(a),

for each index ieI, each sequence a: K; - A and each element acA.
Also, condition (2) for a congruence relation must be restated more
carefully:

(8) If (ag,ar)eR, for each keK;, and if f;(a) = a, f;(a’) = a’, then
(a, a’)eR,

for each ¢¢l, a,a’: K; > A, a, a’eA. Then our basic statements I and II
still hold, but III is no longer true. In fact, if we still stick to the idea
that the ‘“kernel” of a homomorphism should be nothing but its induced
congruence relation, then we must introduce a stronger notion of homo-
morphism.

Homomorphism ¢: (4, f) - (B, g) is called strong provided that, in
addition to (7):

(9) If g;(b) =0, then b =¢oaqa, b =¢(a), fi(a) = a, for some sequence
a: K; - A, some element aeA,

and this should again hold for each index ¢eI, and each sequence b of
type K; in im ¢ (rather than in B — in order to escape an obvious, highly
undesirable relativity), and each element be im ¢. Now, as shown, e.g.,
in Pierce’s book [11], the three basic statements of section 1 remain
true if we admit partial algebras, but replace ‘‘surjective homomorphism”,
whenever it occurs, by ““strong surjective homomorphism?’ (“epimorphism”,
in the nomenclature of Pierce). In particular, each congruence relation R
in (A4, f) is induced by a strong surjective homomorphism (statement II),
e.g., the natural homomorphism » = nr onto the factor-algebra (4, f)/R.
But now, statement III also becomes true. This is an immediate conse-
quence of the fact that, if a surjective homomorphism ¢: (4, f) - (B, g)
is strong, then g is the final structure for the mapping ¢: (4, f) - B in
the sense of Bourbaki [2] (cf. also [15]). That is, given an arbitrary partial
algebra (C, h) and an arbitrary mapping w: B — (, then wo¢: (4, f) —
—(C, h)is a homomorphiém if and only if w: (B, g) - (C, k) is. In partic-
ular, g is the poorest (finest, weakest) algebraic structure on B such that
p:(4,f) > (B, g) is an homomorphism. Concerning the standard facto-
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rization aspect of statement III, note that » in the commutative dia-
gram

R
(A,f) > (A, f)/R
/7
/7
//
(" 7w
7
X
(¢h) -

where B = R, is no longer an isomorphism. Even if we assume ¢ to
be surjective, and hence o bijective, w is an isomorphism only if y is
strong. The situation is exactly as in topology: For the surjective case,
the final structure is what is to-day called the “identification topology’’;
the mapping then has been called ‘“strongly continuous” by Alexandroff-
Hopf. Furthermore, a bijective continuous mapping is not a homeomor-
phism in general.

3. Unfortunately, many homomorphisms of partial algebras — as
many continuous mappings in topology — are not strong. In particular,
statement IIT as discussed in the previous section, does not lead to a clas-
sification of arbitrary (instead of strong) surjective homomorphisms, in any
case not in terms of an intrinsic description of their isomorphism classes.

As observed by B. Banaschewski, there is an easy method of intrin-
sically characterizing those classes of isomorphic surjective homomor-
phisms by the following modified definition of “kernels’’: Given the
homomorphism y:(4,f) - (C, k) as in the diagram above, add to the
kernel R = R,, as hitherto considered, the structure »~!(h) on A/R
that is the unique result of transporting (lifting) the structure h against
the injection « from C onto A/R. One can also define w-!(k) as the only
structure on A /R that makes w:(4/R, w(h)) - (C, h) a strong homo-
morphism, hence an isomorphism in case y: A — C is surjective, hence
w: A/R — C Dbijective. (In more systematic terms, w~!(h) is the ¢nitial
structure (Bourbaki [2]) for the mapping w: A/R — (C, h).) In general,
w~1(h) is different, in fact richer (stronger) than the factor structure f/R,
equality taking place if and only if y: (4, f) — (C, k) is strong.

There are, of course, other examples of classifications of homo-
morphisms of certain kinds by means of two or more invariants, not
only the most natural one, the induced equivalence (congruence) relation.
In fact, Hoehnke [8], interpreting Lyndon’s paper [10], has hinted upon
the following two-data kernel notion for homomorphisms y: (4, f) - (C, k)
between relational systems (models): One adds to the equivalence rela-
tion R, the initial structure y~!(h), obtained by lifting the relational
structure h against y. In other words, one continues Banaschewski’s



PARTIAL ALGEBRAS 9

procedure by additionally lifting w~!(h) against natural projection =g,
thus obtaining a relational structure no longer in A /R, but in A4 itself.
(Here, R is a congruence relation — in the sense, Lyndon [10] apparently
has in mind — of the initial structure y~(h) = ng'(w™'(h)), which is
an enrichment of the original relational structure f: in general, R is not
a congruence relation of f itself.)

Both Banaschewski’s and Hoehnke’s proposals enable us to analogize the
three basic statements of section 1, hence to obtain classifications of surject-
ive homomorphisms for partial algebras or relational systems respectively.

4. The main subject of this paper is a new notion of kernel for homo-
morphisms of partial algebras, which will enable us to classify not only
surjective homomorphisms, as in section 3, but arbitrary epimorphisms
in the category of all partial algebras of type 4; strongness, important
in section 2, plays no further role.

Let us first note that homomorphism ¢: (4, f) - (B, g) is an epi-
morphism in the category sense, i.e. right cancellable, if and only if im ¢
generates (B, g),

ime =B

(T the symbol for the generated subalgebra). We may call such a homo-

morphism almost surjective. In fact, if imp = B and wop = w’o¢p, where
w,w:(B,g) > (C, k), then w = w’, since the set of all beB such that
w(b) = o' (b) is a subalgebra of (B, g). In order to prove the converse,

consider the subalgebra B,: = Ep, and take the free union of two copies
of the partial algebra (B, g) with amalgamation B,. To be more precise:
Start from a bijection é6: B— B, -~imd such that Bnimd = @. Let
C: =Buimé and w: =idg, U 6: B —C. Make sure that there is an
algebraic structure h on C such that o as well as idg: B - C become
homomorphisms from (B, g) into (C, k). In order to do that, we have
to show, cf. [15], that the equivalence relations induced by « and idg
are congruence relations of (B, g), but this is trivial, since w and idp
are injective. Furthermore, one has to show that

if wob ="Db" and ¢:(b) = b and ¢;(b’) = b’, then w(d) = b,

for all indices 7¢I, all sequences b, b’: K; — B, and all elements b, b’ eB.
This follows from the construction: From wob = b’ we obtain that
both sequences are equal and in B,. Hence the elements b and b’ are
equal, and in B,, since B, is a subalgebra, implying that «(d) = b = b'.
Having thus introduced % such that w,idp: (B, g) - (C, h) are homo-
morphisms, observe that woge = idgoep since w and idp coincide on
B,c im ¢ by construction. Since ¢ is an epimorphism by hypothesis,
w = idp, which gives im¢ = B, = B.
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Before we describe our new kernel notion, let us illustrate that the
class of almost surjective homomorphisms is in fact much more compre-
hensive than the subclass of surjective homomorphisms. E.g., among
the epimorphisms are all (identical) embeddings id,: (4, f) — (B, g),
be they strong or not, i.e., all strong or weak extensions of partial algebra
(4,f), provided that they are minimal extensions, i.e., generated by the
subset 4. Important minimal extensions are the minimal completions
as studied in [4], i.e., the strong, complete, minimal extensions. As another
special kind of (weak) minimal extensions, take B = A, and consider
all algebraic structures, g, on A richer than the given structure f, i.e.,
for which id,: (4,f) - (4, ¢9) is a homomorphism. Hence the compa-
rison of algebraic structures on the same set as introduced in [14] also
falls, as a special case, under the pattern of (almost) surjective homomor-
phisms.

5. Banaschewski’s proposal as discussed in section 3 involves the
congruence relation B = E, and an enrichment of the factor structure
f/R. The method for relational systems as mentioned in section 3 is some-
what dual to Banaschewski’s proposal: Instead of first faetorizing modulo
R, then enriching the factor structure f/ R, it first enriches relational struc-
ture f itself, and factorizes afterwards. The method we are going to present
is similar; the only — but essential — difference is that the enrichment
of the relational structure f as described in section 3 is no longer an algebraic
structure: The enriched operations would become multi-valued. So,
instead of remaining within the set .4 (with its given algebraic structure f),
we will “enrich” by splitting under the various values of those multi-
valued operations, i.e., by passing to a suitable extension of (4, f). In
fact, the latter, together with a suitable congruence relation in it, will
represent our new kernel suitable for the classification of all almost surjec-
tive homomorphisms.

In order to describe this extension, we have to recollect some facts
about the universal or free completion as studied in [4]. With each partial
algebra A (we will frequently omit mentioning the algebraic structure f)
is associated its free completion A, the latter being a strong, complete
extension of A such that each homomorphism ¢ from A into an arbi-
trary complete algebra B can be uniquely extended to a homomorphism ¢

from A into B:

So the extension of A to A is the solution of a universal problem.
In particular, A is unique up to unique isomorphism “over A”, i.e. leaving
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all elements of A fixed. Besides this categorical description of fi there
is the following internal characterization (a,momatzza,twn) A strong complete

extension (B, g) of (4, f) is (a model of) A it and only if the following
three Axioms of Free Completion hold:

*FC1. If g;(b)eA, then b is in A4, i.e. imb = 4;
FC2. If g;(b) = ¢;(c)¢4, then 4 =j and b = ¢;
FC3. 4 = B.

Since (4, f) is a strong relative algebra of (B, g), i.e., the extension
(B, g) is strong, the conclusion of FC1 can be strengthened to g;(b) = f;(b)
Hence, if partial algebra (4, f) is discrete, i.e., dom f; = @ for each iel,
FC1 simply .runs: g;(b) ¢ A. This makes it obvious that the above axioms
are nothing but rather Generalized Peano Axioms. In particular, FC3 is
the generalization of the Axiom of Complete Induction and may be called
the Axiom of Algebraic Induction, since it gives rise to an obvious inductive
method of proving statements for all elements b B (as first, to the author’s
knowledge, used systematically by Lowig [9]). FC2 states the injectivity
of the operations g;, when suitably restricted, and the pairwise disjoint-
ness of their images. Finally, FC1 may be interpreted in terms of quasi-
order. In an arbitrary partial algebra (B, g), we call the binary relation ¢
which holds between any term b, (k¢ K;) of any sequence b and any element
g:(b) the graph of the partial algebra (B, g) (as suggested by Diener [5]).
The quasi-order generated by the graph G may be called the natural
quasi-order. FC1 now states that, if aeAd, and (b, a)e @, then beA. This
can be strengthened: If aeA and b < a (< the symbol for the natural
quasi-order), then beA. In an arbitrary quasi-ordered set (B, <), one
may call such a subset A an initial segment. FC1 then can be formulated
briefly: A is an initial segment of partial algebra (B, g). In [4], (B, g)
was then called a normal extension.

6. In the sequel, the intermediate initial segments of free completion A
will play an important role, “intermediate” meaning: lying between A
(the least intermediate initial extension) and A (the greatest one). These
intermediate extensions can be characterized without reference to A,
exactly by the axioms FC1l, FC2, and FC3. This is an easy consequence
of the discussion of the transitivities of these three extension properties.
Let us list them here, the proofs being either trivial or straightforward.
Speaking of a chain of strong extensions,

(4,f) = (B,g) = (C, h),
we have:

1. If A is FC1 in B, and B is FC1 in C, then A4 is FC1 in C;
2. If 4 is FO2 in B, and B is FC1 and FC2 in C, then A4 is FC2 in C;
3. If A4 is FC3 in B, and B is FC3 in C, then 4 is FC3 in C;
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If A is FC1 in C, then 4 is FC1 in B;
If A4 is FC2 in C, then A is FC2 in B;
If A is FC3 in C, and B is FC1 in C, then 4 is FC3 in B;

If 4 is FC1 and FC2 in C and FC3 in B, then B is FCl1 in C;
If A is FC2 in C, then B is FC2 in C;
If A is FC3 in C, then B is FC3 in C.

In particular, if A is FC1, FC2, and FC3 in C, then
A is FC3 in B iff B is FC1 in C.

PN o

I.e., A generates B itf B is an initial segment of C. By specializing

A

once C = 1§, twice ¢ = A, we obtain
THEOREM 1. The following statements on the (strong) extension B of A
are equivalent:

(i) 4 s FC1, FC2, and FC3 in B;

(i) B= A (i.e., B is a model of A);

(iii) B 8 an nitial segment of (a suitable model of) A;

(iv) A generates B, and B is (strongly) embeddable into (a model of) A

In fact, for (i) = (ii), specify C = B. (i1) = (iii) is trivial. For (iii) = (i)
as well as (iii) < (iv), take C = A.

Assume now at least FC1 between A and B, and let ¢: A — C be an
arbitrary homomorphism. An <nitial extension of ¢ is a homomorphic
extension, y, from an intermediate initial segment of B (considered as
a relative algebra of B), still into C. With this notion, we come to a useful

extension of the universality property of A. This idea, at least in a
special case, is due to W. Hutter, so we may refer to it as:

THEOREM 2 (Hutter’s Theorem). Lef (B, g) be a normal, minimal
extension of (4, f). Then each homomorphism ¢: (A, f) — (C, k) has a maxi-
mal initial extension, ¢.

Define qo to be the umon of all initial extensmns p of gv, since ¢ itself
is a p, p = ¢. If 9’ and y"’ are two such extensions, dom ¢’ and dom »"’,
and hence their intersection dom 3y’ N dom y’’, are intermediate initial
segments. Hence A generates dom g’ n dom y'’ (rule 6 given above),
so v’ and v/, being equal on A4, coincide on this intersection, showing
that ¢ is single-valued, i.e., a function. Its domain, being the union of
intermediate initial segments, is again an intermediate initial segment.
Furthermore, ¢ is a homomorphism: Take b: K; -dom¢ and g¢;(b)
= bedom . Then be dom p, for some initial extension p, and so imb
c dom y, showing that

hi(@ob) = hi(yob) = y(b) = ¢(b).
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Note that the maximal initial extension ¢ depends on C. If we extend
C, ¢ may become larger. In this connection, we have the useful

THEOREM 3. Let B be a normal, minimal extension of A, D a normal
extension of C, and ¢: A - C a homomorphism. Let ¢o be the maximal
inittal extension of ¢: A — C, ¢p that of ¢: A — D. Then

(10) ¢c = ¢plep' (C).

For clearly ¢¢ « ¢p, hence ¢¢ < ¢plep'(C). On the other hand,
since C is an initial segment of D, ¢5'(C) is an initial segment of B. Hence
oplep'(C) is an initial extension of ¢: A — C, showing that this restric-
tion of ¢p really is ¢¢. .

We are mainly concerned with the special case B = A. If, in this
case, C is also complete, then the universality property of A states that ¢
actually is ¢, defined in section 5. In other words, dom ¢ = Ji, for another
independent proof of that cf. the end of the next section. If C is not

complete, take D = C. Then, as a special case of Theorem 3,

(11) 9 =g¢lp”'(0),
where ¢ is the homomorphic extension of ¢ from A into C.

7. A homomorphism ¢: (4, f) - (B,g) may be called closed pro-
vided that, in addition to (7),

(12) if gi(poa) = b, then ¢(fi(a)) = b,

for each index ¢eI, each sequence a: K; - A, and each element beB.
An important property of closed homomorphisms, heavily taken advan-
tage of by Baumann and Pfanzagl [1] (they introduced them as double
homomorphisms), is their preservation of closed subsets (subalgebras)
and closure: Under such a homomorphism, the image of a closed subset
of (4, f) is a closed subset of (B, g), hence

(13) o(M) = (M)

for any subset M < A. This is not true for arbitrary homomorphism.
It is by this property that closed homomorphisms can be considered as
the analogues of the closed continuous mappings of topology (as strong
homomorphisms were the analogues of strongly continuous mappings)(2).
As in topology (cf., e.g., Bourbaki [3]), a homomorphism is closed if
and only if it is strong, and if, in addition, its image im ¢ is a closed subset
of (B, g), and if, finally, its congruence relation R = R, is closed also.

(*) Gratzer [7] calls our closed homomorphisms sirong, our strong homo-
morphisms full.
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Here, the congruence relation E is closed (2) provided that, in addition
to (8),

(14) if aedom f; and (ak,a;c)eR, for each keK;, then a’edom f;, for
all indices ¢eI, all sequences a,a’: K; — A.

Closed homomorphisms and closed congruence relations play an
outstanding role for our kernels. The link is the following characteriza-
tion of our maximal initial extension ¢ of an arbitrary homomorphism

¢: A — C with respect to free completion A as considered at the end of
section 6. The idea of this characterization may be traced back, at least
in a special case, to R. Kerkhoff, so we may well call it:

THEOREM 4 (Kerkhoff’s Theorem). The maximal extension (with

respect to fi) of homomorphism ¢: (A, f) — (C, h) 8 the only closed initial
extension.
We first prove that ¢ is closed, i.e.

if hi(pob) = ¢, then ¢(g;(b)) = ¢,

where b is an arbltrary sequence of type K; in dom ¢ < A, gi the funda-

mental operation in A and ceC. By the completeness of A b: = ¢:;(b)
exists. Assume b¢dom<p dom g u {b} still is an initial segment — FC1 —

of A:, since domg has properties FC1 and FC2 with respect to A and FC3
with respect to C, i.e., generates, dom¢ u {b}. We define
¢(x) if zedome,
p(@): = :
¢ if x =5».

v is a homomorphism. For let g;(x) = @, where x is a sequence <~)f
type K; in dom¢ U {b}, xe domg U {b}. If zedome, x is also in domg,
since dom ¢ is an initial segment of A. Hence

hi(yox) = hi(pox) = ¢(2) = y(@).
If © = b, since b¢A, by FO2 we have j = ¢ and x = b, whence
hi(yozx) = hi(pob) = ¢ = y(b) = p(2).

After all,  is an initial extension of ¢, contradicting the maximality
of ¢. Hence bedomg, which gives

@(9:(b)) = @(b) = hi(pob) = c.
It remains to show that any closed initial extension y of ¢ is actually .
In fact, ¥ = ¢ by the maximality of ¢. In order to establish equality,

(?) Gritzer [7]: strong congruence relation.
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we show by algebraic induction on bed:
(%) if be dom@, then bedomyp.

This is trivial for beA. Then we prove (x) for b = ¢;(b), under the
induetive hypothesis that (*) holds for all terms of the sequence b. Since
bedomg and dom ¢ is an initial segment, these terms are in fact in dom ¢,
hence in domy by hypothesis. Hence

hi(yob) = hi(pob) = ¢(b).

But y is closed, so y(g:(b)) = ¢(b), and so b = g;(b) e domy, complet-
ing the proof. A

The properties of A we have really used in this proof were comple-
teness, FC1, FC2, and FC3. That an extension B of A with these properties
is indeed the free completion (as pointed out in section 5), can be derived
from Theorem 2 and 4 as an immediate consequence. To this end, consider
a homomorphism ¢: 4 — C, where C is complete, and its maximal initial
extension (with respect to B), ¢. By Theorem 4, ¢: domg¢ (c B) —>C
is closed, hence, as C is complete, dom ¢ is also complete, thus a subalgebra
of B. Since dom¢ generates B,.it equals B. (For general information
about this fairly general form of the so-called Recursion Theorem —
various proofs, special cases, etc., c¢f. Diener [6].)

8. We are now ready to introduce our new kernel. As before, we
are concerned with some partial algebra A and its homomorphisms
@: A — B. As in Theorem 4,-their associated maximal initial extensions ¢

will be understood with respect to the free completion A. Recall that
the domain of ¢ is an (intermediate) initial segment of A, hence the partial
algebra domg (a relative algebra of A) is generated by the subset A,

(15) 4 =domgp.

By Theorem 4, ¢: domp — B is a closed homomorphism; hence by
(13) and (15), we obtain

(16) imp = img.

In particular, p: A — B is almost surjective if and only if ¢: dom ¢ — B
is surjective.

Now, the congruence relation induced by ¢ is called the kernel of
the original homomorphism ¢: A — B, or rather of the couple (¢, B):

(17) ker (p, B) = R;.

Remember that ¢ depended on partial algebra B, and the same
still holds for R;. (The kernels suggested in section 3 also depended on B.)
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Note that the congruence relation induced by ¢ itself is just the restric-
tion of our kernel:

(18) B, — B n (A X A4).

Because of the closedness of @, Ry is a closed congruence relation
in its field dom¢. Hence we have the following counterpart of the basic
statement I:

THEOREM 5. The kernel of an arbitrary homomorphism ¢: A — B
18 a closed congruence relation in an intermediate initial segment of A.

Observe that the complete case, as considered in section 1, is a special
case of our present notion: If A is complete, then A= A, and ¢ = ¢,
hence B; = R,.

We also have the following extension of the basic statement II:

THEOREM 6. Hach closed congruence relation R in an intermediate
initial segment D of A is the kernel of some almost surjective homomorphism
p: A - B.

For there is a strong surjective homomorphism @: D — B such that
R, = R. Since R is closed, @ is. Let ¢ be the restriction of @ to A. Then @
is a closed initial extension of ¢, whence @ = ¢ by Theorem 4. Since P
is surjective, ¢ is almost surjective.

Combining Theorems 5 and 6, the closed initial congruence rela-
tions R (closed congruence relations in intermediate initial segments)
are precisely the kernels of almost surjective homomorphisms, i.e. epi-
morphisms.

Finally we have the following extension of the basic statement III:

THEOREM 7. Let ¢: A — B be an almost surjective, and y: A —C
an arbitrary homomorphism. Then there is a — mecessarily unique — homo-
morphism w: B — C such that y = wog, if and only if R; = R;.

In fact, if ¥ = wop, where w: B — C, then wo¢: domg —C is an
initial extension of y: A — C, whence wo¢p < 9, so that R; = R,.; < R;.
Conversely, if Ry < R;, then dom¢ < domy and

R; c Ry ~ (dom¢ X dom@) = Ry qom?-

Since ¢: domg — B is strong and surjective, there is (cf. section 2)
a homomorphism w: B — C such that '

(19) wop = p|domg,

whence

wop = wop|A =p|A =yp.
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Let us observe that
(20) imw = yp(dom¢),
which follows from (19).

9. Restricting now ourselves to almost surjective homomorphisms
¢: A > B, y: A - C, we define, in analogy to (3):

(21) (¢, B)s(w,0C) if and only if there is a — necessarily unique —
w: B — C such that y = woe.

Again, & is a quasi-ordering in the class of all almost surjective
homomorphisms, for which again a Bernstein type equivalence theorem
holds:

(22) (p, B) & (v, 0) & (¢, B) if and only if (¢, B) = (v, 0),
with the obvious definition of ~. We then have
(23) (¢, B) & (v, 0C) if and only if ker(¢, B) < ker(y, C).

In particular,
(24) (¢, B) = (y, 0) if and only if ker(p, B) = ker(y, 0).

Hence there is a one-one correspondence between the kernels and
the classes of isomorphic almost surjective homomorphisms; again, this

one-one correspondence might be interpreted as an order anti-isomorphism-
Concerning the ordering of the kernels, we have the basic fact:

THEOREM 8. The kernels, i.e., the closed congruence relations in inter-
mediate initial segments of A constitute a closure system on A X A.

Le., A x A itself is such a kernel (since 4 is complete), and the inter-
section of an arbitrary non-empty family of kernels R; (teT) is agam
a kernel.

As a corollary, the kernels constitute a complete lattice, with Ax A
as the greatest, id, as the least element, and intersection as greatest
lower bound (infimum). We call this lattice the kernel lattice of partial
algebra A, denoted by Ker (4).

If A is complete, Ker (A) simply is the congruence lattice of 4. In
general, Ker(4) is much larger; the larger, the less complete the partial
algebra A is.

In order to make that more precise, one can establish a natural
order embedding of the congruence lattice, Con(A), into our kernel lattice
Ker(A). Let us fn'st observe that, as another corollary of Theorem 8,

any subset M < A X A generates a kernel, M Whlch is the intersection,
hence the least, of all kernels contalnmg M. Now, if M is an arbitrary

congruence relation, R, in A, M = B assumes a very concrete meaning

2 — Colloquium Mathematicum XXI 1
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THEOREM 9. Let R be a congruence relation in A. Then the kernel
generated by R is the kernel of any strong surjective homomorphism ¢: A —- B
that induces R.

In particular,
(25) R = ker(ng, A|R).

For R, =R implies R c R; = ker(¢, B), hence Rc ker(¢, B)
by the minimality of E. In order to prove the converse inclusion, take
a homomorphism y: A — C such that R; = ker(y, C) = R. Then

R,=Rc Rn(AXxA) =R,

by (18). Since ¢: A — B was assumed strong and surjective, there is
(cf. section 2) a homomorphism w: B — C such that y = wogp, which
gives

~

ker(¢, B) < ker(y, ) = R.

As a consequence of (25) and (18) (as already used in the proof),
we have

(26) R =Rn (4dxA4).

~~

This makes it evident that the restriction of the closure operator
to congruence relations R in A4 is an order embedding of Con(A4) into
Ker(A4):

(27) Rc S if and only if Rc §

for any two congruence relations R, 8 in A. Note that R = R if and only
if the congruence relation R is closed.

10. The reasonable thing to do now is to begin a dictionary trans-
lating properties of almost surjective homomorphisms ¢: A — B into
properties of their kernels R = R;. Easy examples of this kind:

(28) @ is closed if and only if the field of B equals 4;
(29) B is complete if and only if the field of R equals 4’

For ¢ is closed if and only if ¢ = ¢, i.e., if and only if dom ¢ = dom ?.
On the other hand, if B is complete, dom¢ = A. This is the universality

property of A (cf. the end of section 7). Conversely, if dom¢ = 4, B,
the homomorphic image (under surjective homomorphism ¢) of the com-

plete algebra 21, must be complete also.
Further easy examples of translation:

(30) ¢ is injective iff RN (A X A) =id,, i.e., iff A intersects each
class modulo R in at most one point;
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(31) ¢ is surjective (onto B) iff A intersects each class modulo R in
at least one point.

Hence ¢ is bijective iff A is a complete representative system modulo R.

Note that each injective, almost surjective homomorphism ¢: A — B
is isomorphic with the inclusion homomorphism id4: 4 — C into a suitable
extension C, not necessarily strong, but also generated by the image,
i.e., by A itself. (This is due to a more or less obvious set-theoretical
substitution procedure, which, as has been shown by Zermelo, can be
carried out in a neat ‘‘constructive” way. First use of this procedure
within algebra seems to have been made by van der Waerden; this has
been generalized by Doerge, Pickert, and possibly others.) In short,
the kernels R with the property described in (30) are in one-one correspon-
dence with the weak minimal extensions of 4, i.e., with their isomorphism
classes. For such weak extensions B, C, one may abbreviate

B & C instead of (id4, B) & (id4, C).

This means, that there is a homomorphism w: B — C over A, i.e.,
leaving all elements of A fixed. E.g., A & B for each weak extension B.
In fact, (id4, 4) s (¢, B) for each almost surjective homomorphism
p: 4 - B.

The weak extensions B for which inclusion id4: A — B is a bijection
are in fact the enrichments (4, g) of the given algebraic structure f of A.
Hence the enrichments of f are in one-one correspondence with those
kernels R for which A is a complete representative system.

Speaking of weak extensions, one will quite naturally ask for the
strong ones among them.

THEOREM 10. The homomorphism ¢: A — B is strong and injective
(.e., an isomorphism onto im @) if and only if, for its kernel R, the equation

(32) Rn(AXDA) =idy
holds.

Here, DA is understood with respect to dom¢ = 4, DA being the
subset obtained from A by adding to A all results of single applications
of the fundamental operations to sequences in A:

DA: =4 v dom ¢ nf,-(AKi),
el
where fi is a fundamental operation of the free completion A. DA— A,
or sometimes the whole of DA, is called the first Baire class over A (with
respect to partial algebra domg); remember that the transfinite itera-

tion of operator D finally leads to the full closure — (cf. Slominski [12], .
also [13]).
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Proof. Let acd, xeDA, and (a,®)eR, i.e. p(a) = p(x). If xed,
¢(a) = p(z), hence a = x if ¢ is injective. If = f;(a), a: K; - A, then

p(a) = ¢(a) = ¢(2) = gi(poa) = gi(poa),

where g; is a fundamental operation of B. Hence a = f;(a) if ¢ is strong
and injective, hence a = xz, proving (32).

Conversely, if (32) holds, @ is injective by (30). Let ¢(a) = g:(poa),
aecA, a: K; - A. Since ¢ is closed, ¢(a) = p(a) = tp(f@(a)), in particular,
fi(a)e dom¢, hence f;(a)eDA, whence a = ft(a) = fi(a) by (32). This
shows that ¢ is strong.

Hence the strong minimal extensions of A (i.e., their isomorphism
classes) are in one-one correspondence with the kernels R that fulfill (32).
In particular, combining this with (29), the (strong) minimal completions
(their isomorphism classes) are in one-one-correspondence with the con-

gruence relations R of A that fulfill (32); this has been proved (in essentially
the same way) in [4], Theorem 8.

Again, one might strengthen strongness and injectivity by adding
normality, where ¢: A — B may be called normal if and only if im ¢ is
normal in, i.e., is an initial segment of, B.

THEOREM 11. The homomorphism @: A — B 8 strong, tnjective, and
normal if and only if, for its kernel R, the equation

(33) Rn (AX field R) = id,

holds.

The proof it an almost literal copy of the proof given in [4], Theorem 9,
for the special case ¢ = id4: A — B, B complete. '

Hence the strong, normal, minimal extensions of 4 (i.e., their iso-
morphism classes) are in one-one correspondence with the kernels R
fulfilling (33). Again, restricting that to completions, one gets the men-
tioned result ([4], Theorem 9).
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