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Admissible initial operators
for superpositions of right invertible operators

by D. PrzEwoRSKA-RoLEWICZ (Warszawa)

Abstract. Suppose that D is a linear right invertible operator acting in a linear
space X and that F is an initial operator for D corresponding to a right inverse E
of D. Then the set of all right inverses of D is of the form: #p = {R+ FA: AeLy(X)},
. where I, (X) denotes the space of all linear operators determined on the whole space X
and mapping X into itself. The set of all initial operators for D is of the form: Fp
= {F(I - AD: AeLy(X)}. Having already this characterization of the sets #p and £ p,
we can describe all admissible initial operators for a superposition of a finite number
of right invertible operators. A generalization of a theorem about the oxistence and
uniqueness of a solution of an initial value problem with a right invertible operator
is also given. Applications to multi-waves equations are indicated (even in the case
of variable speed of waves).

In the present paper we determine the class of all initial operators
for a superposition of given right invertible operators (cf. [2]). The problem
in question was suggested to the author by Professor S. Kaliski.

' This paper contains some generalizations of the results given in [2]
and [5].

Let X be an arbitrary ring with a unit e. The following characteri-
zation of right inverses is due to Arens [1]:

Suppose that teX has a right inverse s. Then any right inverse of ¢
i3 of the form:

(1) § =ats(e—ta) for every aeX.

This characterization is also true in an arbitrary pararing with units
(cf. [3]) if we consider all a¢X such that the product ta is well-determined.
In particular, we obtain the following characterization of right inverses
of right invertible linear operators:

Let X be a linear space over a field & of scalars. Denote by L(X)
the set of all linear operators defined on linear subsets 2, of X, called the
domain of X and mapping 2, into X ().

() It is a pararing with units (moreover, it is a para-algebra).
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312 D. Przeworska-Rolewicz

Denote by R(X) the set of all right invertible operators belonging
to L(X). The set of all right inverses of an operator De R(X) will be de-
noted by £,,. As in [2], we assume here that 2, = X, 2, < RX for ReZ,.
Write: Ly(X) = {deL(X): 2, = X}.

Let DeR(X) and Re,. Then every right inverse of D is of the form
(2) R=A4+R(I-DA) for an AeL)(X),

where I denotes the identity operator.

Let &, denote the family of all initial operators for an operator
DeR(X). Werecall (cf. [2]) that FeL(X) is an initial operator for De R(X)
corresponding to an ReZ#j, if it is a projection onto the kernel of D, i.e.,
if ¥2 = F, FX = Z, where Zp = {xe 2p: Dz = 0} (?) and, moreover,
FR = 0. By Theorem 2.2 of [2] an operator F belongs to &, if and only if

(3) F =I—-RD on 2, for an ReZp.

An initial operator F corresponding to a right inverse R defined by
formula (1.2) is of the form

(4) F = F(I—AD), where AeL,(X),

and F is defined by formula (3).
Indeed, formula (3) implies that on the domain 2, we have

F=I—-RD =I-[A+R(I—DA)]D
—I—AD—R(I—DA)D =I—AD—RD+(RD)(AD)
— (I—RD)(I—AD) = F(I—AD).

PROPOSITION 1. Let DeR(X). Then Re®y, if and only if there is an
ReRp and an A eLy(X) such that

(5) R=R4+FA

where F is an initial operator for D corresponding to R. Moreover, an initial
operator F corresponding to R is

(6) F = F(I—AD).

Proof. Sufficiency. Suppose that BRe#, and A <L,(X) are arbitrary.
Write: R = R+ FA. Observe that

R=R+FA =R+(I—RD)A =R+A—RDA = A+R(I—DA),
as in Formula (2). Since DF = 0, we have, by definition,

DR = D(R+FA) = DR+DFA =1.

(3) The kernel Zp, is said to be the space of constants for the operator D.
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Hence IIABeQED. The initial operator F corresponding to R is, by defi-
nition,

F=I-RD =I—(R+FA)D =I—RD—FAD
— F—FAD = F(I-AD).
Necessity. Let I}e@D be given and let Re#, be arbitrary chosen.
Write
F=I-RD, F=I-RD on%, and A =R—Rel,(X).

Since DR = I and FR = 0, we conclude that
R+¥FA =R+F(R—R) =R+FR—FR =R FR

— R+ (I-RD)R=R+R-R(DR)=R+E—R =E.

Thus Re® p 18 of the required form. Formula (4) implies that F = F(I—-AD),
. which was to be proved.
An immediate consequence of Proposition 1 is

THEOREM 2. Let DeR(X), If FeL(X) is an arbitrary initial operator
for D corresponding to an Re&p, then
(7) Rp ={R+FA: AeL,(X)},
(8) Fp ={F(I—AD): AcLy(X)}.

A similar characterization can be given for left invertible operators
(cf. [4]).

THEOREM 3. Suppose that D,, ..., D, eR(X) and that F; is an initial
operator for D; corresponding to a right inverse R,-e.%Dj (j =1,...,m).
Write '

(1.9) D=D,..D,; R—R,..R;
(1.10) F =Fm+RmFm_1Dm+ cee +Rm...R2FlD2 v .Dm.

Then DeR(X), ReRp, F is an initial operator for D corresponding
to R and, moreover,

(1.11) Rp ={R+FA: AcL,(X)},
(1.12) Fp ={F(I—-AD): AeLy(X)}.
Proof. Since, by our assumption, D;R; =1I for j =1,...,m, we

conclude that
DR-=D,...D, D,R.R, ,...R,=D,...D,, \R,,_,...R, = ...
tee — DI‘RI = Io



-
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Thus DeR(X) and ReZ,. Formula (3) implies that on'Z, we have
F-F,+R,Fpn_Dp+ ... +R,...R,F.D,... D,
=I—-R,D,+R,(I-E,_1Dp_)Dpp+ ... +
+R,...R(I—R,D)D,... D,

—I-R,D,+R,D,—R,R, Dy ,Dp+ ... +
+R,..R,D,..D,—R, ...R,RDD,...D,
—I-R,..RD,..D, =I—RD.

Hence F is an initial operator for D corresponding to R. This and
Theorem 2 together imply that the sets £, and %, are of the form (11)
and (12) respectively.

Theorems 2 and 3 together imply another characterization of*initial
operators for a superposition of right invertible operators.

THEOREM 4. Suppose that all the assumptions of Theorem 3 are satis-
fied and that D is defined by Formula (9). Write:

(13) R = (Rm+FmAm) (R1+F1A1)7
(14 F =P, (I—A,D)+ ... +
+(Rp+ Fpdp) ... (Ryt Fyd) Fy(I— 4,D))D, ... D,,,

where A,, ..., A eL,(X) are arbitrary.
Then ReRp and F is an tnitial operator for D corresponding to E. More-
over,

(18) #p ={(Bpn+Fpdp)... (B +TF4): 4, ..., A el (X))},

(1) Fp,={(F,I-A,D,)+... +R,+F,A,...
oo (Ry+F, A, F))(I—A,D)D,...D,,: A, ..., A, eL,(X)}.

Indeed, Theorem 2 implies that every operator of the form Fy(I —A4,D,),
where A;eL,(X) (j =1, ..., m) is an initial operator for D, corresponding
to the right inverse R, F; A of D;. This and Theorem 3 together imply
that the operator F' determined by formula (14) is an initial operator for
D = D, ... D,, corresponding to the right inverse R of D determined by
formula (13).

Suppose we are given an operator De R(X) and an initial operator #
for D corresponding to an ReZ#,. Write

N
(17) QD) = D Q.D*, where @, ..., Qy_cL(X), Qy = 1.

k=0
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We recall (cf. [2]) that and initial value problem for the operator Q (D)
is to find all solutions of the equation

(18) QD) =y, yeX,
satisfying the condition
(19) FDz =v,, wy.eZp (k=0,1,...,N—1).

This problem is said to be well-posed if it has a unique solution for
every yeX, 95, ..., Yy_1€¢Zp. This means that a well-posed homogeneous
initial value problem has only zero as a solution. By Corollary 3.1 of [2]
an initial value problem (13)—(14) is well posed if —1 is not an eigenvalue
of the operator

N-1
(20) Q=D QB
k=0

Indeed, in this case the operator I -l-@ is invertible and a unique
solution of the problem under consideration is

N-1 m : N-1
21) @ =RYI+Q7y— Y (Y G&E M|+ Y Ry
m=0 k=0 k—0

In particular, if @, =Q, = ... =Q,_, =0, then Q = 0. We there-
fore conclude that in this case problem (1.18)-(1.19) is well-posed and its

solution is
N-1

(22) @ = RVy+ Y Rty,.

k=v

The Corollary 3.1 of [2], mentioned above, can easily be generalized
to a larger class of operators. Namely, we have

THEOREM 5. Suppose that the operator DeR(X), that F is an initial
operator for D corresponding to an ReR; and that the operator Q(D) is

defined by formula (1.17). If —1 is not an eigenvalue of the operator @ defined
by formula (20), then the initial value problem

(23) QD)DYx =y, yeX (M>0),
(24) FD¥z =v,, y,eZ, (k=0,1,...,N+M—1)

18 well-posed and its unique solution is of the form

N+M—1

(25) @ =RVMI+Q)[y— ( ZQ,,R"‘ Y ar.4m] + 2 By

m=y

Proof. Put ¥ = D¥2. Then we have

.l".Dk’u =FD1‘I+kw =yk+ﬂl ior k = 0, 1, sesy N—l.
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"Therefore we can rewrite problem (23)-(24) as follows:
(26) Q(D)u =y,
(27) FD*u =Yy (k=0,1,...,N-1).

According to Corollary 3.1 of [2] and formula (21) this problem
is well-posed and has a unique solution

N-1 m N-1
(28) u= RN(I+Q)"1[y— 2 ( QkRm_k)yM+m]+ 2 B Yy n.
m=0 k=0 k=0

Having already determined % = D™z, we consider the following
initial value problem:

(29) DMg —u, FD'm—y, (k=0,1,..., M—1).
This problem is also well-posed and formula (22) implies that its
unique solution is of the form:

M-1

z = RMu + 2 R™y,..

m=0
This and formula (28) together imply that problem (23)-(24) is well-
posed and has a unique solution

o My
=R u+2R Ym

m=0

N-1 m
= BRI+ y— 3 (X 0B M yain] +
=0 k=0

N-1 M-1
+ Z -Rkyk+M} + 2 Rmym
k=0 m=0

N- m
— RN+'M(I+QA)_1 [y_ ZI(ZQkRm-k)yM+m]+
m=0 k=0
1

N-1 M—
T Z Rk+M?/k+M+ 2 E"Ym

k=0 m=0

N-1 m
= RﬁN“'I(I+Q‘)_l [’!I - 2 (ZQkRm_k)yM+m] +
m=0 k=0

N+M-~1

+ ) By,

Mmwmp

which was to be proved.
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A similar statement is also true for the operator DMQ (D).

In [5] we have shown some applications of Theorems 3 and 4 to one-
dimensional multi-waves operators, i.e., to operators of the form

(30) D=D,..D,,
where

02 1 02 .
.Dj = asz _c—; atz (] =1,...,"n)

and ¢; are given constant coefficients. Namely, if we choose operators
A,,..., A, in formulae (13) and (14) in an appropriate way, we obtain
various probleme for the operator D, such the generalized Cauchy problem,
the Darboux-Picard problem, etc.

Here we show only that this method can be used for equations with
variable coefficients. It is enough to consider one operator of the form

. 02 02
(31) D = 25 —b(0) 5,

where the function 1/b(7) is measurable and locally integrable, the function

b(6
(32) a(m) = [2
is differentiable at each point and, moreover, the function
(33) a(r) = a(7r)t
is one-to-one.
Write
(34) 8 =¢(—a(t)r, t==E&+a(7)T.

It is easy to check that this change of variables permits us to rewrite

the operator D as follows:

- 02 0?
(35) D=3 5
0? 1 0 0
=t T [ _,(t-s)] (E _%) = 4D+ H),
bla
2
where
02 1 2 0
3t0s 4b[a“(t—8)] o s

2
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The operator D is obviously right invertible and has a right inverse,
for instance of the form

t 8
(37) (Ra)(t,s) = [ [ @(& n)dnde.

It is not difficult to verify that under our assumptions the operator
I+ RH is invertible (in the space of continuous funections). Thus the

operator D = 4(D 4 H) has a right inverse

(38) R =3(I+RH)R.
Indeed,

DR = 4(D+H)}(I+RH)"'R = (D+ DRH)(I+RH)'R
= D(I+RH)(I+RH)™'R = DR =1.

Thus we can apply all the results of papers [2], [6] and the present
paper to operators D of the form (31).
In a similar way we can consider the case where the coefficient of

the operator D defined by formula (31) depends on the variable &:
b =>b(f).
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