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1. Introduction. It is well known that the length of the segment
joining the midpoints of two sides of a triangle is less than one-half, equal
to one-half, or greater than one-half the third side in hyperbolic, euclidean,
and elliptic geometry, respectively. In fact, Young [8] has shown that
the parallel postulate can be replaced by the above-mentioned property
in order to obtain the respective geometries.

Andalafte and Blumenthal gave a complete metrization of Young’s
condition for euclidean geometry as follows:

THE YOUNG POSTULATE. If p, q and r are points of a melric space
M and q' and r' are the midpoints of p and q, and p and r, respectively,
then q'r' = qr/2.

They then showed that a complete metric space with unique lines
is generated by a Banach space if and only if it satisfies the Young
Postulate.

It is quite natural to ask if in a complete metric space with unique
lines the segment joining the midpoints of two sides of a triangle could
be a constant multiple ¥ 7= 1/2 of the third side. We show in this paper
that the answer is no, and surprisingly this is a direct consequence of
the triangle inequality. It follows immediately that if ¢’ and ' are chosen
on the lines joining p and ¢, and p and r, respectively, such that pq’/pq
= pr'[/pr = A and if a constant %k exists such that these conditions imply
q'r![qr =k, then k = A. Finally, one is led to ask:

Does the property (pq’/pq = pr’'[pr = A implies ¢'r'/qr = A) charac-
terize Banach spaces among the class of complete metric spaces with
unique lines ? (P 823) '

Although this question remains open, we show in this paper that
the property (pq’'/pq = pr’'[pr = A and pg*/pq = pr*/pr = |1 —1| imply
q'r'/qr = A and ¢*r*/qr = |1 — A|) does characterize Banach spaces among
the class of complete metric spaces with unique lines. The technique will
be to show that if a complete metric space with unique lines has the latter
property for some A, then it also has this property for A =1/2 and the
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afore-mentioned result of Andalatte and Blumenthal then yields the
characterization.

2. The Ratio Property in M. Let M be a complete metric space with
a unique line joining any pair of its distinet points. For convenience,
if p, q are distinet points of M, we denote the line containing them by
L(p, q). The segment with end points » and ¢ will be denoted by S(p, q),
and the fact that r is a point between p and ¢ will be denoted by prq.
We now assume M has the following Ratio Property:

THE RATIO PROPERTY. There exists a positive constant k such that,
for each triple p, q, r of non-collinear points of a metric space M, if ¢’ and
r' are points of S(p, q) and S(p, r), respectively, with pq’ [pq = pr' [pr = 1/2,
then ¢'r'[qr = k.

LeEMMA 2.1. The number k in the Ratio Property ts 1/2.

Proof. Let p, q,r be non-collinear points of M such that pq = pr
= 1. We define sequences of points {¢,}, {r,} on L(p,q) and L(p,r),
respectively, as follows. Let ¢, and r, be points on 8(p, q) and S(p, 7),
respectively, such that pq,/pq = pr./pr =1/2. If ¢; and r; (¢ > 1) have
been chosen on the respective segments S(p, ¢q;_,) and S(p,r;i_,), wWe
let ¢;,, and r;,, be the points on S(p, ¢;) and 8(p, r;), respectively, such
that pge,,/pei = Preya/pri = 1/2. Clearly, lim ¢; = limr; = p.

For the indirect argument suppose k < 1/2. Then there exists a positive
number ¢ such that ¥ = 1/2 —e&. Now, for each 4,

airifprs = [k @r]/I(1/2)"pr] = [(1/2—e)/(1/2)Tgr.

Consequently, lim g;r;/pr; = 0, so there exists a positive integer =
such that ¢,7, < pr, = pq,. For each i, let q; be the point for which g¢;pg;
holds and ¢;p = pg;. It follows, as above, that ¢, 7, < pr, = pq,. Thus
Qo Tnt QuTn < §uDP+Pq, = ¢, g, contrary to the triangle inequality.
Therefore, & > 1/2.

The assumption that % > 1/2 implies the existence of a positive
number ¢ which satisfies ¥ = 1/2 +¢. Now, for each 1,

airifprs = [K-qr]/{(1/2)" pr] = [(1/2+¢)/(1/2)Tgr.

In this case, lim ¢,r;/pr; = oo, 80 there exists a positive integer
» for which ¢,r, > 2pr,. By the definition of the sequences {¢q,} and
{r,}, pg, = pr,. Thus gq,p+pr, =2pr, < q,r, which contradicts the
triangle inequality. Therefore, ¥ = 1/2.

An application of the Andalafte and Blumenthal Theorem [1] gives
the following

THEOREM 2.2. A complete metric space with a unique metric line joining
any pair of its distinct points is generated by a Bamach space if and only
if it has the Ratio Property.
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3. A generalization of the Ratio Property. In this section we introduce
a more general ratio property and once again obtain a characterization
of Banach spaces. Throughout this section M will denote a complete
metric space with a unique line joining each pair of its distinet points.
We will also assume M has the General Ratio Property, which can be
stated as follows:

THE GENERAL RATIO PROPERTY. There i8 some posiltive number 2,
A < 1, for which positive numbers k(1) and k(1) (depending only on 1) exist
such that, for each triple of mon-collinear poinis p, q, r of a metric space M,
if ¢y q* and ', r* are points on S(p, q) and 8(p, r), respectively, such that
P9’ [pq =pr'[pr = A and pg*|pq = pr*pr =1—1, then q'r'[/qr = k(2)
and q*r*[qr = k(A).

Since one of the numbers 4 and 1— 21 is less than or equal to 1/2,
we will assume 4> 1/2.

The proof of the following lemma is quite similar to that of Lemma
2.1 and is thus omitted.

LEMMA 3.1. The numbers k(1) and k(1) in the statement of the General
Ratio Property salisfy the equations k(1) = A and k(A) = 1—A.

THEEOREM 3.2. Let p, q,r be non-collinear points of M. If q', q* are
points on S(p, q) and 1’y r* are points on S(p, r) for which pq’[pq = pr' [pr
= A, and pq*|/pq = pr*|/pr = 1— A, then for each point t on L(q,r) there
are poinis t',t* on L(q',7r') and L(q*, r*), respectively, such that t',t" lie
on 8(p,t) and pt'[pt = A and pt*[pt = 1—A.

Proof. Letting ¢’ and ¢* denote the points on S(p,?) for which
pt'[pt = A and pt*/pt = 1—2, we see, upon applying the General Ratio
Property and Lemma 3.1 to the triples of non-collinear points p,q,?
and p,t,r,that ¢’ ¢’ = A-qt, q*t* = (1 —A)gtand t'r’ = A-tr, t*r* = (L —A)ir.
But ¢'r' = A-qr and ¢*r* = (1—A)qr, so it follows immediately that
any betweeness relation satisfied by ¢,r and ¢ is also satisfied by the
triples ¢’,7’ and ¢ and ¢* r*, and t*, and hence #',t* are on the lines
L(q’,r') and L(g* r*), respectively.

COROLLARY. Suppose p, q, r are non-collinear points of M and suppose
q’, ¢* are points on S(p, q), ', r* are points on S(p, r)with pq’' [pq = pr’[pr
= 1 and pg*|/pq = pr*[pr =1—2A. If t, ¥, t* are points on S(q, ), S(q¢'r’)
and 8(q*, r*), respectively, such that qt/qr = q't'[¢'r' = A and q*t*/q*r*
=1—4, then t' and t* lie on 8(p, ?).

LeMMmA 3.3. If p, q,r are non-collinear points of M and if ¢',r’' are
points on S(p,q)- and S(p,r), respectively, such that pq'[pq = pr'[pr
= 2A—2%, then ¢'r'|qr = 22 —22

Proof. Let ¢*, r*, p* be points of the segments S(p, q), S(p, r) and
8(q, r), respectively, such that pg*/pq = pr*[pr = qp*/qr = A. It follows
that q*q’'/q*q = r*r’[r*r = A. Letting t*, s* be points on S(g* p*) and
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S (r*, p*), respectively, whose distances satisfy g¢*t*/g*p* = r*s*[rtp*
= A, from the General Ratio Property and Lemma 3.1, we have ¢'t*
= A-qp* = Aqr, t*s* = (1—A)g*r* = (A—2A})qr and s*r' = A-p*r =
(A— A*)gqr. Thus

gt Ftrs sy = (B A-R+A—)gr = (24— )¢,

p and it suffices to show ¢’, t*, s*, ' lie on a line and in
that order.

By the Corollary to Theorem 3.2, L(r,¢*) and
L(r*, p*) have the point s* in common. From Theorem
3.2, q*s*/q*r = q*q’'/q*q = A, and so S(¢’, $*) contains
the point ¢*. In the same manner, it is seen that S(r’, t*)
contains the point s*. Thus ¢/, t*, s* and 7’ satisfy the.
betweeness relations ¢’'t*s* and t*s*r'; so ¢/, t*, s*,

¢ lie on the line L(¢’, ') in that order, and the proof is
complete.

LeMMA 3.4. Let p, q,r be mon-collinear points of M. Suppose ¢q',r"
are points of S(p,q) and 8(p,r), respectively, such that pq'|/pq = pr'|pr
=q'r'[qr = a. If q* r* are poinis on L(p,q) and L(p,r), respectively,
such that q'q*q and r'r*r hold and q'q*/q'q = r'r*[r'r = A, then pq*[/pq
= pr*[pr = q*r*/qr = a+A(1—a).

Proof. By hypothesis,

r!

r

Pq*/pq = (94 +¢'¢")/pq = (a-pg+1-9'q)/pq = (apq+ A(1—a)pq)/pq
=a+1(1—a).
Similarly,
pr*[pr = a+ A(1—a).

In order to prove ¢*r*/qr = a+A(1 —a), we proceed as in the proof
of Lemma 3.3. Let m* be a point on S(g, r) such that ¢*m*/qr = A and
let t*, s* be points on S(q’, m*) and S(r’, m*), respectively, such that
q't*/¢ m* = r's*/r'm* = A. Then, by the General Ratio Property and
Lemma 3.1,

(1) g*t* = A-gm* = A*-qr,
(2) s*t* = (1—A)¢'r = a(l—2Agr,
(3) s*r* = A-rm* = A(L—2)qr = (A—A%)¢qr.

Thus q*t*+s*t* +s*r* = [+ a(l—A)+A—2]gr = [a+A(1—a)lgr.
That t*, s* lie on S(q*, r*) in that order follows exactly as in Lemma 3.3.
We then have

g*r* = q*t* +t's* + s*r* = [a+A(1—a)]gr,
which completes the proof.
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Now suppose p, g, r is any triple of non-collinear points of M. Letting
¢,,7; denote the points of S(p,q) and S(p,r), respectively, such that
Pq,/pq = pri/pr = A, by the General Ratio Property and Lemma 3.1,
¢:171/qr = A. If ¢, @5y 75, 75 are points on the segments S(p, ¢,), S(q1, 9),
8(p, r,) and 8(ry, r), respectively, such that pq,/pq; = prs/pr; = ¢:1¢:/0:4
= r,73/ryr = A, by the General Ratio Property and Lemma 3.3, ¢,7/qr
= Pg2/pq = Pra/pr = A’ and pgs[pg = Prs[pr = gs7s/qr = 24— 1*. Letting
Q4s 95 96y 95 Tas 75y Tey 77 denote points on the segments S(p, ¢.), 8(q2 ¢1),
8(q1; 2s); S(gsy @)y S(Py72), 8(ryy 1), S(ry,75) and §(rs, 7), respectively,
such that pg,[pg. = D7a[Prs = €245/9291 = 7275[T2"1 = Q146/9:10s = T176/T17s
= @3q7/qsq = 7T37;/rs7 = A; then from the General Ratio Property and
Lemma 3.4 it follows that pq,/pq = pri/pr = qri/qr, Pgs/Pq = prs/pr
= ¢s75/qr) P4s[Pg = DTe[PT = Qs¥e/qr, and pg,[pq = pr;[pr = gi7/qr.
Continuing, inductively, to choose points in this manner, we obtain
sequences {¢,} and {r,} of S(p,q) and S(p,r), respectively, such that
the sequence {q,} is dense in S(p, q), the sequence {r,} is dense in S(p, r),
the numbers pq,/pq = pr,/pr are dense in the interval [0, 1], and whenever
?4,/pq = pr,./pr = », it follows that g¢,r,/qgr = ». From the continuity
of the metric it follows that if pq'/pq = pr'/pr =» (0 <»<1), then
q'r’[gr = ». In particular, if pq’'/pq = pr'[/pr = 1/2, then ¢'r'/qr = 1/2,
and we thus have the following theorem:

THEOREM 3.4. A complete metric space with a unique metric line joining
any pair of points is generated by a Banach space if and only if it satisfies
the General Ratio Property.

4. The General Ratio Property for 1 > 1. We now consider the General
Ratio Property as in Section 3, except we let 1 be greater than 1 and
we replace 1 — A by A—1. We will refer to this ratio property as the General
Ratio Property (1> 1). Again we assume M is a complete metric space
with a unique metric line joining any pair of its distinet points, which
has the General Ratio Property (1 > 1).

By making slight changes in the proofs of Lemmas 2.1 and 2.2, it is
easily seen that they are both valid in M. We thus have the following

THEOREM 4.1. If p, q,r are non-collinear poinis of M and if ¢', q*
and r'yr* are points on the metric rays R(p, q) and R(p,r), respectively,
such that pq'[pq = pr'|pr = A and pq*[pq = pr*[pr = A—1, then q'r'[qr
= A and q*r*/qr = A—1.

It suffices to show that if p, q, r are non-collinear points of M and
if ¢’, ¢* are points on S(p, ¢) and 7', r* are points on S(p,r) such that
Pq'[pq = pr’[pr = 1A and pg*[pq = pr*[pr =1—(1/4) = (A—1)/4, then
qr'|/gr =1/2 and gq*r*/qr = (A—1)/A. If pq'[pq = pr'[pr =1/4, then
pq/pqg’ =pr[pr’ =4, so qr/¢'r' =i and, consequently, ¢'r'/gr = 1/A.
The other condition is not quite so obvious and we state it as
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LeEMMA 4.2. If p, q,r are non-collinear points of M and if q',r' are
points on the segments S(p, q) and S(p,r), respectively, such that pq'|pgq
= pr'[pr = (A—1)/A, then ¢'r’[qr = (A—1)/A.

Proof. Choose points ¢* r* on the respective segments S(q’, ) and
8(r'y r) such that pq'/pg* = pr'[pr* =1/A. Then pg* = ipq’ = (A—1)pq
and pr* = Apr’ = (A—1)pr. Thus ¢'r’ = (1/A) g*r* by the above-mentioned.
But pg* = (A—1)pq and pr* = (A—1)pr implies g*r* = (A—1)gr by the
General Ratio Property (4> 1). Thus ¢'r’ = (1/A)g*r* = (1/A)(A—1)gr
= [(A—1)/A]gr.

THEOREM 4.3. A complete melric space with a unique line joining any
pair of ils distinct points is a normed linear space (Banach space) if and
only if it has the General Ratio Property (A > 1).

Proof. By Lemma 4.2, if M has the General Ratio Property (1 > 1),
then M has the General Ratio Property of Section 3, and hence M is
a normed linear space (Theorem 3.4). The converse is clear.

It is worth noting that in the Young Postulate 4 = 1/2, and so
A = 1—2; thus the second ratio in the General Ratio Property is really
postulated in the Young Postulate. It would be interesting to know if
the property “pg*/pq = pr*[pr =1—1 implies ¢*r*/gr =1—A" can
be proved from the relation “pq’'/pg = pr'[/pr = A implies ¢'r'/qr = A”.
If so, this would strengthen Theorem 3.4 and there would be a similar
strengthening of Theorem 4.3. (P 824)

REFERENCES

(11 E. Z. Andalafte and L. M. Blumenthal, Metric characterizations of Banach
and Euclidean spaces, Fundamenta Mathematicae 55 (1964), p. 24-55.

[2] N. Aronszajn, Oaractérisation méirique de Vespace de Hilbert, des espaces vecto-
riels et de certains groupes métriques, Comptes Rendus de I’Académie des Secien-
ces, Paris, 201 (1935), pp. 811-813, 873-875.

[3] L. M. Blumenthal, Theory and applications of distance geometry, Oxford 1953.

[4] — An extension of a theorem of Jordan and von Neumann, Pacific Journal of
Mathematics 5 (1955), p. 161-167.

[61] M. M. Day, On criteria of Kasahara and Blumenthal for inner product 8paces,
Proceedings of the American Mathematical Society 10 (1959), p. 92-100.

[6] M. Fréchet, Définitions de la somme et du produit scalaire en termes de distance,
Annales Scientifiques de 'Ecole Normale Supérieure (3) 75 (1958), p. 223-255.

[71 R. W. Freese, Criteria for inner product spaces, Proceedings of the American
Mathematical Society 19 (1968), p. 953-958.

[8] W. H. Young, On the analytic basis of non-Euclidean geometry, American Journal
of Mathematics 33 (1911), p. 249-286.

Regu par la Rédaction le 12. 8. 1971



