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1. Introduction. Our aim in this paper is to compare the properties of
temporally nonglobal positive solutions to some semilinear heat equations with
sources with those to the porous medium equation.

The problem of studying the noncontinuable solutions is not only of pure
mathematical interest (as, e.g., the problem of characterization of the optimal
conditions for global existence) but also — and for some equations primarily
— of practical one. For instance, for the first kind of equations mentioned
above these solutions may describe ignition, combustion phenomena, propaga-
tion of flames, and finally deflagration in an active nonlinear medium.

The equations studied here are special cases of the general quasilinear heat
diffusion equation

(1.1) u, = V-(K(u)Vu)+ Q(u),

where u > 0 is (generally) interpreted as the temperature, K(u) > 0 is the
conductivity coefficient, Q(u) = 0 describes the nonlinear sources (the response -
of thermally active medium). Several serious mathematical difficulties may
appear in a study of such equations. We mention only the possible degeneracy
when K (u) becomes zero and the critical growth of Q(u) preventing from even
local existence.

Let us remark that the physically relevant and the most interesting models
are those with

(1.2) K(u)u 'du < o0,

(1.3) Q)™ du < .

- 8 O ey =

The first condition guarantees (when Q = 0) the finite velocity of propagation
of the initial disturbances. The second condition, when diffusion is lacking:
K = 0, implies the finite time of explosion of any nontrivial solution (u tends to
infinity for some x and t— T < o0).

One usually chooses power functions as K and Q not only in order to
simplify the equations (since they introduce some homogeneity) but also to
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exhibit a rich symmetry structure (the equation is invariant under a large group
of transformations). Besides universality it is a rather frequent situation that
the most symmetric solution describes the common asymptotics of (nearly) all
the solutions. Of course, one should be careful in order not to overestimate the
universal role of power functions K and Q (see Example (3.4)).

A typical effect observed in the asymptotic behavior of solutions to a se-
milinear heat equation with sources is the spatial localization of solutions near
the blowup time, and simultaneously the self-similar character of the blowup
phenomena. On the contrary, for the porous medium and linear heat equation
the blowup is not localized in the space and, in some sense, comes from infinity.

We will consider here only the Cauchy problem on the whole space R" or
incidentally the initial-boundary value problem on balls in RY. For some
special boundary value problems with blowing up solutions see [28]. These
problems are in general more complicated bacause of delicate questions of
uniqueness of solutions (cf. Remark (2.4) and Example (4.15) below).

The new results in this paper are presented in Sections 4, 6 and 7.

Acknowledgment. The author wishes to thank Michel Pierre for
helpful remarks during his visit in Wroctaw in October 1986 and for his kind
hospitality and stimulating discussions during the author’s stay at University of
Nancy 1 in May 1987.

2. Parabolic equations with sources. Here we recall some general results
concerning the equation

2.1) u = Au+u?,

where p > 1. Equation (2.1) considered on a bounded domain in RY and
supplemented with homogeneous Dirichlet boundary conditions admits, under
some natural restrictions on p and N, positive solutions which blow up in finite
time. The blowup phenomenon occurs for a large class of initial data only’at
one point x, of the domain:

(2.2) limu(x,t)=0 for all x# x, and lim|u(:, t)|, = co.
t—-T t—=T
We refer the reader to [31] and [15] for precise statements and generalizations
for other nonlinear source terms.
We leave apart some interesting mathematical questions concerning the

existence and the regularity of solutions to equations of type (2.1), pointing out
only the remarks (2.3)H2.5).

(2.3) The only reason of noncontinuability of a solution to (2.1) is (like for
ordinary differential equations) the explosion of its norm (in some L-space, in
particular I as above); cf. [31] and [3].

(2.4) Some delicate problems are connected with the definition of assuming the
initial values. If one takes too weak one, the nonuniqueness of solutions would
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appear in a rather dramatic way. For instance, there would be infinitely many
weak solutions with prescribed blowup time (less than the maximal time of
existence of the “proper” solution selected according to a physically motivated
variational principle) and the same initial data; cf. [22] and [3].

(2.5) The solution to (2.1) cannot be extended beyond T,,, and blows up
everywhere on Q x [ T,,.,, ©0) (more precisely: any reasonable approximation
process leading to the weakest solution (2.1) — the so-called integral solution
— with T, < oo diverges to infinity after T,.,); cf. [4].

Some similar results hold for the model equation
(2.6) u, = Au™+u”,

where m > 1, p > 1, which is a (possibly) degenerate quasilinear parabolic
equation. Here the blowup is confined to a set of measure zero if p > m or to
a bounded (but not too “thin”) set if p = m.

For extensive reviews of results on the solvability of the initial value
problem on RY or on a ball in the class of radial functions, on the symmetry
groups, self-similar solutions and blowing up solutions to (2.6) we refer to [18],
[37], [16] and [17]. Moreover, a profound discussion is given there of the
physical significance of equations like (1.1); the spatial localization of sin-
gularities of radial solutions to such equations is interpreted from the point of
view of synergetics, finally the applicability of these equations in the description
of dissipative structures is considered. Numerical results suggesting the
symmetry breaking phenomena are also presented. The main tools in proofs
are various generalizations of the strong maximum principle for parabolic
equations.

Besides these reviews with abundant list of references of numerical,
physical and mathematical character we mention also [32], [36], [30] where, in
addition to the existence and nonexistence, the regularity questions of solutions
to (2.6) for p < m are studied using a generalization of the Aronson-Bénilan
inequality for the porous medium equation (cf. especially Proposition 2.3 in
[36]); see (6.5) below.

For the occurrence of the blowup for the finite difference approximation of
the one-dimensional equation (2.1) see [8].

3. Self-similar blowup for equation (2.1). For equation (2.1) simpler than (2.6)
there are more rigorous results concerning behavior of blowing up solutions near
the critical moment of time. Namely, Giga and Kohn proved in a series of papers
[19]-[21] that any blowing up solution resembles asymptotically a self-similar
solution to (2.1). This statement requires a comment because in this situation
(unbounded solutions near their explosion points) the familiar notions of
stability and proximity of solutions have no sense. In fact, Giga and Kohn
proved, modulo some technical details concerning u,, p, N and described in
[19]-{21] and [41], that for any local solution to (2.1) defined on {(x, t):
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Ix]| <1, —1 <t < 0} the limit of rescaled solutions (by the Boltzmann scaling)

3.1) u,(x, £) = A2~ Vy(x, 2%), A>0,
(3.2) lim (—£)1®~ Dy, (x, 1)
A—0

is equal to +(p—1)""~P or 0. Here p < (N +2)/(N —2) and the blowup time
T is shifted to 0. The latter possibility corresponds in fact to a regular solution
without any singularity for T= 0 (see [21]). In other words (but in the previous
notation),

(3.3) lim (T— )~ Du(y, + y(T—1)'2, 1) = +(p— 1)1 ~P
t—=T
uniformly for |y| < const.

Their description shows that any blowing up solution to (2.1) behaves
asymptotically for ¢t — T like the spatially homogeneous solution (T—t)/* ~»
x (p—1)1/2~P This statement does not exclude of course the possibility of
localized blowup as mentioned in Section 2 (cf. [31]). In such a situation the
detection of the explosion point requires a study of translates of u in x. Remark
that the asymptotic behavior of u in a parabolic region in (3.3) may be very
different from the profile at a given time t near T.

Finally, let us note that the restrictions imposed above on p and N are
important as the examples in [39] show.

(3.4) The example below due to M. Pierre shows that the asymptotically
self-similar character of the blowing up solutions is not universal for nonau-
tonomous versions of (2.1), that is, a perturbation of equation (2.1) may have
a solution which blows up in L* but is not a blowing up weak solution.
Namely,

u(x, t) =(x*+t*)"!, xeRV, N>4, —1<t<a,a>0,
satisfies a nonlinear heat equation of the form
(3.5 u, = Adu+g(x, tyu®

with a positive function g bounded from below and from above. Rescaling this
solution as in (3.1) we get

lim u,(x, t) = 1/|x|?,

A0
which shows that the stability results for the blowing up solutions seem to be
invalid for the perturbed equation, i.e., there is no structural stability with
respect to a change of the coefficients of the equation. The same example shows
the sharpness of the result in [4] concerning the strong noncontinuability of
unbounded solutions to (2.1).
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4. The linear heat equation and its various blowing up solutions. The
simplest diffusion equation

4.1) u, = Au
is a very special case of the diffusion equations
4.2) u, = Au™), where m>0.

As we remarked in the Introduction, the case m > 1 corresponds to finite
velocity of propagation of thermal waves, m < 1 gives the fast diffusion (the
equation is used, e.g., in plasma modeling). The nonglobal solutions of the
Cauchy problem in the former case will be studied in the next sections. In the
latter case there are no restrictions on the growth of initial data in order to
have global solvability of (4.2). They should be only not too concentrated
measures, i.e., they should not charge too small sets. For the precise meaning of
this statement we refer to [23] and [35].

As concerns the blowup properties, the linear heat equation has quite
different properties than the semilinear equation (2.1) or the porous medium
equation (4.2).

Here we consider nonnegative solutions to (4.1) blowing up at time T,
invariant under Boltzmann scaling

4.3) u(x, t) = A¥u(Ax, T-1*(T—- t), Ai>0,
therefore of the form
4.4) u(x, t) = (T—1t)""w(y),

where x = (T—1t)!/?y and y > 0 is not determined yet. The functions w = w(y)
satisfy the following equation in RM:
4.5) 1y-Pw+yw = aw

or, equivalently,

4.5) V-(Vw—%w) - ('y—g)w.

Remark that, in the similarity space variables y and s = —log(T—1), (4.1)
transforms into

(4.6) w,+iy-Pw+yw = Aw,

where u(x, t) = (T—1t)""w(y, s). Of course, studying the solutions to (4.1) near
the blowup time T is equivalent to analyzing the large time asymptotics,
s— + oo, of (4.6). 4

Evidently, w(y) = exp(|y|*/4) is a solution to (4.5) with y = N/2. Returning
to the old variables we obtain

4.7 u(x, t) = (T—1t)”M?exp(|x|?/4(T—1)).
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In regard to the special form of (4.7), which resembles the backward
fundamental solution, let us notice that the nontrivial solutions to (4.5) should
have exponential growth in y.

(4.8) PROPOSITION. Let g(y) = exp(—|y|>/4) and let a solution w to (4.5) satisfy
oweL'(R") and lim [ o(y)Vw(y)i(y)dS(y) =0.

R—o |y|=R
Then w is identically zero.

Proof. Multiplying (4.5) by ¢ and integrating over the ball of radius R,
and then passing with R to infinity we get

Yiew+5foy-Vw = fodw, yfow—[Vo-Vw = [oaw,

Yfew+ fedw = fodw, yfow =0,
so w = 0 almost everywhere. The integration by parts and taking the limits
above can be easily justified.
Note that there exist positive radial solutions to (4.5) for arbitrary y > 0,
g(r) = w(y), r =yl satisfying

,,+,N—1 AW
g'+g\———5|=19,

e.g.,

_ & yy+1)...(y+k—1)
@9 9= C(l L A ENDW ). (N k= 1))'

All these functions satisfy the estimate
w(y) ~ Cexp(lyl’/4)  for |y|— 0.

The last remark and a simple observation below permit us to construct
also nonradial solutions to (4.5) with a given y > 0 in arbitrary dimension.
Namely, we have

(4.10) LEMMA. If w, = w,(y,) and w, = w,(y,) satisfy (4.5) for y, e R¥', y, e R*?
with y,, v,, respectively, then

w(y) = wi(y,) w,y(3,), y=()’1,,V2)ERN, N=N,+N,,

is a nonradial solution to (4.5) with y =y, +v, and w has the same exponential
growth exp(|y|?/4) as before.

The proof follows from a straightforward calculation.

The solutions of such a rapid growth may be treated classically using the
Weierstrass kernel. The well-known Widder representation theorem (cf. e.g.,
[1]) gives, for any positive solution u of the heat equation, the formula

(4.11) u(x, t) = [exp(—|x—y|*/4t)u,(y)dy
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valid for all sufficiently small ¢ > O if and only if u, is a measure of not too
rapid spatial growth:

(4.12) Juo(y) exp(—clyl*)dy
should be finite for some positive c.

The self-similar solutions to (4.5), as expected, have the critical rate of
growth preventing the global in time evolution of u. Their characteristic feature
is the explosion uniform in x:

limu(x, t) = co.
t=T

However, there are some other ways for solutions to (4.1) to blow up.

(4.13) PROPOSITION. There exist solutions to the one-dimensional equation (4.1)
with maximal time of existence T such that one of the following holds:
@) u(x, T) is finite for all x;
(i) u(x, T) < 0o for x < x,€R, u(y, T) = oo for y = x,;
(iii) u(x, T) < o0 for x < xy€R, u(y, T) = o0 for y > x,;
(iv) u(x, T) = oo for all x (like (4.9)).

Proof. It suffices to restrict our attention to initial data of type ) c,5,,

n=0
with measures of masses c, located at the points ne N. From (4.11) it follows
that

u(x, t) = (4nt)~ 112 i a,exp(n?/4T)exp (—|x —n|*/4t)
n=0
= (4nt)~1/2 i a,exp (n(1/4T— 1/4t)) exp (— x*/4t) exp (nx/21),

n=0
where c, = a,exp(n®/4t), with the critical time T equal to
(4-inf{c: (4.12) is finite})™'.

Clearly, our solution is classical for t < T and it does not exist for t > T. Now it
is quite easy to construct the power series

a

Z a, (ex/Z T)n

n=0
with, say,
exp(—n*?) < a, < exp(—n'"?)
and given behavior at the ends of their intervals of convergence.

Of course, one can produce further examples of solutions with different
sets of explosion for ¢t = T in multidimensional case, in particular radial
solutions with a prescribed open or closed half-line of infinite values of u(-, T).

(4.14) Remark. Our last observation concerns the blowup of positive
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solutions to linear uniformly parabolic equations in divergence form. Having
an analogue of Widder’s representation formula, given by Aronson in [1],

u(x, t) = | G(x—y, uy(y)dy
RN

with G(x, t) bounded from below and from above by two Weierstrass kernels
for the heat equations with two different coefficients (uj), = »;4u;, j = 1, 2, one
proves that the maxima of blowing up solutions are of order exp(c|x|?) with
suitable positive constant ¢ depending on the blowup time and the parabolicity
constants of the equation. The proof repeats the arguments in (4.8) and the
construction (4.13) above for the heat equation.

For the blowup phenomena in boundary value problems it should be
noted that the problem is far more delicate as, e.g., the questions of uniqueness
occur.

(4.15) ExampLE. Consider the heat equation (4.1) in (0, 1) x (0, o0) supplemented
with the conditions

u(0,t)=0, u(x,0)=0,
u(l, t) = (4n)~ V2t~ 32 exp(—1/41).

It is well known (see, e.g., [29]) that there exists a solution of this problem
belonging to C®([0, 1]x [0, o0)). However, if one takes the function

v(x, t) = xt~(4nt)” V2 exp (— x?/41),

one easily verifies that ve C*((0, 1) x (0, c0)) only and v(x, 0) = O for x€(0, 1) in
the sense of L. (0, 1) convergence as t tends to zero. Finally, v satisfies the
boundary conditions and v is different from the afore-mentioned smooth solu-
tion. So we have an example of nonuniqueness of a positive solution to a boun-
dary value problem for (4.1) with a weak but natural definition of assuming the
initial data (it is not the distributional convergence because of a measure concen-
trated in (0, 0)). The situation in the whole space R" is quite different: positive so-
lutions with the same initial trace (which is a measure) are unique (cf. the Wid-
der formula (4.11)), and 2'(R") convergence follows from L} (R") convergence.

An explanation of these effects is given in a recent paper [14] of Dahlberg
and Kenig who characterize the positive solutions to initial-Dirichlet problems
in cylinders 2 x [0, T for general equations of the type u, = 4(¢(u)) including
the heat and the porous medium equation (such a solution is determined by
a measure on Q and a measure on 0Q)."

5. Preliminaries on the porous medium equation. We will consider non-
negative solutions to the Cauchy problem for the porous medium equation

(5.1) u=4wu™), m>1,
defined in a strip
{(x,1): xeR", T, <t< T}, Ty,e[—c0,T.
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For a review of physical motivation and (early) theory of the porous
medium equation we refer to [7] and [33]. We will use extensively the results
on the solvability and regularity of continuous weak solutions to (5.1) in
a suitably chosen class of functions (P(7) in [10]) constructed in [6] and
subsequently studied in [10].

A continuous function u > 0 defined on {(x, t): xe RY, 0 < t < T} is said to
be in P(T) if u satisfies the integral identity

| @ de+up)dxdt = fu(x, t,)0(x, t;)dx—[u(x, t)o(x, t,)dx

R x (t1,t2)
for all 0 <t, <t, < T and all peC?*! with compact support in x.

First we recall that Aronson and Caffarelli proved in [2] the existence of
the initial trace (cf. (5.3) below) for any nonnegative solution to (5.1), which is
a nonnegative Borel measure of moderate growth (see (5.2) below). In fact,
a Fatou theorem holds for the solution to (5.1) in P(T): u(x, t) a.e. tends to the
density of the absolutely continuous part of u, as ¢t decreases to zero (see [9]).
Conversely, for any nonnegative measure g on RV satisfying

(5.2) sup R™W* 2= y(Bp) =:|lpll, < 0, r>1,

R2r

there exists a solution to (5.1) (unique in P(T)) with the initial trace
(5.3) lim | u(x, t)eo(x)dx = | @(x)du(x)
RN

t—0 RN
for all e Cy(RY); see Proposition 1.6 in [6] and Theorem 4 in [10].

Note that this result is a complete analogue of Widder’s one for the linear
heat equation: the nonnegative solutions are characterized by their initial
values, modulo a restriction on the function space — here Dahlberg and
Kenig’s P(T) class — guaranteeing the uniqueness of the solution issued from
its trace.

Let us mention an interesting question concerning the a priori regularity
assumption in the definition of the class P(T). It was not known for a long time
whether the hypothesis ue Lf;. (the weakest assumption necessary to define the
distributional solution to (5.1)) implies the continuity of u. This problem
reduces to that of showing the implication

uelp.=>uely.,

and an affirmative answer was given in [12].
The condition (5.2) can be rewritten as ((0.3), (0.3") in [6])

(5.2) sup R™WN*+2/m=1) [y (x)dx < o0
R21 |x| <R
or
sup R™M | up(x)(1+]x[*)~ " Vdx < o0
R21 |x|<R

for the initial value u, being an Ll -function. The length of the maximal



94 P. BILER

interval of existence of the solution with u(x, 0) = u,(x) in the sense of (5.3) is
estimated from below by

T= Tlug) = C(N, m)/l(ug)" ™",

where I(u,) is the limit of ||u,|, defined in (5.2) when r tends to infinity. This
estimate is sharp (up to its order) as the explicit solution

549 u(x, t) = (AT (T—t)* + c|x|>/(T—r)*/m= D
starting from the initial data
to(x) = (A + Blx|) /=0
(of critical admissible growth, see (5.2')) shows. Here the notation is consistent
with that in [6]:
k=Nm—-1)/(Nm—1)+2), c=k/2mN), T=c¢/B, A=0.

We would like to show that the special solution (5.4) displays the “typical”

way of blowup of positive solutions to (5.1). The significance of this vague

statement will be revealed in the sequel.
First we observe that (5.4) written in the form

(5.5) u(x, t) = (T—t) "M~ D(AT*+ BT\x|*/(T—t)! ~¥)t/em=D

is evidently self-similar. We would consider self-similar solutions to (5.1)

defined for t < T, which blow up at time T, of the scale-invariant form
u(x, t) = APu(Ax, T—1*(T—1)),

so simultaneously

u(x, t) = (T—t)"'w(y) with x =(T—t)"*y, yeR".

Clearly, f =(x—2)/(im—1) and y = B/a, which follows from (5.1) and the
invariance condition. With this notation the function w defined on RY is
a global solution to the nonlinear elliptic equation

(5.6) yw+§y' Pw = A(W").

-1

Introducing a new dependent variable z = w™~' we obtain the equation

m

|Vz|? +mzAz.
m—1

(5.7) (m—l)yz+§y-l7z =

Restricting our attention to the case
a=2[(1-k)=Nm-1)+2, Bp=N and y=k/m-1)

(the same parameters as for (5.5) with w(y) = (AT*+ BT]y|*)!/™~ 1)) we get from
(5.7) the equation in divergence form

(5.8) 7-(z/m= (7 z—2cy)) = 0.
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Observe that z(y) = c|y|>+C, C =0, satisfies (5.7) if and only if C =0 or
ay = N; the latter condition corresponds exactly to (5.8).

Parallel to a study of self-similar solutions to (5.1) satisfying the nonlinear
elliptic equation (5.8) we would consider, using an idea borrowed from [19], an
equation satisfied by any solution to (5.1) of the form

u(x, t) = (T=1)""w(y, s),

where x = (T—t)!*y, yeR", (T—t)=e"%, t < T, seR. Substituting this ex-
pression into (5.1) we obtain the nonlinear parabolic equation

1
(5.9 ws+yw+ay~l7w = A(w™)
or, taking z = w™"!,
1 m )
(5.10) z,+(m— 1)yz+;y- Vz= lezI +mzAz.

For y = k/(m—1) the equation above acquires a simple divergence form
m—1d

(5.11) —

(VD) = 7o (V" D(Fz —2cy)).

Observe an interesting (and crucial in [19]) property of w, the same as
remarked after (4.6): rescaling u to u, corresponds to shifting w(y, s) in s to
w(y, s—alogi).

For simplicity of the notation we restrict our attention to the solutions
with the similarity variables centered at x, = 0; compare however (7.2). The
center of mass of any solution can be easily defined (and uniquely determined)
shifting the balls in the condition (5.2").

Notice that the factor (T—f)~/™~1 determines the maximal growth in
time of blowing up solutions:

1/(m—1) = y+2/(a(m—1)),

where 7 is the exponent of our prescribed time asymptotics and (1/x)(2/(m— 1))
corresponds to the time dependent factor in the similarity variable y and the
maximal possible growth of u (cf. Theorem 1 in [10]). So equations (5.8) and
(5.11) describe the solutions with the strongest time singularity (T—t) /™~ 1
characteristic of (5.1) (compare this with the linear heat equation (4.1) where the
rate of explosion y > 0 was arbitrary).

Note that in view of the results in [40] — specific for the one-dimensional
case and somewhat similar to Proposition (4.13) (ii}{iv) — it seems impossible
to characterize all blowing up solutions to (5.1) without any supplementary
structure assumptions.

6. Some uniqueness results for self-similar blowing up solutions to the porous
medium equation. In this section we establish conditional uniqueness results for
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nonnegative solutions to equation (5.6) or (5.8) defined in R". The need of
introducing some supplementary hypotheses in order to get a local uniqueness
or stability result is evident since one can produce many solutions to (5.7) other
than z(y) = c|y|?, namely

(6.1) z(y) = ¢, 13,

where J =1,...,N—1, ¢, =c(2+N(m—-1))/(2+J(m—1)), and y,eR" has J
coordinates of y and N —J zeros. These trivial (lower dimensional) solutions do
not have uniform growth in y and they present a serious obstacle in obtaining
any general uniqueness result.

We begin with a simple fact concerning radial solutions to (5.8).

(6.2) PropoOSITION. If z(y) = g(r), r = |yl, is a radial solution to (5.8) in R
such that

limr¥ " 1g'(r) =0,

r—0

then g(r) = cr*+C with an arbitrary (positive) constant C, i.e. any radial
self-similar solution to (5.1) satisfying (5.8) is of the special form (5.5).

Proof. A simple formal argument and the regularity assumption on the
behavior of g’ at 0 show that g satisfies the ordinary differential equation

(gll(m- l)rN— l(gr _zcr))r =0.

Integrating this equation we get g’(r) = 2cr and g(r) = cr? + C with C > 0 if we
look for nonnegative g. As concerns our assumption, it is intuitively clear that
g’ must even vanish at 0 in order that z be regular at 0.

The second case where it is straightforward to establish the uniqueness of -
solutions to (5.8) issued from (5.5) is described below.

(6.3) PROPOSITION. Let Z = z—c|y|*> be a solution to the equation

2c
m—1

(6.4) 242 +-';1_—1|VZ|2+ yVZ =0

such that AZ >0 and
lim | exp(—4ly?) VZ(y)n(y)dS(y) =0

R- o |y|=R
for some 6 > 0. Then Z is a constant.
Proof. Observe that (6.4) in the form

z4Z +

L le-VZ=0

m-—
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is a direct consequence of (5.8). Using the idea borrowed from [19], we multiply
(5.8) by

0
e(y) = eXP(—EIyIZ)
with a sufficiently large 6 > 0 and integrate over the ball of radius R centered at
the origin. After some integration by parts, letting R tend to infinity we arrive
at

2c 1 1 2
—AZ>+EIQIVZI =0

m—196

as Vg = —dpy and the boundary integrals vanish (when R — o) due to the
growth condition imposed on VZ. Recall that z, 4Z > 0, so ¥Z = 0 almost
everywhere and Z is a constant.

The assumption 4Z > 0 (in fact, it suffices to have AZ > 0 in the sense of
distributions) in (6.3) is restrictive but not unexpected. Namely, from the
Aronson—Bénilan inequality for solutions to the Cauchy problem for (5.1) in
the class P(T) with initial data imposed at T, =0, i.e.,

jg(zAz +

(6.5) AU N, ) = _k in 2'(R"),
mt

(cf. (1.19) in [6], (1.4) and Theorem 3 in [10]) it follows that 4z>0
distributionally. In fact, this is a consequence of the stronger inequality
A(w™™1) > 0 which holds for self-similar solutions to (5.1) defined for all t < T,
obtained by shifting T, to —oo in (6.5) and from the identity

4,z(y) = (T-1)4,u""")(x, t).

The condition 4Z > 0 equivalent to 4z > 2cN = k/m is of course much
stronger.

Anyway, (6.5) implies an algebraic rate of growth of u in the spatial
variable

u(x, t) < C,(w)(1 +|x|>)t/m-1
as proved in [10] (Theorem 1) or in [6] (a corollary to Proposition 1.3). Thus

z2(y) < C(1+1y1?),

but we may prove the last estimate completely elementarily — without any
recourse to Moser’s iteration procedure used for u in [6] or [10].
Formally, using (5.7) and (6.5) we have

m
m

IVz|®2 < Cz+ y-Vz

o
for some positive constant C, hence
IVz)* < C(z+y1*) +3IVz)?

7 — Colloquium Mathematicum 58.1
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for another positive constant still denoted by C. Observe that

Iyl
z(y) = z(0)+ | Vz(ry/Iy)(/IyDdr,
0

SO
Iyl
7z()I> < C(1+y* + g |Pz(ry/ly))|dr).

This integral inequality for |Vz(y)| gives finally
(6.6) Pz < C1+)*> and  z(y) < C(L+yP).
More precisely, if

R=|y and ¥@)=|Vzery/yl), 0<r<R,
then

P2(R) < C(1 +R2)+‘f ¥ (r)dr.
0

Denoting the right-hand side of this inequality by @ and differentiating we get
@'(R) = 2CR+ ¥(R) < (8C*R?+2¥P?(R))'/?

R
< (8C?R2+2C(1+R*)+2[ ¥)'12
0

< 4Q2C+1)P'2(R)
and after integration we obtain
Y2(R) < #(R) < C(1+R?).

These formal calculations can be justified for less regular solutions to (5.7) by
approximating them in a routine way.

(6.7) Remark. If we consider the most general solutions to (5.6), i.e., the
distributional ones with we Lf;., we still can give an estimate of the average
growth of w. First observe that

d m p— R m
(68) ﬁ({ w ) =34 A=WP/RA(dy,
where
§ =(@yRY™1 |
Br Br

denotes the average over the ball B,. Then recalling (5.6) we have

d R 1
ﬁ(i w"') =34 O=DFRDGw+ Ly Pwidy,
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and the right-hand side is equal to

3
Y (= DPIRY = 7w P (1= BPIR)
Br Br

YR 2/p2 R 2/p2\2
= wll—IyP/R)+ 5§ wA((1—|yP/R).
BRr aBR
Finally, we obtain

d R R
d_R<£ W"') = %i w(l —lyl’/R’)+Z{R w((N +2)|y>/R?=N)

SCRYw
Br

with a constant C = C(a, y, N). Now, the Holder inequality gives

g )= ()

and after integration we obtain
(6.9) Y w" < CR¥™(m=1),

Br
This result is not so precise as (6.6) but consistent with the blowup estimate
from [6] (Theorem EU (b), (c))

lim [lu™ " (/1 +|x])]| , = 00

t—=T
obtained only for solutions from P(T) (max w(y) ~ C|y|*™~ V). Moreover, it is
easily seen from (6.8) that for solutions satisfying the Aronson-Bénilan
inequality (6.5) the average Jf w™ increases with R since 4(w™) >0,

Br
wh = zmm=1 4z > 0.

Finally, observe that subharmonicity of the function z(y, s), which follows
also from (6.5), excludes the possibility of strictly localized (confined to
a compact set) blowup of solutions to (5.1).

Note that a similar estimate of the averages of u™ over balls shows that

t

fum(-, v)dreLy. forall 0<ty<t<T

to
(M. Pierre, personal communication). For other I? regularity results for
solutions to the porous medium equation see [5] and [12].

The main result in this section is the uniqueness of sufficiently regular
solutions to (5.8) satisfying some uniform estimates on minimal growth in order
to separate the special solutions (6.1).

Remark that looking at (5.8) or at the equivalent equation (6.4) as a linear
equation with respect to Z (with the coefficients depending however on
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z = Z +c|y|?), one might think of a Liouville-type theorem: if Z is of reasonable
growth, then Z is a constant. Unfortunately, this approach fails, since the
coefficients of (5.8) may grow like a power of |y}, and the Liouville theorems for
linear elliptic equations in divergence form are generally valid only for the
coefficients growing not faster than

O((logloglyly®), O<e<1

(cf. [27] for precise statements and examples). .

Finally, lack of variational methods for studying the nonlinear elliptic
equation (5.6) (cf. [18] and [17], p. 145), which appeared to be very useful in
[19], renders our task somewhat difficult.

(6.10) THEOREM. If Z € C? satisfies equation (6.4) and is bounded from below, then
Z is a constant.

Remarks. The Bernstein method (and its various modifications) of
proving some estimates of VZ used here (cf. [29], IV. §17, [34] or [38]) requires
our regularity assumption Z e C3, which is, however, not very restrictive for
nondegenerate solutions: z(y) > 0. This hypothesis can be weakened to Z e C?
by considering (6.4) in its weak formulation.

The idea of the proof is based on the classical arguments in [34], Theorem
4.7, remarks on pp. 93, 98, and [38]. See also [24] for a slightly more general
situation. Nevertheless, our proof is somewhat different because equations (5.8)
and (6.4) do not fit into the schemes in [34] and [38].

A different approach to Liouville-type theorems is given in [26] by Karp.
His method of differential inequalities for certain functiorfals depending on the
solution does not require even C? regularity assumption (cf. remark in [26], p.
87). It is more flexible than the Bernstein or the Harnack inequality methods
(the latter seems to be useless in the situation considered here) and allows us to
rederive our result (6.10).

We expect that the one-sided boundedness hypothesis on Z in Theorem
(6.10) may be replaced by the condition
(6.11) min Z(y) = o(R) for R—» o0
IyI<R
without modifying the conclusion of (6.10). For that reason we present here
a proof of a slightly different result.

(6.12) PrROPOSITION. If Z € C? satisfies (6.4) and Z(y) = o(ly|), then VZ(y) = o(1)
Jor |y| - oo.

The proof of (6.12) shows some necessary modifications to be made in
Peletier and Serrin’s reasoning, it constitutes an ingredient of their proof and it
would be useful in the proof of the more general conjecture with the hypothesis
(6.11) above.
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Proof. Consider the linear elliptic operator

1
Vz-Vv
m—1
and the auxiliary function .
v={|VZ|*+M2Z?,

where Z satisfies (6.4), i.e., LZ = 0, M > 0, will be determined later. The cutoff
function

(6.13) () =(—ly—yol/R¥%, R>0, |yl = 2R,

is supported on the ball {y:|y—y,| < R} contained in {y:R < |y| < 3R}.
We calculate

Lv = A(VZIP)+ ALV Z)2+2V-V (P Z)%)

- Lv=zAv+

+ Vz-(VCIVZI> +(V(VZ|?)+2M |V Z).

m—1
Then, taking into account the equalities
v(VZ)?) = 2(vZ)(V2),
A(VZ*) = 2|V2Z|>+2VZ-V(4Z)

and
ZVZ-V(4Z)+(VZ- Vz)AZ+ﬁ(V’z)(VZ)(VZ)+ﬁ(722)(72)(72) =0

(a consequence of (6.4) differentiated and then multiplied by VZ) we get

(6.14)  zLv = 4z(722)(i72)(7c)+2zz|722|2—%c(vzz)(VZ)(VZ)

1
+2{z(m—1)|4Z)* + (m_—f Vi-Vz+zA{+ 2Mz)|Vle.

We wish to estimate zLv from below using positivity of the second, fourth and
the seventh terms.
The absolute value of the first term can be estimated using (6.13) by

{z|V?Z|>+ CR™ 22|V Z)?

(note that |F{|> < CR™%).
The fifth term is not less than

—CR™ YW |VZ)2.
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The sixth term is simply greater than
—CR™ 2|7 Z)?
(as |4{| < CR7?).

Finally, observing that V2z = V2Z +2cl, the absolute value of the third
term can be estimated by :

4c
m—1

(z|V22Z)2+ Lz WV Z)1* + LIV ZP2.

Now, choosing M = C,R~? with a sufficiently large constant C, indepen-
dent of R, recalling that (6.6) implies Fz(y) = O(lyl)), VZ(y) = Vz(y)—2cy
= 0(ly]), z(y) ~ c|y|* as Z(y) = o(lyl), we get Lv>0. From the maximum
principle applied to L and v we have

IPZ(yo)> < sup v(y) =M sup |Z(y)
ly=yol=R ly=yol =R

=0o(R"?R*) =0(1) for R— o0,

as asserted. In particular, |[FZ|? is globally bounded.
In fact, the more precise estimate

IPZ(yo)l S CR™' sup (—Z()+Z(y))
R<|y|<3R

from Theorem 4.6 in [34] is obtained using a more complicated auxiliary
function

v=C(|V(e " (2)|* with ¢(r)=const—e".

Our modifications consist mainly in the a priori estimate of the term similar to
the third term in (6.14) using the hypothesis Z(y) = o(]y]) or Z one-sided
bounded. This permits us to reduce rather lengthy computations concerning &,
B, 7 in Theorem 4.6. Then the conclusion of Theorem (6.10) follows from the
proof of Theorem 4.7 in [34].

(6.15) Remark. The assumption Z(y) = o(]y|) can be easily justified in the case
of the one-dimensional equation (5.8), i.e., (wZ’) =0 with a strongly non-
degenerate solution:

infz(y) > 0.

yeR
In fact, we.have immediately wZ’' = C with a constant C. If C =0, then
obviously Z = const. If C # 0, say C > 0, then for y >0 we get

0<Z(y)—Z(0)= ’j'C/w < C}(z(0)+cy2)“/""‘”dy
0 0

y
S C(1+y¥m=D)"1dy =o(y) for y— o0
o
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in all the cases:
2/(m—1)>1, Z(y)=0(1);

2/(m—1)=1, Z(y)=0(ogy)=o(y);
2/m—1)<1, Z(y)=0@p'"""V) =o(y).

For y <0 we have z(y) > 4 >0, so Z'(y) < C for a constant C and after
integration we obtain

Zy)=Cy, z(y)=Z(y)+cy* = ¢ey?

for some positive & Then Z'(y) < Cly|"%™~ 1D and similarly as before
Z(y) = o(ly]). The case wZ’' = C < 0 is analogous.

Let us recall Example 4 from [26] due to Gilbarg and Serrin, which shows
that our supplementary hypotheses on Z are reasonable.

(6.16) ExampLE. The equation 4Z+b'FZ =0 in R® has no nonconstant
bounded solution if b(y) = O(ly|~!). This condition is satisfied for any
nondegenerate solution to our equation (6.4) written as

2c Vz

AZ + —VZ=0
1z

m—

since (6.6) and assumption (6.10) or (6.11) give Vz/z = O(|ly|™?) for |y|— .
Moreover, in general the condition imposed on the vector field b(y) cannot be
significantly relaxed.

7. Asymptotic uniqueness for the nonlinear parabolic equation for the
blowing up solutions. Removing the hypothesis on self-similarity of the blowing
up solutions to the porous medium equation with the maximal existence time
T, we saw that they satisfy the nonlinear parabolic equation (5.9) or (5.10) on
RY x R, rewritten as

m—1d

(7.1) —

(zll(m—l)) = V-(z”‘""”VZ),
where Z(y, s) = z(y, s)—c|y|>. Here the similarity variables y, s are used to shift
the singularity to s = oo, and the study of asymptotics of blowing up solutions
is reduced to the study of the behavior of translations of z in s, s — o0; cf. the
remark after (5.11).

Equation (5.1) does not depend on x, and therefore we obtain, translating
the special solution (5.5) in x, a lot of new solutions (which are self-similar only
after centering in x) of the form

(7.2) v(x, t) = (T— ) "= D(AT* + c|x — x| (T— 1) ~H)1/m=1
with a fixed x,eR". They lead to
z(y, ) = AT +c|y —e/*x,|
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satisfying (7.1) with
Z(y, ) = AT* +c(e*"|xo|* —2¢"*x4y) = O(ly))

uniformly for all s < s, s, € R fixed. Analogously, (6.1) translated in x also gives
us new nonstationary solutions to (7.1).

Having in mind a Liouville-type result for (7.1), first we recall that all
remarks preceding the proof of Theorem (6.10), concerning the Liouville
theorem for linear equations and lack of variational methods, apply now in the
context of the nonlinear parabolic equation (7.1). Moreover, comparing with
the statement of Theorem (6.10), it is well known that the one-sided Liouville
theorems fail for solutions to parabolic equations. Hence the best uniqueness
result we can expect is

(7.3) If Z satisfies (7.1) for s <0, yeRN and

Z(y,s)=o(y)) for |y|> o0,
then Z = const.

Unfortunately, the standard tools like pointwise Bernstein type estimates
of VZ similar to those in the preceding section (and in [38]) — with a suitable
modification of the cutoff function £(s){(y) — even with some extra hypotheses
on z (Fz = O(ly|)), give only weaker results, e.g.,

(7.4) Z bounded for yeR", s <0, implies Z = const.

We do not repeat a cumbersome but a rather standard proof of (7.4), since
we would like to present a different approach to this asymptotic problem of
stability (as it might be interpreted) for (7.1) based on a fairly standard method
of proving the uniqueness of weak solutions. The crucial thing in this method is
a suitable choice of test functions and good estimates of the (approximate)
solutions of the conjugate problem. The idea in the context of the porous
medium equation goes back to Kalashnikov [25]. We give the proof based on
some calculations presented in [6], Proposition 2.1, where the method of [25]
was generalized to a multidimensional situation. We return to the original
variables in (5.1) to apply directly some of ideas from [6] and [25], without
unnecessary repetitions of the fragments of their proofs.

To formulate a reasonable hypothesis guaranteeing an asymptotic unique-
ness result, let us observe first that rewriting (7.3) for v in (7.2) and the
corresponding centered self-similar solution u in (5.5) we have

(1.5) w1 (x, )— o™ (x, 1) = O((T— 1) %)+ O(Ix|(T—1)),
so (a weaker condition)
um " (x, )—v" " (x, t) = O((T—1t) %)+ O(Ix|(T—t)* *¥12)

for xeRY and t— — 0.
Now we can state our
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(7.6) THEOREM. Let N > 2 and u, v be solutions to (5.1) on RN x(— oo, T), both
blowing up at time T, such that

u™ = (x, )—v" " 1(x, t) = o((T—t) ")+ o(|x|(T—t)* +#/2),
u(x, t)—v(x, t) = o(|x|*/" =D 2(T—r)?~tm— 1)
+0(|x|2/(m‘1)—I(T_t)lla—l/(m—1))
for xeR", t < T—1 (we may assume for simplicity that T=1; the Landau

symbols o are understood here for t - — oo and x/(T—t)'"* = y bounded). Then
u is identically equal to v.

(7.7) Remarks. Observe that the hypotheses in (7.6) are reasonable compared
with the pair of explicit solutions satisfying (7.5). The first terms in (7.6)
correspond to adjusting a constant A4 in (5.5), the second ones control the
behavior for large x. The relation with (7.3) is also obvious: the similarity
variable y enters here explicitly.

The latter hypothesis (on u—v) is a consequence of the former one for
m < 2 or for solutions regularly growing in the spatial variable. Namely, .

1
m—1
with @ lying between u and v, so for the corresponding

2(y, s) = (T—la(x, )"~ ' > elyl?

(ﬁ"'_ 1)1/(m— 1)— l(um— 1 —pm 1)

u—v =

for a positive &. Hence 4>~ ™ is bounded from above by
C((T— t)—k|x|2/(T_ t)2/a 1/m—-1)—-1 _ C(|x|2/(T— t))l/(m— n-1

This gives the second hypothesis of our Theorem (7.6).
The case N =1 requires an argument different from that given below.

Proof. Let us rewrite (5.1) on R¥ x ¢, 0] for u and v in the weak form

0
J J(=0),+ @™ —v™) A0) = [(u—v)(O)L(0)— f(u—0v)B)(()

for all {eCZ (RN x [t, 0]). Defining

a(x, 1) = {(u"'(x, t)—v™(x, O)(u(x, )—v(x, 1)) if u(x, 1) # v(x, t),
T mum i (x, t) if u(x,t)=o(x,1),

we arrive at
0
(7.8) §fu—=0)(C,+adD)+ [ u—v)®) () = [ (u—v)(©0)L(0).

We would like to prove that
[(u—v)(©0)0 =0 for all B CT(RY)
or that the left-hand side of (7.8) can be made arbitrarily small for a suitable t <0.
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Let the support of 0 be contained in the ball {x: |x| < R,} and R > 2R,,
Assume that y is a solution to the initial-boundary value problem

Y,+ady =0 on {x: |x| < R} x(t, 0),
(79) Uls=r =0, ¥(x,0)=0(x).

The suitable hypothesis for the existence and C* regularity of a solution to this
problem is aeC®, a > a, > 0. This follows easily from the auxiliary non-
degeneracy assumption on u, v: u(x, t) > 0, v(x, t) > 0 and their continuity. The
general case should be treated using the similar smooth and strictly positive
approximations of a as in [6]. Their arguments from (2.7), (2.19), (2.20) therein
can be adopted without any essential change in our situation, so we omit this
fragment of proof.

Now let us take, as a test function in (7.8), { = ¢,y, where ¥ solves (7.9) and
0, €CERY), 0< ¢, <1, 9,=1 on {x: |x] <R-2¢}, ,=0 on {x: |x] > R—¢g}
and |Vo, < C/e, |4¢,| < C/e. The integral identity (7.8) is now rewritten as

0
(7.10)  fu—v)(O)e @)+ [ [(u—v)o, (), +ady)

0
+[[u—0)2Vo, VY +¥de,) = [u—1)0)0.

Denote the first integral by I. The second term obviously vanishes due to (7.9).
The main difference between our task in proving the asymptotic uniqueness
result and Proposition 2.1 in [6] is of course the appearance of I. We would
like to show that |I| is small for t < 0 and suitably chosen R > R,,. Hence it is
necessary to estimate from above the solution to (7.9) for t < 0 and this
estimate should be totally different compared to that in [6]: much better in ¢,
possibly slightly worse in x. To execute this idea we construct a supersolution
to problem (7.9) of the form

(7.11) W(x,t) = An(x), where 1>0, —dn=cn,

"IIJ:|=R = 0’ "||x|<R > 0’

n is the first (normalized) eigenfunction of the laplacian on the ball of radius
R with homogeneous Dirichlet conditions. Taking a suitably large A which
depends only on 0 (not on R > 2R,), we obtain a supersolution to problem (7.9):

Y +a(x)4¥ < —ca(x)? <0, P|,=-r=0,

¥(x, 0) = 6(x) and the maximum principle applies. Note that if our problem is
nondegenerate: a(x) > a, > 0, then one can take ¥ even with time decay:

¥(x, 1) = dexp(cantin(x),

with ¢ of order R~ 2V,
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Thus, using the hypotheses in (7.5), we get
(7.12) 1| < j' (u—v)(®)|¥ = O(RN+2/(m-1)—2(T_ t)zla—ll(m—l))
Br

+O(RN+ 2/(m—1)— l(T_ t)l/a— 1/(m— 1))
= o((R/(T_ t)l/a)N— 2+2/(m— 1)) +0((R/(T— t)l/a)N— 1+2/m— 1))

for bounded R/(T—t)'/* and t— — 0.
Return to the third integral in (7.10) and denote it by J. Proceeding
similarly as in the proof of Proposition 2.1 in [6] we arrive at

0
] < CR""{ sup 8_¢(x, t)| § ™ —v™)(x, 7)ldz
Sz 10
oy, |
+ sup |—(x, )| I@™—v™)(x, Ddr; =:J, +J,.
|x]=R ov t

t<t<yy
The integral J, is estimated exactly as in [6] by
(7.13) C(ty, RN 1 *2Hm= 1728,

where B is an arbitrary positive number (the suitable supersolution used for
comparison is Ce~€#*(1 +|x|?)~#). The term J, can be estimated with the aid of
our supersolution (7.11) using the similar procedure as in (2.11)2.14) in [6] by

t
CRNIR' N [|u™—v™)(x, 7)|dx.
t

More precisely: ¥ < ¥ is dominated by a function g on {x: R, < |x| < R} of
the form d|x|> "V +d (or dlog|x|+d if N = 2), where d depends only on 6, 4,
n (cf. (7.10), remember that R > 2R,) and d <0. Hence, by the normal
derivative lemma,

oyl _ 1%

v ov

From our assumption in (7.5) we have, analogously as in Remark (7.7), the
asymptotic estimate

< < CR'"N,

U™ —v™)(x, t) = mi™ " (u—v)
= o(lxlz/("l— l)(T—t)-k— 1/(m— l))+0(|x|2/(m— 1)+ l(T_ t)— 1—1/(m- l))
with the same meaning of o as in (7.6). Integrating this from ¢ to t, gives finally
J, = 0((R/(T—tl)1/“)2/("’_”)(T_tl)z/(a(m‘l))*'l—k—l/(m—l)
+ 0((R/(T— £,)Ve)2/m =D+ 1) (T g y2Ualm=1)+ 1/a=1/m=1)

valid for t; < 0 (the exponents in (T—t,) are both nonpositive).
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Given arbitrary ¢ > 0 and C > 0, there exists ¢, satisfying J, < ¢/4 for all
t <t, and all R such that

Iyl < RAT—t)'* < C.

Then, taking sufficiently large R > 2R,, J, can be made less than ¢/4 (see
(7.13)). Recalling (7.12), the integral |I| would be less than ¢/2 if we take t < 0 of
a sufficiently large absolute value. This completes the proof as {(u—v)(0)8 = 0
in. (7.8) for all 6e Cg(RN).

Recall that our proof applies to the rescaled problem (7.1) considered for
lyl < C, C — arbitrary, and s < 0. We used the notation from [6] and [25] for
the original problem (5.1) to avoid inessential changes of variables and to use
as much as possible the calculations frony these papers.

(7.14) Remarks. The difficulties in establishing the stability properties of the
special solutions (5.5) are connected with the spatial behavior (different from
that in [19] and [20]) of the solutions in similarity variables. Here the
interesting solutions must be unbounded in x, while in [19] and [20] they are
bounded and stabilize to constants.

A great variety of solutions of type (7.2) (and (6.1) translated in x) makes
the dynamical systems approach in [19] hopeless (Giga and Kohn considered
the analogue of (7.1) constructed for (2.1) in a weighted Sobolev space, with
a special structure of linear higher order terms which played a crucial role and
which is lacking in (7.2)). The study of attractors corresponding to these special
solutions is essential in establishing the fine description of blowing up
solutions. These attractors seem to have a fairly complicated structure.
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