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On a characterization of the Euclidean sphere *

by J. Witkowskl (Nowy Targ)

The aim of this paper is to prove a theorem of S. Golagb. Proved
as early as 1942, it has not been published so far, because the original
proof of the author was too complicated.

To formulate this theorem it is necessary to introduce a certain
notion, namely the notion of a B-straight curve and a B-plane curve
lying on a surface embedded in a three-dimensional Euclidean space.
This notion had been explained (in a more general manner than it is
necessary for our considerations) in the paper of S. Golgb Généralisations
des équations de Bonnet-Kowalewski dans Vespace & un mombre arbitraire
de dimensions, Ann. de la Soc. Pol. de Math. 22 (1949), pp. 97-156, 128-138,
and also in the paper of K. Tryuk On B-curvatures of curves on surfaces
of the Euclidean space, Ann. Pol. Math. 2 (1955), p. 15.

The above-mentioned theorem may be formulated in a simple way:

If a surface S i8 such that each of its geodesics <8 a B-plane curve and
ts not a B-straight one, then 8 is a part of the sphere.

DEFINITION 1. A surface 8 of regularity class C" (n >1) determined
by vector equation

7= V(U U,)
or by parametric equations

T = @iy, ;) (¢1=1,2,3)
is called a regular one if for every point the rank of the matrix

6&7,;

| (=1,2,3;1=1,2)

is equal to two.

DEFINITION 2. I. A curve C lying on a surface § of class (! is called
B-straight if the plane tangent to S along C remains constantly perpen-
dicular to a fixed direction. II. A curve C lying on a surface § of class (!
is called B-plane if the plane tangent to S along C is constantly parallel

* The author wishes to express his thanks to Miss K. Tryuk for calling his atten-
tion to this problem.
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to a fixed direction (i.e. the tangent plane circumscribes a ecylindrical
surface).

THEOREM. If every geodesic of a reqular surface S of class C? is a B-plane
curve and is not B-siraight, then the surface S is a part of the sphere.

First we shall prove five lemmas.

LeMmA 1. If in a neighbourhood of point P on a regular surface S
of class C3® the Gaussian curvature K s identically equal to zero, then in
this nmetghbourhood of the point P there exist geodesics which are simultane-
ously B-straight.

Proof. The above assumptions (!) imply that through every point
of the neighbourhood in question passes one segment of a straight line
lying on 8 (it is a segment of a generatrix of a developable surface). This
segment is a geodesie. Since the plane tangent to S along it is fixed, this
geodesic is a B-straight line.

LeMwmA 2. If the set of ombilics of the surface S of class C* is dense,
then every point of S 18 an ombilic.

Proof. Since the function
R(uy, u) = 1ank ||gz,, hall (A, p=1,2)

where g,,, ki, signify the coefficients of the first and second differential
form of the surface respectively, is low semicontinuous, the equation
R(u,, u,) = 0, true on the dense set, implies the identity R(u,, u,) = 0.
LeMMA 3. If S’ denotes the spherical mapping of the surface S (of
the class C°) and if a point P of 8 is elliptic (K > 0) or hyperbolic (K < 0)
of 8, then the mapping of a B-plane curve C lying in the neighbourhood
of P s a great-circle arc C’ lying in a neighbourhood of point P’ on 8’ and,
conversely, every great-circle arc C’ in a meighbourhood of the point P’ is
assigned to a B-plane curve C lying in a mneighbourhood of P on 8.

Proof. Note that the spherical mapping of the neighbourhood of
an elliptic (K > 0) or hyperbolic (K < 0) point P is a one-to-one mapping (2).
Hence in the neighbourhoods of points P and P’, to every curve C lying
on S corresponds one curve C’ on 8’ and vice versa, to every curve C’
corresponds one curve C.

1. Let C be a B-plane curve of S lying in the neighbourhood of the
point P. From the fact of the curve C being a B-plane curve it is seen
that the unit normal vector to the surface § along the curve C remains

(1) A. Hoborski, Geomelria réiwiczkowa, cz. I1I. Teoria powierzchni i zarys teorii
tensoréw, Krakéw 1928, p. 122. The proof of the theorem stating that a surface of class C?,
having the curvature of Gauss identically null, is developable, leaves much to be desired
with respect to accuracy.

(?) D. Hilbert and 8. Cohn-Vossen, Geomeiria pogladowa, Warszawa 1956,
p. 183.
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parallel to a fixed plane z. When the vector undergos a parallel displace-
ment so that its one end is identical with the centre O’ of the spherical
surface 8’, then its other end traces a curve C’ on surface S’ which is
the mapping of curve C. Since the above-mentioned vector is constantly
parallel to the plane = and has the fixed origin O’, then it must turn in
a plane 7, which is parallel to the plane & and passes throught the point O’.
The curve C’ is a great-circle arc as a part of the intersection of the unit
sphere and plane =,.

2. If ¢’ is a great-circle arc of the spherical surface S’ in the neigh-
bourhood of point P’, then the normal vector to the surface S along
curve C whose image is €’ is constantly parallel to the plane of arc C'.
Curve C is therefore B-plane in the neighbourhood of point P whose
image is point P’

LeMMA 4. If every geodesic C of a reqular surface S of class C® is
a B-plane curve and if it is not a B-straight curve, then the set of elliptic
or hyperbolic points (K # 0) of 8 is a dense set.

Proof. Suppose that the set in question is not dense. Thus there
is a point P and a such neighbourhood of P that the curvature K of §
in this neighbourhood of P is identically equal to zero. From lemma 1
we conclude that in the neighbourhood of the point P there exist geodesics
which are B-straight. This conclusion contradicts the assumption, whence
our set is a dense one.

LevMMmA 5. If every geodesic of a reqular surface S of class C® is a B-plane
curve and if a point P is elliptic or hyperbolic (K # 0), then: a) the spherical
mapping of any neighbourhood of the point P is mecessarily a geodesic
mapping, b) the Christoffel symbols of the second kind satisfy the following
four conditions:

2\ _ 2 fLV 2V o 11 f2)
1. 111}“{11’ 3. 2112}—{22}_2112} \22f’

1y 1 2y 1y 2 1
2 =22} - {22}’ + 2[12} —{11} = 2{12} "{11 :
Proof. a) 1. Since the geodesic C is B-plane, by lemma 3 its image C’
on 8’ is a great-circle are, whence it is geodesic on S’ (the set of geodesics
on a sphere is identical with the set of great-cireles). 2. If C’ is geodesic
from a neighbourhood of the point P’, then it is a great-circle arc of §’,
and by virtue of lemma 3 it is an image of a certain B-plane curve (
lying in a neighbourhood of the point P. Then it will be shown that C
is a geodesic on the surface §. Suppose that it is not so. Let us take any
point P, lying on curve C in a neighbourhood of point P and let us draw
throught P, the geodesic C, tangent to C at point P;. The geodesic C,
is by assumption B-plane. Its image on 8’ is a great-circle arc C; of the
sphere. The are C; is tangent to C’ at the point P;. Since arcs C’-and (1

(1)
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lie in a plane determined by centre O’ and the common tangent at point P;,
then they must be identical. This corollary implies that two different
curves C and O, from the neighbourhood of P (elliptic or hyperbolic)
correspond to the same curve ¢’ = (j in the neighbourhood of P’ on §'.
This conclusion contradicts the one-to-one spherical mapping in the
neighbourhood of an elliptic or hyperbolic point P. So C = €, and the
geodesic C' on S’ corresponds to the geodesic C on 8. Thus the spherical
mapping of the neighbourhood of an elliptic or hyperbolic point P on §
is simultaneously a geodesic one.

b) The second part of our theorem results from the first one, and
from the theorem which says that equations (1) form a necessary and
sufficient condition for the existence of geodesic correspondence among
two surfaces S and 8’ (3).

Now we shall return to the proof of our principal theorem. Suppose
for an indirect proof that the point P lying on S is not an ombilic. Thus
(lemma 2) there exists a neighbourhood of P on § such that none of its
points is ombilical. Hence at every point of the neighbourhood in question
two principal directions are determined and in the whole neighbourhood
there exists an orthogonal system of curvature lines. We consider it as
a system of curvilinear coordinates. Next let us make a spherical mapping
of the surface 8. Suppose that the Gauss curvature K of S does not vanish
at the point P. Thus there exists a neighbourhood of the point P such
that K is not equal to zero at any point of this neighbourhood.

Between the coefficients g, hy (¢, k = 1, 2) of the first and second
differential form of § respectively, and the coefficients g¢ix (¢, k=1, 2)
of the first differential form of 8’ we have the following well-known
relations (%)

(2) gix =2Hhy,—Kgpe (i,k=1,2)
where H and K denote the mean and the Gauss curvature of 8. We have

_ 1 gohiy — 2615815+ Grihee _ Puihias — hrz
H= 2 2 ’ K= T 9
G11922— Gz 91— iz
For the above-mentioned system of curvilinear coordinates the coef-
ficients g,, and h,, both vanish identically and relations (2) have a simpler
form:

o — hfl
gn=2Hh;— K¢, = —,
Ju
(3) g1z = 2Hh),— K¢y, =0,

’r — h§2
G = 2Hhyy— Kgpp = 2,
g
(®) L. Bianchi, Lezioni di geometria differenziale I, p., 314, 1922,
() M. Biernacki, Geomeiria rééniczkowa, II, Warszawa 1954, p. 87.
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where
' H— GooPyy + a1 gy - hyy by .
2011922 Juds

In order to make use of conditions (1) of lemma 35, let us calculate the
Christoffel symbols of the second kind for § and §’. From the general
formula

H

k 1
{ ij} =3 g%{0:g1; + 05 9a—019:5}
where

g=gugzz—g?2, gu=@ g2 = _G gzz=gi.

’

g g’ g’
taking into consideration the equality g,, = 0, we get for the surface S
the following values

[11=algll {2};__32911
llll 2911 ! 11 2922 !
" _tom (21
12) = 2¢,, 121~ 2¢,,
{1}=_31922 2]____32922
22 20, 22| 2¢,
From (3) we analogously obtain for 8':
.2
{1 }’= &10n — “\gu _ 2010,y — P890
11 2gil 2 hfl 2g]1h11 ’
In
{1 }'= dpg11 _ 201103 yy — 11591
12 291 2911k ’
{1 }' o O1952  hoaf11(Poe201) — 28200; Ryo)
- v ’
(5) 22 2¢n 2932}':1
{2 }' _ da 011 . P11 Go9(P1101 Goa — 201193 h13)
- v 2 H
11 242 2¢1 bz
2Y — 0192 — 295301 hog — hop01 g
12f 29 2hz2 e ’
{2 }' — Oy gz _ 292005t — g3 G50 .
22 2022 2ho2Gse

Remark. From assumption K # 0 and from the last formula of
conditions (1) it follows that h,,-hy, 7 0. Thus the right-hand sides of
formulas (§) are meaningful.



126 J. Witkowski

Substituting (4) and (5) into (1) we get four partial differential
equations. Adding to them two Mainardi-Codazzi equations, we get the
following system of six partial differential equations:

1. h11Gea(P1192911 — 291192 hna) - _ 92911

200 ke 295, ’
2. P2 g11(Ras01 G2n — 28256, o) _ 0102
293271'?1 20 ’
(6) 3. 20100y — hinGeyy 295563 hay — P02 Gas _ %gu_ %
Iul 2955hee In 20’
4. 292001 hoy — h9p01950 241101 hy; — Py 8191 _ NG 9gn
1799 2g1hy 92 20u’

-~

3. 2¢11920:h1y = (Grahaa+ 922011) 82641
6. 26110220, hae = (Jr11 o + G2 11) 0195, -

Now we show that system (6) leads to a contradiction of the assumption:
P is not an ombilical point. Writing equations 1, 2, 5 and 6 in a slightly
different form, we obtain

! 5 : hgz 1 §2h2
1. Oyhy = byg,, Ptz Imbu
2¢11 b1 922
' nha: + g by
2. Oyhyy = 8,9 W
(6) ,92:-2291;'1
5 G11t22 T a2 in
J a»h - 3 MIT s ves -
= 2 20119, !

’ Gl + g2 by
6. Oyhos = 0,(fgy T2 2
e = Ol 0

Note further that the partial derivatives d,¢4,; and 2,¢,, cannot be equal
to zero simultaneously and identically in a whole neighbourhood of P.
Indeed, for d,¢9,;, = 0, ¢,¢,, = 0 we find by Frobenius’ formula, expressing
the curvature K

K _ /1 [az( /32911 )+31( /31922 )],
21 911922 V 91192 V911922
that K vanishes in the whole neighbourhood of P. This coneclusion con-

tradicts the hypothesis made at the begining of the proof. Thus in the
neighbourhood of P there exist a point P, at which we have

Opgy #* 0 or 9192 = 0.

Since the point P, satisfies the same conditions as point P, systems of
equations (6) or (6’) are satisfied in a neighbourhood of point P,. For
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instance let d,g,, # 0 at the point P;. Comparing the right-hand sides
of equations 1’ and 5, we obtain after simple computations

b _ e
In 2

Condition (7) expresses, however, that the point P, is an ombilie. This
statement contradicts the statement that in the neighbourhood in question
of point P ombilical points do not exist. The above contradiction proves
that in spite of our assumption the point P is ombilical. Thus it is proved
that every point P of § at which the curvature K is not equal to zero
is an ombilic. From the last conclusion and the assumption that S and §’
are of class (® it follows that the surface § is a part of the sphere. Hence
the proof of our theorem is finished.

I wish to express my sincere gratitude to S. Golgb for his helpful
advice and criticism during the preparation of this paper.

(N
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