J. FLOREK (Wrocław)

GRAPHS MINIMAL WITH RESPECT TO CONTRACTIONS IN SOME SUBFAMILIES OF MAXIMAL PLANAR GRAPHS

Abstract. Let \mathcal{M}_5 denote the family of all maximal planar graphs which have no vertices of degree less than 5 and no 5-cycles with at least two vertices in each of its domains. The purpose of this paper is to obtain a description of the family of all minimal graphs in \mathcal{M}_5 . This permits us to characterize the family \mathcal{M}_5 in terms of contractions of vertices of degree 5. We prove also that there is only one minimal graph in the family $\mathcal{M}_5 \setminus \mathcal{R}$, where \mathcal{R} is the family of all minimal graphs in \mathcal{M}_5 .

1. Preliminaries. A graph is understood here as a maximal planar graph Without loops or multiple edges. V(G) denotes a set of vertices of a graph G, deg a denotes the degree of vertex a, and a adj b means that a and b areadjacent. A cycle α is defined as a closed simple path, and $|\alpha|$ denotes the length of α . We denote by C(G) the family of all cycles in a graph G which split the plane into domains each of which contains at least two vertices of G. Note that, since every maximal planar graph G has a unique family of faces, we may talk about domains of G without referring to any embedding of G. Let \mathcal{M} denote the family of all maximal planar graphs with all vertices of degree at least 5, and $\mathcal{M}_k \subset \mathcal{M}$ be the family of all graphs which have no cycles of length k in C(G). The family \mathcal{M}_5 has been considered by Birkhoff in his separation theorem [1], and in [2] which has played an important role in many investigations on the four-color problem. If a adj b, then $G_{a,b}$ denotes the graph which is obtained from G by contracting the edge ab. Let $\mathcal{H} \subset \mathcal{M}$. A graph $G \in \mathcal{H}$ is said to be minimal in the family \mathcal{H} if for all vertices $a, b \in V(G)$ such that a adj b and deg a = 5 we have $G_{a,b} \notin \mathcal{H}$.

Let G be a maximal plane graph and let $\alpha = (a_1, a_2, ..., a_k)$ be a cycle in G. In what follows, we assume that any cyclic permutation

$$(a_i, a_{i+1}, \ldots, a_k, a_1, \ldots, a_{i-1})$$

of vertices of α is the same cycle α ; however, $(a_k, a_{k-1}, \ldots, a_1)$ and each of its cyclic permutations generate another cycle denoted by $\tilde{\alpha}$. Int α denotes a bounded (unbounded) domain corresponding to an anti-clockwise (clockwise)

J. Florek

orientated cycle α . $\deg_{\alpha}(a)$ is the number of vertices adjacent to a and belonging to Int $\alpha \cup \alpha$. We denote by $V(\operatorname{Int} \alpha)$ the set of vertices of a given graph belonging to Int α . The neighbourhood N(a) of a vertex a is the cycle whose vertices are adjacent to a and whose orientation is such that $a \in \operatorname{Int} N(a)$. It is not difficult to see that for every $n \ge 5$ there is exactly one graph in \mathcal{M} , denoted by G(n), which has two vertices a and b of degree n, and

$$N(a) \cap N(b) = \emptyset$$
, $V(G) = \{a, b\} \cup N(a) \cup N(b)$,

and every vertex in $N(a) \cup N(b)$ is of degree 5. Moreover, one can easily show that there is exactly one graph in \mathcal{M} , denoted by A, with 12 vertices of degree 5 and 3 vertices of degree 6 (see Fig. 1). The family of all G(n)'s, $n \ge 5$, is denoted by \mathcal{S} . We denote a j-cycle α by w_j (j = 3, 4, 5) if the restriction of G to Int $\alpha \cup \alpha$ is isomorphic to

- (a) G(5) for j = 3;
- (b) $G(5) \setminus e$ for j = 4, where e is an edge of G(5);
- (c) $G(5) \setminus x$ for j = 5, where x is a vertex of G(5).

Fig. 1. Graphs G(6) and A

The purpose of this paper is to obtain a description of the family of all minimal graphs in \mathcal{M}_5 (Theorem 1). This allows us to characterize \mathcal{M}_5 in terms of contractions of vertices of degree 5. Namely, every graph in \mathcal{M}_5 can be obtained from the set \mathcal{S} by the operations opposite to contractions of vertices of degree 5. Theorem 2 follows from Theorem 1 and states that there is only one minimal graph in the family $\mathcal{M}_5 \setminus \mathcal{S}$. The proofs of those theorems in Section 4 follow from eight lemmas which are considered in Sections 2 and 3.

2. Some properties of the cycles of C(G). The following lemma is very simple, therefore we can omit its proof.

LEMMA 1. Let α_1 , α_2 , α_3 be three cycles in a graph G such that

$$\alpha_1 = (a_1, a_2, \ldots, a_n), \quad \alpha_2 = (a_1, a_2, \ldots, a_p, b_1, b_2, \ldots, b_s),$$

$$\alpha_3 = (a_p, a_{p+1}, \ldots, a_n, a_1, b_s, b_{s-1}, \ldots, b_1).$$

If $b_j \in V(\text{Int } \alpha_1)$ for j = 1, ..., s, then

Int
$$\alpha_2 \cup \text{Int } \alpha_3 \subset \text{Int } \alpha_1$$
, Int $\alpha_2 \cap \text{Int } \alpha_3 = \emptyset$, $V(\text{Int } \alpha_2) \cup V(\text{Int } \alpha_3) \cup \{b_j : j = 1, ..., s\} = V(\text{Int } \alpha_1)$, $\deg b_j = \deg_{\alpha_2}(b_j) + \deg_{\alpha_3}(b_j) - 2$ for $j = 1, ..., s$.

Lemma 2. $\mathcal{M}_6 \subset \mathcal{M}_5 \subset \mathcal{M}_4 \subset \mathcal{M}_3$.

Proof. It is sufficient to prove the following implication for j=3, 4, 5: If there exists a cycle $\alpha \in C(G)$, $|\alpha|=j$, then there exists a cycle $\beta \in C(G)$, $|\beta|=j+1$. Let $\alpha=(a_1, a_2, \ldots, a_5)$. Since $V(\operatorname{Int} \alpha) \neq \emptyset$, there exists $b \in V(\operatorname{Int} \alpha)$ adjacent to two consecutive vertices of the cycle α . Therefore, we can assume that there exists a cycle $\delta=(a_1, a_2, b)$ such that

 (i_1) $V(Int \delta) = \emptyset$.

Let us consider a cycle $\beta = (a_2, a_3, a_4, a_5, a_1, b)$. By Lemma 1 and (i_1) we have

- (i₂) Int $\beta \subset Int \alpha$,
- (i₃) $V(\operatorname{Int} \beta) \cup \{b\} = V(\operatorname{Int} \alpha)$,
- $(i_4) \operatorname{deg} b = \operatorname{deg}_{\beta}(b).$

Let us note that $|V(\operatorname{Int} \widetilde{\beta})| \ge 2$ since (i_2) implies

Int
$$\tilde{\alpha} \subset \text{Int } \tilde{\beta}$$
,

and hence

$$V(\operatorname{Int} \widetilde{\alpha}) \subset V(\operatorname{Int} \widetilde{\beta}).$$

By (i_4) , $\deg_{\beta}(b) \ge 5$. Hence at least one of the following cases holds:

- (a) $|V(\operatorname{Int} \beta)| \ge 2$.
- (b) There exist vertices a_k , $a_l \in \beta$ ($3 \le k < l \le 5$) such that a_k adj b and a_l adj b.

It is enough to show that the case (b) leads to a contradiction. Let

$$\gamma_1 = (a_2, \ldots, a_k, b), \quad \gamma_2 = (a_k, \ldots, a_l, b), \quad \gamma_3 = (a_l, \ldots, a_1, b)$$

be three cycles. Then $3 \le k < l \le 5$ implies $|\gamma_j| \le 4$ for j = 1, 2, 3. Since $G \in \mathcal{M}$, we obtain

$$\sum_{j=1}^{3} |V(\operatorname{Int} \gamma_{j})| = 0.$$

Lemma 1 also implies that

$$V(\operatorname{Int} \gamma_i) \cap V(\operatorname{Int} \gamma_j) = \emptyset$$
 for $i \neq j$

and

$$\bigcup_{j=1}^{3} V(\operatorname{Int} \gamma_{j}) = V(\operatorname{Int} \beta).$$

So, by (i₃) we arrive at a contradiction

$$0 = |V(\operatorname{Int} \beta)| = |V(\operatorname{Int} \alpha)| - 1 \ge 1.$$

The proof in cases $|\alpha| = 3$ and 4 is analogous.

LEMMA 3. Let $G \in \mathcal{M}_5$. If a and b are consecutive vertices of a cycle $\alpha \in C(G)$, $|\alpha| = 6$, and $V(\operatorname{Int} \alpha)$ has only one vertex in $N(a) \cup N(b)$, then all vertices in $V(\operatorname{Int} \alpha)$ are of degree 5.

Proof. Let $\alpha = (a_1, a_2, a_3, a_4, a, b)$. Because a and b are consecutive vertices of α , there exists a vertex

$$c \in V(\text{Int } \alpha) \cap N(a) \cap N(b)$$
.

Since c is the only vertex belonging to $V(\operatorname{Int} \alpha) \cap (N(a) \cup N(b))$, we have c adj a_1 and c adj a_4 . Therefore, there exists a cycle $\beta = (a_1, a_2, a_3, a_4, c)$. Because $c \in V(\operatorname{Int} \alpha)$, we get by Lemma 1:

- (i₁) Int $\beta \subset \text{Int } \alpha$;
- (i₂) $V(\operatorname{Int} \alpha) = V(\operatorname{Int} \beta) \cup \{c\};$
- (i₃) deg $c = \deg_{\beta}(c) + 2$.

Let us note that (i_1) implies Int $\tilde{\alpha} \subset \text{Int } \tilde{\beta}$, and therefore

$$2 \leq |V(\operatorname{Int} \widetilde{\alpha})| \leq |V(\operatorname{Int} \widetilde{\beta})|$$
.

Since $|\tilde{\beta}| = 5$, we get $|V(\text{Int }\beta)| \le 1$. Hence, by (i_2) , we have

$$2 \le |V(\operatorname{Int} \alpha)| \le |V(\operatorname{Int} \beta)| + 1 \le 2.$$

This means that $|V(\text{Int }\beta)|=1$, and we have

(i₄) there is a vertex d such that $V(\text{Int }\beta) = \{d\}$ and deg d = 5.

Finally, it is enough to check that deg c = 5 by (i_3) and (i_4) , and (i_2) , (i_4) imply

$$V(\text{Int }\alpha) = \{c, d\}$$
 and $\deg d = 5$.

LEMMA 4. Let $G \in \mathcal{M}_5$. If a, b, c are consecutive vertices of a cycle $\alpha \in C(G)$, $|\alpha| = 6$, and deg $a = \deg b = \deg c = 5$, then all vertices in $V(\operatorname{Int} \alpha)$ or in $V(\operatorname{Int} \tilde{\alpha})$ are of degree 5.

Proof. Let $\alpha = (a_1, a_2, a_3, a, b, c)$. Without loss of generality we may assume that

$$N(b) = (c, d_1, d_2, a, d_3).$$

Hence $d_1, d_2 \in V(\text{Int } \alpha)$. The following cases are possible:

- (a) a_3 adj d_2 and a_1 adj d_1 ,
- (b) a_3 adj d_3 or a_1 adj d_3 .

In case (b), the set $V(\operatorname{Int} \tilde{a})$ has only one vertex in $N(a) \cup N(b)$ or has only one vertex in $N(b) \cup N(c)$. Hence, by Lemma 3, all vertices in $\operatorname{Int} \tilde{a}$ are of degree 5. Whereas in case (a) there is a cycle $\beta = (a_1, a_2, a_3, d_2, d_1)$. Since $d_1, d_2 \in V(\operatorname{Int} a)$, Lemma 1 yields

- (i₁) Int $\beta \subset \text{Int } \alpha$;
- (i₂) $V(\operatorname{Int} \alpha) = V(\operatorname{Int} \beta) \cup \{d_1, d_2\};$
- (i₃) deg $d_1 = \deg_{\beta}(d_1) + 2$;
- $(i_4) \deg d_2 = \deg_{\beta}(d_2) + 2.$

It is clear that

$$|V(\operatorname{Int} \widetilde{\beta})| \geqslant |V(\operatorname{Int} \widetilde{\alpha})| \geqslant 2$$

by (i_1) . Hence $|V(\operatorname{Int} \beta)| \le 1$ by $G \in \mathcal{M}_5$. We will show now that

 $(i_5) \deg_{\theta}(d_1) = \deg_{\theta}(d_2) = 3.$

Let us note that, by (i₃) and (i₄),

$$\deg_{\beta}(d_1) \geqslant 3$$
 and $\deg_{\beta}(d_2) \geqslant 3$.

If $V(\text{Int }\beta) = \emptyset$, then (i_5) follows since d_2 and d_1 are consecutive vertices in β . If $|V(\text{Int }\beta)| = 1$, then (i_5) is obvious since $|\beta| = 5$. By (i_3) , (i_4) and (i_5) we get deg $d_1 = \deg d_2 = 5$. Using (i_2) , we note that if $V(\text{Int }\beta) = \emptyset$, then $V(\text{Int }\alpha) = \{d_1, d_2\}$; moreover, if $|V(\text{Int }\beta)| = 1$, then

$$V(\operatorname{Int} \alpha) = \{d_1, d_2, e\}, \quad \text{where } \{e\} = V(\operatorname{Int} \beta) \text{ and } \deg e = 5.$$

LEMMA 5. Let $G \in \mathcal{M}_5$ and for $a, b \in V(G)$ let $\deg a = \deg b = 5$ and a adj b. If there exist cycles $\alpha, \beta \in C(G), |\alpha| = |\beta| = 6$, such that

$$\alpha \cap \beta \cap N(a) = \{b\}$$
 and $\alpha \cap \beta \cap N(b) = \{a\},\$

then all vertices in $V(\operatorname{Int} \alpha)$ or in $V(\operatorname{Int} \widetilde{\alpha})$ are of degree 5.

Proof. Let

$$\alpha = (a_1, a_2, a_3, a_4, a, b), \quad \beta = (b_1, b_2, b_3, b_4, a, b)$$

and

$$N(a) \cap N(b) = \{c, d\}.$$

Since $\alpha \cap \beta \cap N(b) = \{a\}$, without loss of generality we may assume that $N(b) = (a, d, a_1, b_1, c)$. Hence we have

- (1) $b_1 \in V(\text{Int } \alpha)$ and $a_1 \in V(\text{Int } \widetilde{\beta})$,
- (2) $c \in V(\text{Int } \alpha)$ and $d \in V(\text{Int } \tilde{\alpha})$.

Since $\alpha \cap \beta \cap N(a) = \{b\}$, the cycle N(a) is either (b, c, b_4, a_4, d) or (b, c, a_4, b_4, d) . In the former case $b_4 \in V(\text{Int }\alpha)$ and, by (1), (2) and Lemma 3, all the vertices in $V(\text{Int }\tilde{\alpha})$ are of degree 5. Otherwise, we get

(3) $b_4 \in V(\operatorname{Int} \widetilde{\alpha})$ and $a_4 \in V(\operatorname{Int} \beta)$.

By (k, l) we will understand that $b_j \in V(\text{Int } \alpha)$ for $1 \le j \le k-1$ and $b_k \ge a_l$. Because of (1) and (3) we should consider k and l such that $2 \le k \le l \le 3$.

(2,2) Since $b_2 = a_2$, there is a cycle

$$\alpha_1 = (a_2, a_3, a_4, c, b_1).$$

Since b_1 , $c \in V(\text{Int } \alpha)$, Lemma 1 gives

- (i₁) Int $\alpha_1 \subset \text{Int } \alpha$;
- (i₂) $V(\operatorname{Int} \alpha) = V(\operatorname{Int} \alpha_1) \cup \{b_1, c\};$
- (i₃) deg $b_1 = \deg_{a_1}(b_1) + 2;$
- (i₄) deg $c = \deg_{\alpha_1}(c) + 2$.

By (i_1) we have $V(\operatorname{Int} \tilde{\alpha}) \subset V(\operatorname{Int} \tilde{\alpha}_1)$. Since $2 \leqslant |V(\operatorname{Int} \tilde{\alpha})|$ and $|\tilde{\alpha}_1| = 5$, we obtain $|V(\operatorname{Int} \alpha_1)| \leqslant 1$. Because c and b_1 are consecutive vertices in the cycle α_1 , $|\alpha_1| = 5$, $|V(\operatorname{Int} \alpha_1)| \leqslant 1$ analogously as in the proof of (i_5) in Lemma 4, we can demonstrate first that

$$\deg_{\alpha_1}(b_1) = \deg_{\alpha_1}(c) = 3,$$

and then that all vertices in $V(\operatorname{Int} \alpha)$ are of degree 5.

(3,2) Since $b_3 = a_2$, there are cycles

$$\alpha_1 = (a_4, a_3, a_2, b_4)$$
 and $\alpha_2 = (a_2, a_1, d, b_4)$.

Because $d, b_4 \in V(\text{Int } \tilde{\alpha})$, Lemma 1 yields

- (j_1) Int $\alpha_1 \cup$ Int $\alpha_2 \subset$ Int $\tilde{\alpha}$;
- $(j_2) V(\operatorname{Int} \tilde{\alpha}) = V(\operatorname{Int} \alpha_1) \cup V(\operatorname{Int} \alpha_2) \cup \{b_4, d\};$
- $(j_3) \deg d = \deg_{\alpha_2}(d) + 2;$
- $(j_4) \operatorname{deg} b_4 = \operatorname{deg}_{\alpha_1}(b_4) + \operatorname{deg}_{\alpha_2}(b_4).$
- By (j_1) , Int $\tilde{\alpha}_1 \cap \text{Int } \tilde{\alpha}_2 \supset \text{Int } \alpha$. Hence

$$2 \le |V(\operatorname{Int} \alpha)| \le |V(\operatorname{Int} \widetilde{\alpha}_1)|$$
 and $2 \le |V(\operatorname{Int} \widetilde{\alpha}_2)|$.

Since $|\tilde{\alpha}_1| = |\tilde{\alpha}_2| = 4$, Lemma 2 implies

- (j₅) $V(\operatorname{Int} \alpha_1) = V(\operatorname{Int} \alpha_2) = \emptyset$.
- By (j_3) and (j_5) we get
- (j₆) $\deg_{\alpha_2}(d) = 3$, $\deg_{\alpha_1}(b_4) \le 3$, $\deg_{\alpha_2}(b_4) = 2$.

By (j_2) and (j_5) , we have $V(\text{Int }\tilde{\alpha}) = \{b_4, d\}$. Conditions (j_3) , (j_4) and (j_6) give deg $d = 5 = \deg b_4$.

The cases (3,3) and (2,3) can be reduced, by the reflexion of G in the plane, to the cases (2,2) and (3,2), respectively.

LEMMA 6. Let $G \in \mathcal{M}_5$ and $\deg a = 5$ for $a \in V(G)$. If there exist cycles α , $\beta \in C(G)$, $|\alpha| = |\beta| = 6$, such that $a \in \alpha \cap \beta$ and $\alpha \cap \beta \cap N(a) = \emptyset$, then there exists a cycle $\gamma \in \{\alpha, \tilde{\alpha}, \beta, \tilde{\beta}\}$ such that all vertices in Int γ are of degree 5.

Proof. Let

$$\alpha = (a_1, a_2, ..., a_5, a)$$
 and $\beta = (b_1, b_2, ..., b_5, a)$.

Since $N(a) \cap \alpha \cap \beta = \emptyset$, a_1 , a_5 , b_1 , b_5 are different vertices of N(a). Without loss of generality we may assume that $N(a) = (a_1, b_1, a_5, b_5, c)$. Therefore, we get

- (1) $b_1 \in V(\operatorname{Int} \alpha)$, $b_5 \in V(\operatorname{Int} \widetilde{\alpha})$, $a_1 \in V(\operatorname{Int} \widetilde{\beta})$, $a_5 \in V(\operatorname{Int} \beta)$.
- (2) $c \in V(\operatorname{Int} \widetilde{\alpha}) \cap V(\operatorname{Int} \widetilde{\beta})$.

By (k, l) we will understand that $b_j \in V(\operatorname{Int} \alpha)$ for $1 \le j \le k-1$ and $b_k = a_l$. By (1), we should consider k and l such that $2 \le k \le l \le 4$.

(2,2) Because $b_2 = a_2$, there exist cycles

$$\alpha_1 = (a_2, a_3, a_4, a_5, b_1)$$
 and $\alpha_2 = (a_1, a_2, b_1)$.

Since $b_1 \in V(\text{Int } \alpha)$, by Lemma 1 we get

- (i₁) Int $\alpha_1 \cup$ Int $\alpha_2 \subset$ Int α ;
- (i₂) $V(\operatorname{Int} \alpha) = V(\operatorname{Int} \alpha_1) \cup V(\operatorname{Int} \alpha_2) \cup \{b_1\};$
- (i₃) deg $b_1 = \deg_{\alpha_1}(b_1) + \deg_{\alpha_2}(b_1)$.

By (i_1) we have Int $\tilde{\alpha} \subset \text{Int } \tilde{\alpha}_1 \cap \text{Int } \tilde{\alpha}_2$, and hence

$$2 \leq |V(\operatorname{Int} \tilde{\alpha}_1)|$$
 and $2 \leq |V(\operatorname{Int} \tilde{\alpha}_2)|$.

Therefore, by Lemma 2 and since $|\tilde{\alpha}_1| = 5$ and $|\tilde{\alpha}_2| = 3$, we get

(i₄) $|V(\operatorname{Int} \alpha_1)| \leq 1$ and $|V(\operatorname{Int} \alpha_2)| = 0$.

By (i_2) and (i_4) we have

$$2 \leq |V(\operatorname{Int} \alpha)| \leq |V(\operatorname{Int} \alpha_1)| + |V(\operatorname{Int} \alpha_2)| + 1 \leq 2.$$

This means that $|V(\operatorname{Int} \alpha_1)| = 1$ and there is a vertex d such that

(i₅) $V(\text{Int }\alpha_1) = \{d\} \text{ and deg } d = 5.$

Since $|\alpha_1| = 5$ and $|\alpha_2| = 3$, we obtain

$$\deg_{\alpha_1}(b_1) = 3 \quad \text{and} \quad \deg_{\alpha_2}(b_1) = 2,$$

so, by (i_3) , deg $b_1 = 5$. Finally, it is enough to note that the equality

$$V(\operatorname{Int} \alpha) = V(\operatorname{Int} \alpha_1) \cup \{b_1\} = \{b_1, d\}$$

follows from (i_2) , (i_4) and (i_5) .

(3,2) Since $b_3 = a_2$, there exist cycles

$$\beta_1 = (b_3, b_2, b_1, a_1)$$
 and $\beta_2 = (a, b_5, b_4, b_3, a_1)$.

Recause $a_1 \in V(\text{Int } \tilde{\beta})$, by Lemma 1 we have

- (j_1) Int $\beta_1 \subset \text{Int } \tilde{\beta}$, Int $\beta_2 \subset \text{Int } \tilde{\beta}$;
- $(\tilde{\beta}_2) V(\operatorname{Int} \tilde{\beta}) = V(\operatorname{Int} \beta_1) \cup V(\operatorname{Int} \beta_2) \cup \{a_1\};$
- $(j_3) \operatorname{deg} a_1 = \operatorname{deg}_{\beta_1}(a_1) + \operatorname{deg}_{\beta_2}(a_1) 1.$

By the inequality $|V(\text{Int }\beta)| \ge 2$, (j_1) and Lemma 2 we get

(j₄) $|V(\operatorname{Int} \beta_1)| = 0$ and $|V(\operatorname{Int} \beta_2)| \le 1$.

Since $c \in V(\text{Int } \tilde{\beta})$, by (j_2) and (j_4) we have

- (0_5) $V(\text{Int }\beta_2) = \{c\}$ and deg c = 5.
- By (j_4) , (j_5) and since $|\beta_1| = 4$, $|\beta_2| = 5$ we get

$$\deg_{\beta_1}(a_1) \leqslant 3 \quad \text{and} \quad \deg_{\beta_2}(a_1) = 3.$$

From this and (j₃) we conclude that

$$5 \leqslant \deg a_1 = \deg_{\beta_1}(a_1) + \deg_{\beta_2}(a_1) - 1 \leqslant 5.$$

Thus it is enough to note that

$$V(\operatorname{Int} \widetilde{\beta}) = V(\operatorname{Int} \beta_2) \cup \{a_1\} = \{c, a_1\},\$$

which follows by (j₂) and (j₅).

(3,3) Because $b_3 = a_3$, there exist cycles

$$\alpha_1 = (a_1, a_2, a_3, b_2, b_1)$$
 and $\alpha_2 = (a_3, a_4, a_5, b_1, b_2)$.

Since $b_1, b_2 \in V(\text{Int } \alpha)$ and by Lemma 1 we get

 (k_1) Int $\alpha_1 \cup$ Int $\alpha_2 \subset$ Int α ;

 $(\mathbf{k_2}) \ V(\operatorname{Int} \alpha) = V(\operatorname{Int} \alpha_1) \cup V(\operatorname{Int} \alpha_2) \cup \{b_1, b_2\};$

 $(k_3) \operatorname{deg} b_1 = \operatorname{deg}_{\alpha_1}(b_1) + \operatorname{deg}_{\alpha_2}(b_1);$

 $(k_4) \operatorname{deg} b_2 = \operatorname{deg}_{\alpha_1}(b_2) + \operatorname{deg}_{\alpha_2}(b_2) - 2.$

The inequality $|V(\operatorname{Int} \tilde{\alpha})| \ge 2$ together with (k_1) gives

 (k_5) $|V(\operatorname{Int} \alpha_1)| \leq 1$, $|V(\operatorname{Int} \alpha_2)| \leq 1$.

Let us note that we cannot have $|V(\operatorname{Int} \alpha_1)| = |V(\operatorname{Int} \alpha_2)| = 1$ because in this case $\deg_{\alpha_1}(b_2) = \deg_{\alpha_2}(b_2) = 3$, which leads to a contradiction with (k_4) . Namely, we then have

$$5 \leqslant \deg b_2 = \deg_{\alpha_1}(b_2) + \deg_{\alpha_2}(b_2) - 2 = 4.$$

Similarly, in all other cases of condition (k₅) we obtain

$$|V(\operatorname{Int} \alpha_1)| = 0 = |V(\operatorname{Int} \alpha_2)|.$$

Hence

$$V(\text{Int }\alpha) = \{b_1, b_2\}$$
 and $\deg b_1 = \deg b_2 = 5$

and

$$|V(\operatorname{Int} \alpha_1)| = 1$$
 or $|V(\operatorname{Int} \alpha_2)| = 1$.

Therefore there exists a vertex d such that

$$V(\text{Int } \alpha) = \{b_1, b_2, d\}$$
 and $\deg b_1 = \deg b_2 = \deg d = 5$.

We will show now that cases (2,3) and (4,2) cannot occur.

(2,3) Since $b_2 = a_3$, there exist cycles

$$\alpha_1 = (a_1, a_2, a_3, b_1)$$
 and $\alpha_2 = (a_3, a_4, a_5, b_1)$.

Since $b_1 \in V(\text{Int } \alpha)$ and by Lemma 1 we get

 (l_1) Int $\alpha_1 \subset Int \alpha$, Int $\alpha_2 \subset Int \alpha$;

 $(l_2) V(\operatorname{Int} \alpha) = V(\operatorname{Int} \alpha_1) \cup V(\operatorname{Int} \alpha_2) \cup \{b_1\}.$

Since $|V(\operatorname{Int} \tilde{\alpha})| \ge 2$ and $|\alpha_1| = |\alpha_2| = 4$, by Lemma 2 we get

 $(l_3) |V(\text{Int } \alpha_1)| = |V(\text{Int } \alpha_2)| = 0.$

Conditions (l₂) and (l₃) lead to a contradiction, since $|V(\text{Int }\alpha)| \ge 2$.

(4,2) Since $b_4 = a_2$, there exist cycles

$$\beta_1 = (a, b_5, b_4, a_1)$$
 and $\beta_2 = (b_4, b_3, b_2, b_1, a, a_1)$.

By Lemma 1 and the fact that $a_1 \in V(\text{Int } \tilde{\beta})$ we have

 (m_1) Int $\beta_1 \subset \text{Int } \tilde{\beta}$;

 $(\mathbf{m_2})$ $V(\operatorname{Int} \widetilde{\beta}) = V(\operatorname{Int} \beta_1) \cup V(\operatorname{Int} \beta_2) \cup \{a_1\}.$

Since $b_j \in V(\operatorname{Int} \alpha)$ for $1 \le j \le 3$ and also by Lemma 1, we get (m_3) Int $\beta_2 \subset \operatorname{Int} \alpha$.

Let us note that, by (m_1) , Int $\beta \subset \text{Int } \tilde{\beta}_1$, and hence

$$2 \leq |V(\operatorname{Int} \beta)| \leq |V(\operatorname{Int} \widetilde{\beta}_1)|$$
.

Therefore, by Lemma 2 we have

 $(m_4) |V(Int \beta_1)| = 0.$

Since $c \in V(\operatorname{Int} \widetilde{\alpha}) \cap V(\operatorname{Int} \widetilde{\beta})$, by (m_2) and (m_3) we get $c \in V(\operatorname{Int} \beta_1)$. Thus we arrive at a contradiction with (m_4) .

The proof in case (2,4) is analogous to that of (2,2). The remaining cases, i.e. (3,4), (4,3) and (4,4), can be reduced, by the reflexion of G in the plane, to cases (2,3), (3,2) and (2,2), respectively.

3. The local characterization of the family \mathscr{S} .

LEMMA 7. The following conditions are equivalent for $G \in \mathcal{M}$:

- (i) The neighbourhood of every vertex of degree 5 has at least four vertices of degree 5.
 - (ii) There exists a set $F \neq \emptyset$, $F \subset V(G)$, such that
 - (a) deg a = 5 for $a \in F$,
- (b) the neighbourhood of every vertex in F contains at least four vertices of F.
 - (iii) $G \in \mathcal{S}$.

Proof. (ii) \Rightarrow (iii). Assume that there exists $a_1 \in F$ whose neighbourhood $N(a_1)$ has a vertex $a \notin F$. Let deg $a = n \geqslant 5$ and

$$N(a) = (a_1, a_2, ..., a_n),$$
 and $N(a_1) = (a, a_n, b_1, b_2, a_2).$

Since $a_1 \in F$ and $a \notin F$, vertices a_n , b_1 , b_2 , a_2 belong to F. Let $2 \le k \le n-1$. If $a_k \in F$, then

$$a_{k-1}, b_k, b_{k+1}, a_{k+1} \in F$$
, where $N(a_k) = (a_{k-1}, b_k, b_{k+1}, a_{k+1}, a)$.

Therefore, $a_i, b_i \in F$ and $\deg a_i = \deg b_i = 5$ for i = 1, 2, ..., n. Since a_n adj b_1 and $\deg a_n = 5$, we have b_1 adj b_n . Put $\beta = (b_1, b_2, ..., b_n)$. Since $\deg_{\beta}(b_i) = 4$ for i = 1, 2, ..., n, there exists $b \in V(G)$ such that $N(b) = \tilde{\beta}$ and $k \in B$ and $k \in B$. This means that G has vertices a and b satisfying the conditions of

the definition of G(n). If the neighbourhood of every vertex from F has all vertices in F, then, analogously, we can show that G = G(5).

(i) \Rightarrow (ii) and (iii) \Rightarrow (i) are obvious.

LEMMA 8. The following conditions are equivalent for $G \in \mathcal{M}$:

- (i) The neighbourhood of every vertex of degree 5 has three consecutive vertices of degree 5 and there exists a vertex of degree 5 whose neighbourhood does not have four vertices of degree 5.
 - (ii) For every vertex a of degree 5 there exists a cycle α such that
 - (a) $\alpha = w_i$ for some j = 3, 4, 5;
 - (b) all vertices of α are of degree ≥ 6 ;
 - (c) $a \in V(\text{Int } \alpha)$.

Proof. (i) \Rightarrow (ii). Let F be the set of all vertices of degree 5 for which there does not exist a cycle α satisfying the conditions (a), (b), and (c). Directly from the definition of the set F we get the implication

(1) a adj b and deg a = deg b = 5 imply $a \in F$ iff $b \in F$.

Now, we will show that

(2) If a is a vertex of degree 5 and N(a) does not have four vertices of degree 5, then $a \notin F$.

Let $N(a) = (a_1, a_2, ..., a_5)$ and deg $a_i = 5$ for i = 1, 2, 3 and deg $a_j \ge 6$ for j = 4, 5. Let $N(a_2) = (a_1, c_1, c_2, a_3, a)$. Since $N(a_1)$ and $N(a_3)$ have three consecutive vertices of degree 5, deg $c_1 = \deg c_2 = 5$. Therefore, $N(a_2)$ has all vertices of degree 5. Hence there exists a cycle β such that

$$a \in N(a_2) \subset V(\text{Int } \beta)$$
 and $\beta = w_5$.

It is not difficult to note that if β does not have property (b), then β has two consecutive vertices of degree 5. Therefore, there exists a cycle γ such that Int $\beta \subset \text{Int } \gamma$ and $\gamma = w_4$. If γ does not have property (b), then there exists a cycle δ such that Int $\gamma \subset \text{Int } \delta$, $\delta = w_3$, and all vertices of δ are of degree ≥ 6 . Hence $a \notin F$. By (1) and (2), we see that the neighbourhood of every vertex of F has at least four vertices in F. By Lemma 7 the set F is empty.

(ii) \Rightarrow (i) is obvious.

Corollary. If G satisfies condition (i) of Lemma 8, then $G \notin \mathcal{M}_5$.

4. Description of the family of all minimal graphs in \mathcal{M}_5 .

THEOREM 1. The following conditions are equivalent for \mathcal{M}_5 :

- (i) G is minimal in the family \mathcal{M}_5 .
- (ii) The neighbourhood of every vertex of degree 5 has three consecutive vertices of degree 5.
- (iii) The neighbourhood of every vertex of degree 5 has four vertices of degree 5.
 - (iv) $G \in \mathscr{S}$.

Proof. (i) \Rightarrow (ii). Let us suppose that there is a vertex a, deg a = 5, whose neighbourhood has two non-consecutive vertices of degree $\geqslant 6$. We

will show that G is not minimal in \mathcal{M}_5 . Let

$$N(a) = (a_1, a_2, \ldots, a_5).$$

Without loss of generality we may assume that one of the following cases occurs:

- (1) deg $a_i \ge 6$ for i = 1, 2, ..., 5;
- (2) deg $a_1 = 5$ and deg $a_i \ge 6$ for i = 2, ..., 5;
- (3) deg $a_i = 5$ for j = 1, 3 and deg $a_i \ge 6$ for i = 2, 4, 5.
- (4) deg $a_i = 5$ for j = 1, 2 and deg $a_i \ge 6$ for i = 3, 5.
- (1) If $G_{a,a_1} \notin \mathcal{M}_5$, $G_{a,a_2} \notin \mathcal{M}_5$ and $G_{a,a_3} \notin \mathcal{M}_5$, then there exist cycles α , $\beta \in C(G)$, $|\alpha| = |\beta| = 6$, such that $\alpha \cap \beta \cap N(a) = \emptyset$. But, by Lemma 6, this is impossible.
- (2) If $G_{a,a_3} \notin \mathcal{M}_5$ and $G_{a,a_4} \notin \mathcal{M}_5$, then there exist cycles α , $\beta \in C(G)$, $|\alpha| = |\beta| = 6$, and α , $\alpha_3 \in \alpha$, α , $\alpha_4 \in \beta$. If $\alpha \cap \beta \cap N(\alpha) = \emptyset$, then, by Lemma 6, we arrive at a contradiction. Let

$$N(a_1) = (a, a_5, b_1, b_2, a_2).$$

If $\alpha \cap \beta \cap N(a) \neq \emptyset$, then $a_1 \in \alpha \cap \beta$ and one of the following subcases is possible:

- (2a) $b_1 \in \alpha$ and $b_2 \in \beta$;
- (2b) $b_1 \notin \alpha$ or $b_2 \notin \beta$.

In (2a) we have a_3 , a, a_1 , $b_1 \in \alpha$ and a_4 , a, a_1 , $b_2 \in \beta$, which, by Lemma 5, leads to a contradiction. In (2b) we have a_3 , a, a_1 , $b_2 \in \alpha$ or a_4 , a, a_1 , $b_1 \in \beta$, which, by Lemma 3, leads to a contradiction.

- (3) If $G_{a,a_1} \notin \mathcal{M}_5$ and $G_{a,a_3} \notin \mathcal{M}_5$, then there exist cycles α , $\beta \in C(G)$, $|\alpha| = |\beta| = 6$, such that a, $a_1 \in \alpha$ and a, $a_3 \in \beta$. If $\alpha \cap \beta \cap N(a) = \emptyset$, then we get a contradiction by Lemma 6. If $\alpha \cap \beta \cap N(a) \neq \emptyset$, then a_1 , a, $a_3 \in \alpha$ or a_1 , a, $a_3 \in \beta$, and we get a contradiction by Lemma 4.
 - (4) Let

$$N(a_1) = (a, a_5, c_1, c_2, a_2)$$
 and $N(a_2) = (a, a_1, c_2, c_3, a_3)$.

Two subcases are possible:

- (4a) $\deg c_2 = 5$;
- (4b) deg $c_2 \geqslant 6$.

In (4a), if $G_{a,a_4} \notin \mathcal{M}_5$, then there is a cycle $\alpha \in C(G)$, $|\alpha| = 6$, such that $a, a_4 \in \alpha$ and one of the vertices c_1, c_2, c_3 belongs to α . If $c_2 \in \alpha$, then we get a contradiction by Lemma 4. If $c_1 \in \alpha$ or $c_3 \in \alpha$, then we get a contradiction by Lemma 3. In case (4b), if $G_{a,a_4} \notin \mathcal{M}_5$ and $G_{a_1,c_1} \notin \mathcal{M}_5$, then there exist cycles α , $\beta \in C(G)$, $|\alpha| = |\beta| = 6$, such that a_4 , $a \in \alpha$ and c_1 , $a_1 \in \beta$. If one of the vertices c_1 , c_3 belongs to α or one of the vertices c_3 , a_4 belongs to β , then we arrive at a contradiction by Lemma 3. Otherwise, we get $c_2 \in \alpha$ and $a_3 \in \beta$. But then we can assume that a_4 , a_1 , $a_2 \in \alpha$ and a_3 , a_1 , $a_2 \in \beta$ and we arrive at a contradiction by Lemma 5.

- (iii) ⇒ (iv) follows from the Corollary to Lemma 8.
- (iv) \Rightarrow (i) is obvious, since $\mathscr{G} \subset \mathscr{M}_5$.

THEOREM 2. The following conditions are equivalent:

- (i) G is minimal in the family $\mathcal{M}_5 \setminus \mathcal{S}$.
- (ii) G = A (see Fig. 1).

Proof. (i) \Rightarrow (ii). Since G is minimal in the family $\mathcal{M}_5 \setminus \mathcal{G}$, by Theorem 1 there exist $n \geq 6$ and two adjacent vertices $x, y \in V(G)$ such that deg x = 5, deg y = n-1 and $G_{x,y} = G(n)$. For example, if $G_{x,y} = G(7)$, then the graph G has the representation shown in Fig. 2.

Fig. 2. $G_{x,y} = G(7)$

If $n \ge 7$, it is easy to note that there exist vertices $v, w \in V(G)$ such that $(i_1) \deg v = \deg w = 5$;

- (i₂) $G_{v,w} \in \mathcal{M}_5$;
- (i₃) $G_{v,w}$ has four vertices of degree ≥ 6 .

Since G is minimal in the family $\mathcal{M}_5 \setminus \mathcal{G}$, by (i_1) , (i_2) and Theorem 1 there exists $m \ge 6$ such that $G_{v,w} = G(m)$. We have a contradiction with (i_3) since G(m) has two vertices of degree ≥ 6 .

If n = 6, then obviously G = A.

(ii) \Rightarrow (i). It is enough to note that if for any $a, b \in V(A)$, a adj b, $A_{a,b}$ is in \mathcal{M} , then $A_{a,b} = G(6)$.

References

- [1] G. D. Birkhoff, The reducibility of maps, Amer. J. Math. 35 (1913), pp. 115-128.
- [2] O. Ore, The Four-color Problem, Academic Press, New York 1967.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF WROCŁAW
50-370 WROCŁAW