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GRAPHS MINIMAL WITH RESPECT TO CONTRACTIONS
IN SOME SUBFAMILIES OF MAXIMAL PLANAR GRAPHS

, Abstract. Let .#5 denote the family of all maximal planar graphs which have no vertices
9,f degree less than 5 and no S5-cycles with at least two vertices in each of its domains. The
Purpose of this paper is to obtain a description of the family of all minimal graphs in .#;. This
Permits us to characterize the family .#; in terms of contractions of vertices of degree 5. We
Prove also that there is only one minimal graph in the family .#5\%, where £ is the family of
all minimal graphs in ..

1. Preliminaries. A graph is understood here as a maximal planar graph
Without loops or multiple edges. V(G) denotes a set of vertices of a graph G,
deg g denotes the degree of vertex a, and a adj b means that a and b are
a'Iijacent A cycle a is defined as a closed simple path, and |a| denotes the
length of «. We denote by C(G) the family of all cycles in a graph G which
Split the plane into domains each of which contains at least two vertices of
G. Note that, since every maximal planar graph G has a unique family of
faces, we may talk about domains of G without referring to any embedding
of G. Let .# denote the family of all maximal planar graphs with all vertices
of degree at least 5, and .#, < .# be the family of all graphs which have no
Cycles of length k in C(G). The family .#; has been considered by Birkhoff in

is separation theorem [1], and in [2] which has played an important role in
Many investigations on the four-color problem. If a adj b, then G,, denotes
the graph which is obtained from G by contracting the edge ab. Let 5 < 4.
graph Ge # is said to be minimal in the family 5 if for all vertices
9, be V(G) such that ¢ adj b and deg a =5 we have G, ¢ #.
é Let G be a maximal plane graph and let a = (a,, a3, ..., &) be a cycle in
- In what follows, we assume that any cyclic permutation

(@, Giv1s s Oy Ay -ns Gie 1)

of vertices of « is the same cycle a; however, (a;, a_ 4, .. ax)'and each of its
- Gyclic permutations generate another cycle denoted by a. Int o denotes a
Ounded (unbounded) domain corresponding to an anti-clockwise (clockwise)
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orientated cycle «. deg,(a) is the number of vertices adjacent to a and
belonging to Int & Ua. We denote by V(Int «) the set of vertices of a given
graph belonging to Int a. The neighbourhood N (a) of a vertex a is the cycle
whose vertices are adjacent to a and whose orientation is such that
aeInt N{a). It is not difficult to see that for every n > 5 there is exactly one
graph in .#, denoted by G(n), which has two vertices a and b of degree n
and |

N@nN(@®) = Q, V(G) = {a, b} U N(a)u N (b),

and every vertex in N(a)u N(b) is of degree 5. Moreover, one can easily
show that there is exactly one graph in .#, denoted by A, with 12 vertices of
degree 5 and 3 vertices of degree 6 (see Fig. 1). The family of all G (n)’s, n > 5
is denoted by &. We denote a j-cycle « by w; (j = 3, 4, 5) if the restriction of
G to Int ¢ Ua is isomorphic to

(@) G(5) for j =3;

(b) G(5)\e for j =4, where e is an edge of G(5);

(€) G(5)\x for j =5, where x is a vertex of G(5).

Fig. 1. Graphs G(6) and A4

The purpose of this paper is to obtain a description of the family of 311
minimal graphs in .#; (Theorem 1). This allows us to characterize .#5 18
terms of contractions of vertices of degree 5. Namely, every graph in #5 can
be obtained from the set & by the operations opposite to contractions of
vertices of degree 5. Theorem 2 follows from Theorem 1 and states that there
is only one minimal graph in the family #;\%. The proofs of thosé
theorems in Section 4 follow from eight lemmas which are considered 17
Sections 2 and 3.

2. Some properties of the cycles of C(G). The following lemma is very
simple, therefore we can omit its proof.
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LemMmA 1. Let ay, a,, a3 be three cycles in a graph G such that
@y =(ay, @z, ..., @), @2 =(ay, a3, ..., Gy, by, by, ..., b,
a3 = (Ap, Aps1s -+v» Bny Gy, by, b1, ..., by).
If bjev(Inta,) for j=1,...,s, then
Int a, UInt a3 cInt oy, Inta,nInta; =@,
V(int a)u V(Int as) b j=1,..., s} = V(Int «y),
deg b; = deg,, (b)) +deg,,(b)—2 for j=1,...,s.

LemMMA 2. Mg Ms < My = M.

Proof. It is sufficient to prove the following implication for j = 3, 4, 5:
If there exists a cycle ae C(G), |a] =j, then there exists a cycle fe C(G), |B|
=j+1. Let a = (a,, as, ..., as). Since V(Int &) # @, there exists be V(Int )
adjacent to two consecutive vertices of the cycle «. Therefore, we can assume
that there exists a cycle & =(ay, 4, b) such that

i,) V(Int é) = Q.

Let us consider a cycle § = (a;, as, a4, as, a;, b). By Lemma 1 and (i,)
We have '

(i) Int f < Int a,

(i) V(Int B)u {b} = V(Int a),

(i) deg b = deg, (b).

Let us note that |V (Int f)| = 2 since (i;) implies

Int & < Int §,
and hence -
V(int & < V(Int p).

By @,), deg,(b) = 5. Hence at least one of the following cases holds:

(a) |V(Int B)| > 2.

(b) There exist vertices a,, @€ B (3 <k <1< 5) such that g, adj b and
@ adj b. -
It is enough to show that the case (b) leads to a contradiction. Let

)"1 =(02s-°-9 . b)’ 'y2=(ak"":ab b): v3=(ab"', al’b)

be three cycles. Then 3 <k <I<5 implies [y] <4 for j=1,2, 3. Since

Ge A, we obtain
3

Y |V(Int y)| = 0.

j=1
Lemma 1 also implies that
Vnt p)nV(Inty)=Q for i#j
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and
3
U V(Int y;) = V(Int ).
j=1

So, by (i3} we arrive at a contradiction
= |V(Int B) = |V(Int &) —1 > 1
The proof in cases |@| =3 and 4 is analogous.

Lemma 3. Let Ge M#s. If a and b are consecutive vertices of a cycle
a€C(G), |¢j =6, and V(Int o) has only one vertex in N(a)u N(b), then all
vertices in V(Int ) are of degree 5.

Proof. Let a =(ay, a,, as, a4, a, b). Because a and b are consecutive
vertices of &, there exists a vertex : |

ce V(Int a) " N(a) n N (b).

Since ¢ is the only vertex belonging to V(Int o) "(N(a)u N (b)), we have
c adj a, and c adj a,. Therefore, there exists a cycle g =(ay, a,, as, a,, C)
Because ce V(Int «), we get by Lemma 1:

(i) Int B < Int a;

(iz) V(Int o) = V(Int p)u {c}

(i3) deg ¢ = degy(c)+2.

Let us note that (11) implies Int & < Int B, and therefore

< |V(Int @) < |V (Int B).
Since |B] =5, we get |V(Int B)| < 1. Hence, by (i), we have
< |V(Int o) < |V(Int B)|+1 <2

This means that [V (Int B)] =1, and we have
(i) there is a vertex d such that V(Int f) = {d} and deg d = 5.
Finally, it is enough to check that deg ¢ =5 by (i;) and (i ), and (12) (s)
1mply

V(nta)={c,d} and degd=>5.

LEMMA 4. Let Ge #s. If a, b, c are consecutive vertices of a cycle’
ae C(G), |of = 6, and deg a = deg b = deg c = 5, then all vertices in V(Int a)
or in V(Int @) are of degree 5.

Proof. Let a = (ay, as, a3, a, b, c). Without loss of generality we may
assume that

N®) = (c, d,, d;, a, ds).

Hence d,, d,e V(Int a). The following cases are possible:
(a) a3 adj d, and a, adj d,,
(b) a3 adj d; or a, adj d,.
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In case (b), the set V(Int &) has only one vertex in N(a)u N(b) or has
-Only one vertex in N (b) U N(c). Hence, by Lemma 3, all vertices in Int & are
of degree 5. Whereas in case (a) there is a cycle § = (a,, a,, as, d,, d,). Since
4, dye V(Int a), Lemma 1 yields

(i) Int § < Int «; _ (

(iz) V(Int o) = V(Int fu {d,, d,};

(i3) deg d, = deg,(d,)+2; -

(i4) deg d2 = degp (d2)+2.

It is clear that | '
| |V (Int B > |V (Int &) > 2

by (i,). Hence |V (Int B)) <1 by Ge .#5. We will show now that

(is) degy(d;) = degg(d;) = 3.
Let us note that, by (iy) and (i),

degg(d;) =3 and degy(d;) = 3.

It V(Iat f) = @, then (is) follows since d, and d; are consecutive vertices in
B. It |V (Int B)| =1, then (i5) is obvious since |f] = 5. By (is), (i,) and (i5) we
8t deg d, =degd, =5. Using (i), we note that if V(Int f) =@, then
V(Int a) = {d;, d,}; moreover, if |V (Int f)| = 1, then

V(Inta) = {d,, d,, e}, where {¢} = V(Int f) and deg e = 5.

- Lemma 5. Let Ge #s and for a,beV(G) let dega=degb =15 and
@adj b. If there exist cycles a, B C(G), |a| = |Bl = 6, such that

anfnN(a)= {b} and anBnNb) = {d},

then all vertices in V(Int a) or in V(Int &) are of degree 5.
Proof. Let '

a= (aI’ a2s a3’ a49 as b), ﬂ = (bh b29 b3: b4s a, b)
and o ‘ .
- N@nN(@®)={c, d}.

Since e BN N(b) = {a}, without loss of generality we may assume that
(b) = (a,d, ay, by, c). Hence we have '
(1) b,e V(Int a) and a, e V(Int ),
(2) ceV(Int @) and de V(Int &).
Since a N BN N(a) = {b}, the cycle N(a) is either (b, c, b,, a,, d) or
2 €, a4, by, d). In the former case by e V(Int a) and, by (1), (2) and Lemma 3,
the vertices in V(Int &) are of degree 5. Otherwise, we get
(3) bye V(Int &) and a,c V(Int p).
~+By (k, I) we will understand that b;e V(Int @) for 1 <j<k—1 and b,
;a,. Because of (1) and (3) we should consider k and ! such that
Sk<igs |
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(2,2) Since b, = a,, there is a cycle

@y =(az, a3, a4, ¢, by).

Since by, ce V(Int «), Lemma 1 gives

(i,) Int o, < Int a;

(i) V(Int ) = V(Int a;) U {b,, c};

(i3) deg b, = deg, (b)) +2;

(ig) deg ¢ = deg,, (¢)+2.

By (i) we have V(Int @) < V(Int &,). Since 2 < |V (Int &)| and |y = 3,
we obtain |V(Int a,)| < 1. Because ¢ and b, are consecutive vertices in the
cycle ay, |o,[=35, |V(Int ;)] <1 analogously as in the proof of (is) in
Lemma 4, we can demonstrate first that

deg,, (b)) = deg,, () = 3,
and then that all vertlces in V(Int a) are of degree 5
(3.2) Since b; = a,, there are cycles

@y =(ay, a3, a3, by) and  a, =(a,, a4, d, b,).

Because d, bye V(Int &), Lemma 1 yields
G1) Int a, UInt a, < Int &;
G2) V(Int & = V(Int a,) U V(Int az) U {by, d};
(is) deg d = deg,  (d)+2;
(is) deg b, = degal (bs) +deg,, (by).
By (Jl) Int & nInt @, o Int «. Hence

<|V(nto) <|V(ntd,) and 2<|V(Int &).

Since |&,| = |&,| =4, Lemma 2 implies

(s) V{Int a,) = V(Int «,) = Q.

By (3) and (j5) we get

() deg,, (d) =3, deg,, (bs) < 3, deg,, (bs) =

By (j;) and (j5), we have V(Int @) = {b,, d}. Condltlons G3), (Ga) and (16)
give degd =5 = deg b,.

The cases (3,3) and (2,3) can be reduced, by the reflexion of G in the
plane, to the cases (2,2) and (3,2), respectively.

LEMMA 6. Let Ge # and deg a =5 for ac V(G). If there exist cycles
a, BeC(G), |o| = Iﬁl = 6, such that aca ~ B and a "~ N(a) = Q, then theré
exists a cycle ye {a, &, B, B} such that all vertices in Int y are of degree

Proof. Let

a=(ay, a3,...,as,8 and P=(b,,b,,..., bs, a).

Since N(@)nanf= (Z) ay, as, by, bs are different vertices of N(a). Without

loss of generality we may assume that N (a) = (a4, by, as, bs, c). Therefor®
we get :
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(1} bye V(Int a), bse V(Int &), a, €V (Int B), ase V(Int p).

(2) ce V(Int @) ~ V(Int ).

By (k, I) we will understand that b;e V(Inta) for 1 <j<k—1 and b,
=a,. By (1), we should consider k and I such that 2 < k<l<4.

(2,2) Because b, = a,, there exist cycles
ay =(ay, a;, a4, as, by) and @, =(a,, a,, by).

Since b, V(Int a), by Lemma 1 we get
(i;) Int a; UInt a, < Int a; .
(iz) V(Int o) = V(Int ay) U V(Int o)) U {b,};
(i3) deg b, = deg,, (b,)+deg,, (by).

By (i;) we have Int & < Int & a; nInt &,, and hence

2<|V(Int &) and 2 <|V(Int %,).

Therefore by Lemma 2 and since |&,] = 5 and |a,| = 3, we get
(i) |V(Int a,)] <1 and |[V(Int a,)| =
By (i,) and (i;) we have

2<|V(Int o) < [V (Int ay)|+ |V (Int ay)j +1 <2

This means that [V(Int a;)] = 1 and there is a vertex d such that
(is) V(Int o} = {d} and deg d = 5.
Since o] =5 and |a,| = 3, we obtain

deg,, (b;)=3 and deg,, (b)) =2,
%, by (is), deg b, = 5. Finally, it is enough to note that the equality
V(Int o} = V(Int a;) U {b,} = (b, d}

follows from (i,), (i,) and (is).
(3,2) Since b; = a,, there exist cycles

B, = (b3, b, by,a)) and B, =(a,bs, b,, bs, ay).

Because a e V(Int f), by Lemma 1 we have
Gy) Int B, cInt §, Int B, < Int B;
(2) V(Int f) = V(Int B,) L V(Int B;) L {a,};
03) deg a, = degy, (a,)+deg,, (a;)— L.
By the inequality |V (Int B)| > 2, (j;) and Lemma 2 we get
(s) |V(Int B,)] =0 and |V(Int §,) < 1.
Since ce V(Int f), by (j,) and (j,) we have
(15) V(Int B) = {c} and degc =5.
By (i), (is) and since IB;I =4, |B;| =5 we get

degg, (ay) < and degg,(a;) =3
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Froﬁx this and (j;) we conclude that
5 < deg a, = degg, (a)+degg, (a;)—1 <5.
Thus it is enough to note that o
V(Int f) = V(Int B)u {a,} = {c, a1},

which follows by (j,) and (js).
(3,3) Because b, = a5, there exist cycles

a; = (al.s a,, as, b25 bl) and oy = (03, Ay, As, bl! b2)

Since b, b,e V(Int «) and by Lemma 1 we get

(ky) Int ¢, UInt «, < Int «;

(k;) V(Int o) = V(Int a,) U V(Int &) U {by, by};

(k3) deg b, = deg,, (b)) +deg,, (by); .

(kq) deg b, = deg,, (b;)+deg,, (b2)—2.

The inequality |V (Int &)| > 2 together with (k,) gives

(ks) [V(Int o,)] < 1, |V (Int &) < 1. ' B

Let us note that we cannot have |V (Int ;)| = |V (Int a,)] = 1 because in
this case deg,, (b,) = deg,, (b,) = 3, which leads to a contradiction with (ka)-
Namely, we then have | |

5 < deg b, = deg,, (b;) +deg,,(b;)—2=4.
Similarly, in all other cases of condition (ks) we obtain
V(Int o) =0 = |V(Int ap)].
Hence '
| V(Int a) = {b,, b,} and degb, =degb, =5
and
V@nta) =1 or |V(ntay) = 1.
Therefore there exists a vertex d such that ,
V(Inta) = {b,, by, d} and deg b, = deg b, =degd = 5.
We will show now' that cases (2,3) and_ (.4,2) cannot occur.
(2,3) Since b, = a;, there exist cycles
oy =(ay, a,, a3,b,) and a, =(a;, a4, as, b,).

Since by e V(Int @) and by Lemma 1 we get
() Int a; cInt e, Int @, = Int a;
(1) V(Int a) = V(Int a,) U V(Int a,) L {b,}.
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Since |V (Int @) > 2 and |o,| = |a2| =4, by Lemma 2 we get
(Iy) |V(nt a,)f = |V (Int a,)| =

Conditions (1,) and (1,) lead to a contradiction, since |V (Int «)| >
(4,2) Since b, = a,, there exist cycles

ﬁl = (_a‘, bs, b4’ al) and ﬂz = (b4a b3, bz, bl: a, al)-

By Lemma 1 and the fact that a, e V(Int ) we have
(m,) Int B; < Int B;
(m;) V(Int f) = V(Int ;) U V(Int B) L {a,}.
Since b;e V(Int @) for 1 <j< 3 and also by Lemma 1, we get
(mj,) Int B, cInta .
Let us note that, by (m,), Int B = Int B, and hence

2 < |V(Int B) < |V(Int B,).

Therefore, by Lemma 2 we have

(mg) [V (Int y)} =

Since ce V(Int &) N V(Int ), by (m,) and (m3) we get ce V(Int B,). Thus
We arrive at a contradiction with (m,). |

The proof in case (2,4) is analogous to that of (2,2). The remalmng cases,
ie. (3.4), (4,3) and (4,4), can be reduced, by the reflexion of G in the plane, to
Cases (2,3), (3,2) and (2,2), respectively.

3. The local characterization of the family .%.

LemMMA 7. The following conditions are equivalent for Ge M.

(i) The neighbourhood of every vertex of degree S has at least four
Vertices of degree 5.

(i) There exists a set F # @, F < V(G), such that
~ (a) dega =35 for acF,
of F(b) the neighbourhood of every vertex in F contains at least four vertices
(iii) Ge &. |
Proof. (ii) = (iii). Assume that there exists a,eF -whose neighbour-
h"’_od N(a,) has a vertex a¢F. Let dega=n>5 and

N(a)=(a,, a3, ..., a,), and_  N(a;) =(a, a,, by, by, a;).
Since a, e F and a¢ F, vertices a,, bl, b,, a, belong to F. Let 2 k<n-1.1f
%&F, then -
%1, bkp byt1, a1 €F, where N(ay) = (ay-1, by, bys1, ahyy, a).

Therefore, a,bjcF and dega,=degh,=5 for i=1,2,...,n Since
% adj b, and deg a, = 5, we have b, adj b,. Put B =(b,, b,, ..., b,). Since
s(b) =4 fori=1,2,...,n there exists be V(G) such that N(b) = § and
b = n. This means that G has vertices a and b satisfying the conditions of
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the definition of G (n). If the neighbourhood of every vertex from F has all
vertices in F, then, analogously, we can show that G = G(5).

(i) = (i) and (iii) = (i) are obvious.

LEMMA 8. The following conditions are equivalent for Ge M:

(i} The neighbourhood of every vertex of degree 5 has three consecutive
vertices of degree 5 and there exists a vertex of degree 5 whose neighbourhood
does not have four vertices of degree 5.

() For every vertex a of degree 5 there exists a cycle a such that

(@) « =w; for some j=3, 4, 5;

(b) all vertices of a are of degree = 6;

(¢) ae V(Int ). ' |

Proof. (i) = (ii). Let F be the set of all vertices of degree 5 for which
there does not exist a cycle a satisfying the conditions (a), (b), and (c)-
Directly from the definition of the set F we get the implication

(1) aadj b and deg a =deg b =5 imply acF iff beF.

Now, we will show that

(2) If a is a vertex of degree 5 and N (a) does not have four vertices of
degree 5, then a¢F.

Let N(a) = (ay, a3, ..., as) and deg q; =5 for i =1, 2, 3 and deg g; > 6
for j=4, 5 Let N(a,) = (al, ¢, €3, a3, a). Since N(a,) and N (a;) have three
consecutive vertices of degree 5, deg ¢, = deg ¢, = 5. Therefore, N(a,) has all
vertices of degree 5. Hence there exists a cycle § such that

aeN(@)cV(Intp) and B=ws.

It is not difficult to note that if § does not have property (b), then 8 has two

consecutive vertices of degree 5. Therefore, there exists a cycle y such that

Int f < Int y and y = w,. If y does not have property (b), then there exists 8

cycle 6 such that Int y = Int 6, 6 = w,, and all vertices of & are of degree

2 6. Hence a¢F. By (1) and (2), we see that the neighbourhood of every

vertex of F has at least four vertices in F. By Lemma 7 the set F is empty-
(i) = (i) is obvious.

CoroLLARY. If G satisfies condition (i) of Lemma 8, then G¢ #s.

4. Description of the family of all minimal graphs in .#;.

THEOREM 1. The following conditions are equivalent for #:

() G is minimal in the family 4.

(ii) The neighbourhood of every vertex of degree 5 has three consecutwe
vertices of degree 5.

(i) The neighbourhood of every vertex of degree 5 has four vertices 0f |
degree 5.

(iv) Ge &.

Proof. (i) = (ii). Let us suppose that there is a vertex a, deg a=5%
whose neighbourhood has two non-consecutive vertices of degree = 6. we
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Will show that G is not minimal in .#;. Let

N(a) =(a,, a,, ..., as).
Without loss of generality we may assume that one of the following cases
occurs: '

(1) dega;=6fori=1,2,...,5; :

(2) dega; =5 and dega; 26 for i =2, ..., 5;

(3) deg a; =5 for j=1,3 and dega; > 6 for i =2,4,5.

(4) deg a; =5 for j=1,2 and deg a; > 6 for i =3, 5.

(D) If G,a ¢ As, Goa,¢ Ms and G,,, ¢ #s, then there exist cycles
% Be C(G), ja} = |B] = 6, such that « " f N N(a) = @. But, by Lemma 6, this
I impossible. '

(2) If Gooy ¢ s and G,,, ¢ #s, then there exist cycles a, fe C(G), |af
=|Bl =6, and a, asea, a, a,eB. If a "B~ N(a) = @, then, by Lemma 6, we
arrive at a contradiction. Let

N(a,) =(a, as, by, by, a)-
fangnn (@) # @, then a,ean B and one of the following subcases is
Possible; ' '
(2a) b, e and b,eB;
(2b) by ¢a or by¢p.
~ In (2a) we have a,, a, a,, byca and ay, a, a,, b€ B, which, by Lemma
3, leads to a contradiction. In (2b) we have as,a,ay, byea or
@4, a, ay, b, e B, which, by Lemma 3, leads to a contradiction.
" () If G, ¢ Ms and G,, ¢ .45, then there exist cycles a, B C(G),
el = |B) = 6, such that a, a,ea and a, azeB. If anfNN(a) =@, then
We get a contradiction by Lemma 6. If x " N(a) # @, then ay, a, ayea
Of a,, 4, a;eB, and we get a contradiction by Lemma 4.
(4) Let

N(al) = (as as, Cy, Ca, az) and N(al) = (aa a4y, Ca, C3, a3)'

Two subcases are possible:

(4a) deg c, = 5;

(4b) deg c, > 6.

In (4a), if Gaaq & #s, then there is a cycle e C(G), |a| = 6, such that
% a,ea and one of the vertices c;, c,, ¢; belongs to a. If c,ca, then we get a
Contradiction by Lemma 4. If ¢, ex or c;ea, then we get a contradiction by
Lemma 3. In casc (4b), if G,,, ¢ #s and G, ¢ #s, then there exist cycles

% BeC(G), |a) = |B| = 6, such that a,, aca and c,, a;eB. If one of the
verFlC&S ¢1, ¢3 belongs to a or one of the vertices c3, a4 belongs to §, then we
ATive at a contradiction by Lemma 3. Otherwise, we get c,ea and ajef.

Ut then we can assume that a,, a, a,, c;ea and ay, @, ay, ¢, f and we
Wrive at a contradiction by Lemma 5. |
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(i) = (iv) follows from the Corollary to Lemma 8.

(iv) = (i) is obvious, since ¥ < M.

THEOREM 2. The following conditions are equivalent:

(i) G is minimal in the family M#\ <.

(i) G = A4 (see Fig. 1).

Proof. (i) = (ii). Since G is minimal in the family .#,\ %, by Theorem
1 there exist n > 6 and two adjacent vertices x, ye V(G) such that deg x =5,
deg y =n—1 and G, , = G(n). For example, if G, , = G(7), then the graph G
has the representation shown in Fig. 2.

Fig. 2. G, = G(7)

If n> 17, it is easy to note that there exist vertices v, we V(G) such that

(1;) deg v =deg w = 5; : |

(12) Gv w€ “’t 5

(i3) G,,, has four vertices of degree > 6.

Since G is minimal in the family .#5\ &, by (i), (i) and Theorem 1
there exists m > 6 such that G,,, = G(m). We have a contradiction with @is)
since G(m) has two vertices of degree > 6. :

If n =6, then obviously G = A.

(i) = (i). It is enough to note that if for any a, be V(A), a adj b, Aus B
in .#, then A4,, = G(6).
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