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Abstract. Dynamical systems on metric spaces are considered. The notion of the asymptotic
periodicity {and the asymptotic pseudoperiodicity as well) is generalized and some theorems
extending certain known results are proved.

The purpose of the paper is to present some generalizations of the
previous author’s results (cf. [2], [3]). In [2], the condition of the asymptotic
periodicity of motions in dynamical systems on metric spaces has been
introduced and investigated. Here, we propose some generalization of that
condition, and prove corresponding theorems generalizing simultaneously
results presented in [2] and [3]. Certain observations concerning dynamical
systems on the real plane are presented in the last Section 8.

1. We shall consider dynamical systems in metric spaces. In order to
exclude any misfits we would like to recall the usual terminology (see, for
instance, [1], [4]).

Let (X, ¢) be a metric space. A mapping m: Rx X —» X is said to be
a dynamical system on X (or, using another terminology: the triplet (X, R; =) is
called a dynamical system) if and only if

7(0, x) = x for every xe X,

n(t, n(s, x)) = n(t+s, x) for s, teR, xeX,

7 is continuous.

For a fixed xe X, we denote by n* the mapping
Rat - n*(t): = n(t, x)e X

and we call it the motion of x.
The positive limit set of the point x is the set

A*(x): = {y: there is a sequence {t,} of real numbers

such that ¢, - co and n(t,, x) >y as m— oo}.
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The negative limit set A7 (x) is defined by substituting ¢,, > — oo in the
place of t, = 0.

2. Let (X, R, n) be an arbitrary dynamical system, fixed throughout
Sections 2-6, and let

a: (0, 0)— (0, 0), 7,71 [0, 0)—[0, )

be three functions fixed throughout Sections 2-5. In Sections 7 and 8, some
additional conditions will be assumed with respect to X and functions « and 7.

Let x be a given point of X. We say that the motion n* satisfies the
condition P*[a, y] (resp. P~ [«, y]) if and only if

(2.1) for every & > 0 there exists s > 0 (s < 0) such that
Q(n(t+a(s), x), n(t, x)) <7y(e) for t>=s (resp. t < s).
We say that n* satisfies the condition S*[t] (resp. S™[t]) if and only if
(2.2) for every &£ > 0 there exist 6 >0 and s >0 (resp. s <0) such that
o(x, y) < d=>p(n(t, x), n(t, y)) < t(e) for t=s5 (¢t <5).

ExAMPLES. 1. Assume that a(g): = « = const > 0 and y{¢): = n+¢, where
n is some fixed nonnegative constant. In this case the condition P* [a, y] is
equivalent to the following one:

(2.3) for every & > 0 there is s > 0 such that
o(r(t+a, x), n(t, x)) <n+e for t =s.

That condition (called positive asymptotic (n, a)-pseudoperiodicity) has been
investigated in [3] together with positive #-pseudostability which is equivalent
to S*[t], where 1(¢): = n+e.

II. A special case of the condition P* [, y] considered in Example I is
that which corresponds to n = 0. It was discussed in [2] [or y(¢) = ¢ as positive
asymptotic periodicity. '

ITI. In the case of a(¢): =a =const >0 and y(): =0 we obtain
P*[a, y] (and P~ [a, y] as well) as the classical periodicity of the motion 7¥;
a is a period in that case.

IV. The classical Lyapunov positive (negative) stability of n* is equivalent
to ST[z] (S™[t]) with t(¢):=¢ and s=0 in (2.2).

V. If n is not a constant function, then putting y(¢) = ¢ we obtain the
condition P* [a, y] being a generalization of the almost periodicity.

3. THEOREM 1. Assume that xe X. If ye A¥ (x) (ye A~ (x)) and n* satisfies
the condition P™ [a, 7] (P~ [a, y]), then for every £ > 0 and every t the following
inequality
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(3.1) o(n(t+a(e), y), n(t, y)) < 7(e)
holds true.

Proof. Assume that yeA*(x) and that =n* satisfies the condition
P*[a, y]. Let te R be arbitrarily fixed. Let {t,,} be a sequence of real numbers
such that for m —» o

and
(3.2) (L, X)—>y.
We have for every fixed ¢ >0
(3.3)  e(n(t+a(e), ), n(t, y) < o(n(t+a(e), ), nlt +a(e) +1,,, X))
+o(n(t+a(e)+1,, %), 2t +1,, X))+ 0(n(t + L, X), 72, V).
The mapping = is continuous, and so, from (3.2), we get
n(t+t,, x) = n(t, n(t,, x)) - =(t, y)
and similarly
m(t+oa(e)+1,,, x) - n{t+ole), y)

as m— 0.

Thus the first and the third terms on the right-hand side of (3.3) tend to
zero as m —oo. In order to estimate the second term we observe that for
m sufficiently large we have t+t, > s, where s i1s chosen according to the
condition P*[«, 9] in such a way that (2.1) holds for t > s.

Hence we have proved that

o(n(t+a(e), y). n(t, ») < v(e)+alt,),
where
a(t,): = Q(n(t+a(a), y), m(t+a(e)+t,, x))+Q(T£(t+tm, x), n(t, y))

and so a(t,) —» 0 as m— co. Thus (3.1) holds true. The proof is completed in the
case yeA*(x) and =* satisfying P* [a, 7].

The proof in the case of the condition P~ [«, y] satisfied by n* and
y belonging to A~ (x) is clearly similar.

4. THEOREM. 2. Suppose that xe X, ye A" (x) (ye A7 (x)) and =’ satisfies
the conditions S* (1] (S™[t]) and P*[a,y] (P (x, v]). Then n* satisfies the
condition P [a, 7] (resp. P~ [a, 7]), where

7(e): = y(e)+ 21(¢).

Proof. Assume that ye A7 (x) and suppose that n” satisfies the conditions
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S*[r] and P* [a, y]. Let {s,,} be such a sequence of real numbers tending to
the infinity for which

4.1) y = lim=n(s,,, x).
We have to prove that for every ¢ > O there is s = 0 such that if ¢t > s then
Q(ﬂ:(t+a(a), x), m(t, x)) < J(e).

Assume the contrary; then there is ¢ > 0, say ¢ = ¢°, such that for every s > 0
there is t > s for which

4.2) o(n(t+a(%), x), n(t, x)) > y(e%) +27(c%).
So there exists a sequence {t,} of non-negative numbers such that
(4.3) o(m(t,,+ 5, +a(e?), x), 7(t, +s,, %)) > (%) + 21(9).

We may assume without loss of generality that ¢, » co. By the triangle
inequality we get

44)  o(r(ty+5u+2(E0), X), T(tn+ 5y, X))
< Q(n(tm+a(s°), T(Sps X)), 7(t,+ (%), y))
+o(n(t, + ), ¥), 1tm, 1) +e(7lt,, ), 7t (50 X)))-

The motion n* satisfies the condition S*[7]. So the first and the third
terms on the right-hand side of (4.4) are, for m sufficiently large, estimated by
7(e%). The second term is for m large enough not greater than y(¢°). Thus we
have obtained a contradiction with (4.3). The proof is completed.

S. Remarks. L. It is not difficult to observe (compare examples in Section
2) that Theorem 1 of [2] and Theorem 1 of [3] can be deduced directly from
Theorem 1 of the present paper, while Theorems 2 and 3 of [2] and Theorem
2.0f [3] can be obtained as simple corollaries of Theorem 2 in Section 4.

II. It is easy to observe that in the proof of Theorem 1 we need essentially
the continuity of n only with respect to the second varable.

For further remarks and some corollaries concerning dynamical systems
on the real plane, see Section 8 below.

6. Assume that (X, R, n) is a dynamical system as in Sections 2-5.

Let B be a positive real functions defined on (0, o©) x R and let y be, as
previously, a real nonnegative function defined on [0, oo). We shall consider
the (formally extended) conditions P*[f, y] and P~ [, y] as in Section 2:
a motion 7~ satisfies the condition P*[f, y] (P~ [B, y]) if and only if for every
&> 0 there is s > 0 (s < 0) such that

(6.1) Q(n(t+B(e, £), x), n(t, x)) <7y fort>=s (t<s).
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THEOREM 3. Assume that the function B introduced above is such that for
every ¢ > 0 there exists the limit

(6.2) a(e): = limpBe,s) as s— +oo (as s > — o)

and it is a positive number.

Let xeX, yeA*(x) (ye A~ (x)). If n* satisfies the condition P*[f, 7]
(P™[B, v]1), then for every € > 0 and every t€R inequality (3.1) holds true with
o defined by (6.2).

Proof. We apply the same method as in the proof of Theorem 1. Assume
that n* satisfies P* [, y] and ye A" (x). We have y = lim=(t,, x) for some {t,}
such that t, - oc. Using the triangle inequality, we get

63)  oln(t+Be, t+1,), y), n(t, y)
< oln(t+Ble, t+1,), y), n(t+Pe, t+1)+1,, X))
+o(n(t+Ble, t+t,)+1,, x), n(t+1,, X)) +o(n(t+t,, x), n(t, ).

The third term on the right-hand side of the above inequality tends clearly to
zero as n — oo because of the convergence n(t,, x) = y and the continuity of
n (there we need, similarly as in Theorem 1, the continuity of the mapping
z - 7(t, z) [or every fixed t; compare Remark II in Section 5). The second term
is for sufficiently large n dominated by y(z) because of the condition P* [f, 7].
The first term tends to zero as n — oo, since f(e, t+t,) — ale), n(t,, x) >y as
n— o and so the sequence {r,}, where

r,,: = ﬂ(t‘i‘ﬁ(sa t+tn)+tn’ x) = 7'(([+ﬂ(8, t+t")’ ﬂ(t", X)),

is convergent to m(t+a(€),y) as well as the sequence {u,} with
u,: =n(t+p(e, t+1,), y). The left-hand side of inequality (6.3) converges to
g(n(t+o¢(8), y), m(t, y)). So, passing to the limit as n — o0, we get from (6.3) the
inequality required in the assertion:

o(n(t+ae), y), (. y)). < 7(e).
The proof in the case of P [f§, y] and ye A~ (x) is similar.

Remark III. Observe that in the proof of Theorem 3 we need the
continuity of 7, and so we cannot modify (formally: generalize) our theorem
replacing the continuity of n by the weaker condition mentioned in Remark I1
in Section 5. In the theory of classical (continuous) dynamical systems,
however, Theorem 3 is a generalization of Theorem 1 proved in Section 2.

7. Let us consider a and y introduced in Section 2, assuming that
(7.1) y(e&)—=0 as e—0, ¢>0.

PROPOSITION 1. Suppose that n¥ satisfies the inequality
q
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(7.2) o(r(t+a(e), y), n(t, y) <¥(e)

for every ¢ >0 and teR (see (3.1)). If

(7.3) 0 < liminf a(e) < limsupa(e) < oo,
£—0* e—~0*

then the motion ©* is periodic with a period age€[liminfa, limsupa].

Proof. Consider a sequence {¢,} tending to zero and the corresponding
sequence {«,} = {a(e,)} which is obviously bounded because of (7.3). Without
loss of generality we may assume that {a,} is convergent to some a, being
between liminfa and lim supa. Passing to the limit as n — oo in the both sides
of the inequalities

(7.4) o(n(t+a,, y), n(t, ) <y,) Mm=1,2,...),
we get the equality

o(n(t+ay, ¥), n(t, y)) =0
valid for every teR. The proof is finished.

PROPOSITION 2. Assume that n¥ fulfils (7.2) for every ¢ >0 and t =0.
Suppose that there is a sequence {e,} such that ¢,— 0 and

(7.9) a(e,) >0  (a(e,) > —o0) as n— 0.

Then the motion ©* is positively (negatively) Poisson stable (which means that
yeA*(y) [resp. ye A~ ()]

Proof. Putting a, = a(g,), we now obtain from (7.4), considered for t = 0,
the relation
limz(o,, y) =y
as n — oo which finishes the proof.
Remarks. IV.Itis clear that in the assumptions of Proposition 1 instead

of (7.1) we may only assume that there exists a sequence {¢,} tending to zero
such that y(e,) >0 as n - co.

V. It is not excluded that the assertion of Proposition 1 is fulfilled by
trivial periodicity of n” in the case of y being a stationary point. In paper [2],
essential periodicity and stationary points were considered as separate cases;
here we consider both the cases simultaneously.

As a simple corollary of Theorem 1 and Propositions 1 and 2 we obtain
the following lemma.

LEMMA. If xe X, ye A" (x) (yeA™ (x)), n* satisfies P [a, 7] (P [a, y]),
where o is such that

(7.6) O<n<ale) for every e,



Asymptotic periodicity in dynamical systems 265

with some fixed n, and y satisfies (7.1), then the motion ©’ is positively (negatively)
Poisson stable. If, moreover, a is bounded from above (see (7.3)), then 7’ is periodic
with a period o€ [liminfa(e), limsup a(e)].
e=0* e=0*t
It is known (see for instance [1]) that if X = R? then each Poisson stable
motion must be periodic. So we have the following theorem.

THEOREM 4. Let (R*, R, n) be a dynamical system. If xeR?, ye A" (x)
(ye A~ (x)), n* satisfies the condition P* [a, y] (P~ [«, y]) with « satisfying (7.6)
and y fulfilling (7.1), then the motion ©’ is periodic. If, moreover, o satisfies

(7.3), then there is a period a, of n* belonging to the interval [liminfa(e),
e—0*

lim supa(e)].

£e—0*

8. In the present section we shall assume that X = R?. First of all we
recall that if (X, R, n) 1s a dynamical system with X being a locally compact
metric space, then every positive (negative) limit set which is compact must be
connected. Here, we shall need slightly stronger results valid for some special
cases in X = R%. So let us assume that (R?, R, r) is a dynamical system fixed
throughout this section. We have the following obvious proposition.

ProposiTION 3. If x, yeR? are such that: (a) y is not a stationary point, (b)
n* is periodic, (c) ye AT (x) (ye A~ (x)), then
n(y)=A"(x) (n(y)=A4"(x).

Proof (outline). Observe, first of all, that if n(y) is a connected component
of A% (x) (A7 (x)), then the assertion of the proposition holds true.
Indeed, n(y) is compact and so there exists ¢ > 0 such that putting

(8.1) B,: = {z: inf{o(z, w): wen(y)} < ¢}
we have
(8.2) B.n(AT0\r(y) =G  (B.n (A (x)\n(y) = 9).

So we may use the standard arguments applied in the classical proof of the
well-known theorem about the connectedness of compact limit sets in dynamical
systems in locally compact metric spaces: if there exists a point z belonging to
AT (x)\7(y) (z€ A™ (x)\n(y)), we may find a sequence {s,} of real numbers such
that s,, —» oo (s, = —o0) and n(s,,, x)€ 0B, (with ¢ such that (8.2) is fulfilled);
without loss of generality we can suppose that {z(s,,, x)} is convergent to some
w belonging necessarily to B, and simultaneously to A% (x) (A~ (x)) which is
impossible, because of (8.2).

So assume now that the assertion does not hold true and suppose that for
every 4 > 0 the set

Byn (AT (\m(y)) (BN (AT (x)\n(y)))
(compare the notation (8.1)) is not empty.
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Thus there is a sequence {z,} of elements of the set A" (x)\n(y)
(A" (x)\n(y)) such that

o(zm> 7)) >0 as m— o0;
without loss of generality we may assume that
Z,—Z as m— o,

where z i1s an element of 7n(y).

Since y is not a stationary point, we have the following statement (cf., for
instance, [ 1], Chapter 1): for every we n(y) there exist an open neighbourhood
U, of w, a subset S, of U, and a positive number 7, such that

w

weS,, {a(, v):|t|<z,, ves,} cU,

w?

and for every ve U, there is exactly one 7(v) belonging to the interval (— 1, 7,,)
for which

n(t(v), v)€S,,.

Such a neighborhood U, is called a tube, the set S is a section. The
geometrical interpretation is presented in Fig. 1.

It is obvious that the arrows on the trajectories passing through U,
(showing the direction of motions) are compatible, as it is indicated in
Fig. 1 since the mapping v — t(v) is continuous, which is provable by using the
classical arguments (see also [17]). Because of the compactness of n(y) we can
find a finite set of points w,, ..., w,en(y) such that

ny)cU,v...uU,.

This means that we may be sure that for sufficiently small § > 0 all trajectories
passing through points of the set B, (see (8.1)) are such that arrows are
compatible and, in particular, the positive (negative) semitrajectory of x ap-
proaching n(y) is a spiral curve; if, for instance, we have the first case, that is,
ye A*(x), then we have exactly one of the following two qualitative situations
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Fig. 2 Fig. 3

presented in Figs. 2 and 3, respectively (up to the simple change of the direction
of all arrows). Let now m, be so large that

o(z, ,z) <o,

mgY “

Take 6° = 3o(z,,,, z). It is clear that in both the cases considered above (Figs.
2 and 3) we have:

n(t, x)€ B;o

for ¢ sufficiently large (say for t > t,). This means that z,,  does not belong to
A" (x). This contradiction finishes the proof in the case ye A *(x); the proof in
the case ye A (x) is clearly similar.

Remark VI. Assumption (a) of Proposition 3 is essential as is easy to
observe considering the last example presented in Section 8 of paper [2],
where a stationary point g belongs to the positive limit set being a circle which
is the union of {q} and another trajectory. It is easy to see that one can
construct a more “drastic” example: A*(x) is equal to a circle which is,
however, the union of trivial trajectories of its points, being — all of them
— slationary points.

Using Proposition 3, we can establish the next one:

PROPOSITION 4. If ye A™ (x) (ye A~ (x)), y is not a stationary point, and 7*
satisfies the condition P*[a, y] (P~ [a, y1) with o satisfying (7.6) (with some
n>0) and y fulfilling (7.1), then A" (x) = n(y) (A~ (x) = n(y)).

Proof. Assume that ye A" (x), y is not a stationary point, and n* satisfies
P*[a,7]. Theorem 4 gives the periodicity of the motion =#¥; applying
Proposition 3, we finish the proof. Similar reasoning gives the proof for
yeA™(x) and n* satisfying P~ [a, 7).

As a corollary of Theorem 4 and Proposition 4 we can prove, using results
of [2], the following theorem.

THEOREM 5. If xeR?, yeA™ (x) (yeA ™ (x)), n* satisfies the condition
P*[a,y] (P [a, 7]), with o satisfying (7.6) and vy fulfilling (7.1), then =™ is



268 A. Pelczar

positively (negatively) asymptotically periodic which means that there is a positive
number & such that for every € > 0 there is s =0 (s < 0) such that

(8.3) o(rn(t+d, x), n(t, x)) <e for t=s (t<5s).

Proof. Assume that yeA*(x) and =™ satisfies the condition P [a, 7].
Applying Theorem 5 from Section 7, we get periodicity of #* and so — by using
Proposition 4— we obtain the equality A" (x) = n(y).

Now we may use Theorem 4 from Section 3 of [2]:

If (X,R,n) is a dynamical system, X is locally compact,
AT (x) = n(y) (A” (x) = =(y)), where = is periodic or =m(y)= {y}, then the
motion 7* is positively (negatively) asymptotically periodic.
- This finishes the proof in the case ye A" (x) and =* satisfying P* [«, 7]. The
second case is clearly similar.

Let us notice that for X = R* Theorem 5 reduces problems concerning
every — a priori very general (with a, y being some functions of ¢) — condition
of “asymptotic periodicity type” to suitable problems concerning the simple
“proper” asymptotic periodicity in the sense of [2].
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