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A CHARACTERIZATION OF DIFFERENTIABLE
SUBMANIFOLDS OF EUCLIDEAN SPACES

BY

B. HAJDUK (WROCLAW)

As is well known since Whitney (cf. [3] and [4]) every differentiable
manifold M* of class OT is diffeomorphic to a submanifold of the same
class C" of a Euclidean space R" and, therefore, can be considered as
a submanifold of R". The question arises under what conditions a manifold
M* of dimension % and of class 0" embedded (topologically) in R™ is a sub-
manifold of the class C" of R™ In 1965, Gluck [2] has provided such
conditions for ¥ = 1 or 2 and r = 1, and it is the aim of the present note
to show the general case.

We start with the list of notations:

GL, — the general linear group of all linear automorphisms of R";

0, — the group of all orthogonal transformations of R";

G, — Grassman manifold of k-planes in R";

ni — Stiefel manifold of k-frames (i. e., of systems of k linearly
independent vectors) of R™.

Since GL, acts on Vy, ;, V;‘k can be defined as the homogeneous space
GL,/|L,;, where L,, denotes the stability subgroup of GL,.

Before proceed to the characterization theorem we need four lemmas.
The first two seem to be known but we could not find them in the litera-
ture.

LeEMMA 1. The manifolds @, ; and GL,[(L, ;. X GL,) are diffeomorphic
to each other.

Proof. Since the orthogonal group O, acts on GL,/(L, ;X GL,) by
the formula g[A] = [gA4] (g€ O,, AeGL,), it suffices to show that the
mapping u* tangent to

p: Op—> GLy[(Lpp XGLy): g g[E] = [g]
is onto for each point of O, , because then 0, acts with the maximal order,
and 80 0,/(0n_; %X 0y) = Gy is diffeomorphic to GL,/(L, ; X GLy).

It is clear that 4 = p | o,, Where p denotes the canonical mapping
p: GL,—> GL,[(L, ;%X GLy).
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By the local triviality of p we have p;'{0} = T(Ln x X GL;). Since
(Lyx X GLy) N Oy = Op_p X Oy, there is ug'{0} = T(0,_; X Oy), so that

dimu; ' {0} = dimT(0,,_; xX0;) = %(n2+2k2—2nk—n)
and
dim 70, — dimug' {0} = k(n—k) = AimGL,/(L, ; X GL;).
Hence u« is onto.

LeMMA 2. Stiefel manifold V,, x 8 a fibre space with the base G, .,
fibre GL, and the projection m: V, &> G of class C%, where n(v) is the
subspace spanned by the vectors of fmme .

In fact, there is V, ; = QL,/L,, and, by Lemma 1, we have G, =
GL,/(L,;* GL;). Hence V:,k must be the fibre space described in the
lemma (cf. [1], p. 173).

LEMMA 3. Let =: V;",,k—>G,,,k be the projection defined in Lemma 2.

If peGryy w° =W, ..., wppe Voy, and m(w®) = p, then there ewists
a wneighbourhood W of p and a cross-section )

w:W—>Vai:gr <w(a)..., w(q))

of class C% such that w;(q) = wi+Fi(q) and F;(q)e pt, where p*- denotes
the orthogonal complement to p in R".

Proof. Since n: Vj;— G, is locally trivial, there exists a neigh-
bourhood U of p and a cross-section #°: U°— V. of class = such that
u®(p) = w®. We improve u° by using the following simple property of
frames:

If f: M—> Vst 0> fi(@)y ooy fi(@)) and a: M — R are both of

the class 0%, thenf = {(fy, ...,f‘_l,f,—l—f,,;fiﬂ, cooy fro (2 #7) is a function
from M into V7, ; of class C* and nf = nf.
Let w},,, ..., w) be a base of p. Writing

n

2 Ay (g)wj,

j=1

we can represent cross-section u° by the matrix 4,(q) = (i.?,(q)). What
we need, however, is a cross-section with the matrix 4 = (4;) such that
Ay(q) = 8;; for j< k and ge W (8; here and below denotes Kronecker’s
symbol).

Since A%, (p) = 1, we can multiply the first row of 4, by 1%/4%, and
subtract it from ¢-th row, ¢ = 2, 3, ..., k. Dividing, in addition, the first
row by 4},, we obtain a new matrlx /11 = (4j;) with the improved first
column. The cross-section u! represented by A4, is defined on a neighbour-
hood U' of p such that U' < U°® and A},(¢q) # O for ge U'. Since again
2j;(p) = 8; for j< k, we can improve second column of 4, using the
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second row, etc. It is easy to see that 4, has the needed form, hence it
represent a cross-section u*: U¥— V. having the properties required
in the lemma.

LEMMA 4. If the graph of a function f: R* — R" has, for each point y,
tangent hyperplane P(y) such that the orthogonal projection m: R™** » RF
carries P(y) onto R¥, then f is differentiable.

Proof. Fix x,¢ R*. Let f(x) = L(x)+ F (), where L is a linear function
for which the plane P((wo, f(®,))) is the graph. By direct computation,
one can show that differential DF(x,) is equal to 0, hence does exist,
and so f, as a sum of a linear function L and of a differentiable function 7,
must be differentiable at x,.

THEOREM. Topological manifold M* in a Buclidean space R" is a C"
submanifold (1 < r < oo) if and only if

1. for each xe M*, M* has a k-dimensional tangent plane P(x),

2. if Py(x) 8 the k-dimensional linear subspace of R™ parallel to P(x),
then the map

Py: M*— @, ,: @ +> Py(w)
18 of class O™,

3. for each xe M*, the orthogonal projection m,: M* — P(x) is a homeo-
morphism on some neighbourhood of x. '

Proof. Necessity. Let M* be a O submanifold of R". Take a chart
(U, ¢) at a point we M*. Vectors a;(y) = [D;p™"](p(y)), where s = 1,2, ...
..., k, are tangent to M* at y and span the plane P,(y). Hence condition 1
holds.

The map f: U—> V.t 9> <a;(¥),..., a(y)> is obviously of the
class "% If m: V,,—> G, is the natural projection, then P, |, = mof
and, by Lemma 2, x is of class 0°. Hence P, is of class C"~%, and so condition
2 holds too.

Condition 3 is an easy conclusion from the inverse function theorem.
In fact, [D(n09~ )] (tp(w)) is non-degenerate (D=, is the projection ento
P,(x)), hence m,o0¢p~ ! is reversible on some neighbourhood U of x, and

e lu = (70907 |y (¢lv)
is a homeomorphism.

Sufficiency. To proof the sufficiency one must show that, for each
xe M, n;' considered on some neighbourhood U of z is a C" immersion,
because then (U, =, |y) is a C" atlas on M.

Let = (0, ..., 0), P(x) be a subspace of R" such that x,,, =z,
=... =z, =0, and U be a neighbourhood of = such that (i) n, on U is
a homeomorphism, and (ii) for each ye U, =, carries P(y) onto P(x).

Apply Lemma 3 for p = P(x) and v»° equal to the canonical base
{1y +.., €y of P(x). Let w and W be as in Lemma 3. Taking, if necessary,
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common part U N P;}(W), we can assume that U < Py!'(W). Let
@: m(U)— V,, be the map defined by ¢ = woPyo (7, |y)~".

Clearly, the class of ¢ is the minimum of r —1 and of the class of

-1

/N

By Lemma 3,

@(Y) = Lp1(¥)y ooy P (¥)) = {1+ F1(Y)y ...y e+ Fr(y)),

where Fi(y)e (P(@))'; @:i(y)ePo(y), m(p(y)) = €.
The differential D;n;! can be written in the form

[D;7n;'1(y) = e;+Gi(y),

where G;(y) ¢ (P (@))*, [D; 7z 1(y) € Po(y), 7, ([Ds7z'1(y)) = €.
Hence ¢;(y) = Dyn;'(y) for ye U, because m, is 1-1 on Py(y). There-
fore, 7! is a solution of the system of differential equations

(1) D;X = g,.

In view of (i), n;! is continuous, i. e. of the class C°. Suppose that
ni; ' is of a class C° where 0 < 8 < r. Then each function g; is of the same
class C° and so = is, as a solution of system (1), of the class C°*!. Hence,
by easy induction, n;! must be of the class C".

Since @; does not vanish, n;! is a C* immersion. The proof is complete.

Remarks. The first condition in theorem is obviously essential
and easy examples show that the two other are such. For instance, if
we take the manifold

1
M ={(m,y): Y =mzsin; fora #0 or y =2 =0},

then the tangent line P(p) does exist at any point pe M and the orthogonal
mapping n,: M — P(p) is a homeomorphism on a certain neighbourhood
U of p, but condition 2 fails: the map P,: M — @, , is not even continuous
at the point (0,0). And if we consider the manifold M = {(z, y): y®
= x?}, then the tangent line P(p) also does exist for any point pe M and
the mapping Py: M — @, is continuous, but this time condition 3 fails:
for the point p, = (0, 0) the projection =, : M — P(p,) is not a homeomor-
phism on any neighbourhood of p,. In both cases, however, M is a sub-
manifold of R? of class O° only, i. e., a topological but not a differentiable
one.
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