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A generalization of the Haruki functional equation*

by H. SwiaTAx (Krakéw)

The Haruki functional equation

1) fle+t,y+t)+fle+t,y—t)+fla—t,y+O)+fle—t,y—1)
= 4f (@, y)

was considered by many authors under different assumptions (cf. lectures
by Aczél, Choquet, Haruki, and McKiernan during the Conference
on Functional Equations at Oberwolfach in 1966). Its general solution
was found later by McKiernan and by Sakovié (ef. [1]).

The most general continuous solution of equation (1) has the form

f(z,y) = avy(2*—y?)+ bx (3y® — %)+ cy (3a* — y?) +
+d(B?—y*)texy+frtgy+h,

where a,b,c,d, e, f, g, h are arbitrary constants.
A natural generalization of equation (1) is the equation

2) fle+o@), y+v@)+fleto@), y—p@®)+fle—e@), y+v@)+
+flw—g(t), y—p(t) = 4f(x, y)

which has a simple geometrical interpretation (similar to that for the
Haruki equation).

It can be easily shown that in the case ¢(f) = af, (1) = Bt (a # 0,
B # 0) all the solutions of equation (2) can be obtained by the linear
mapping &' = Bz, ¥y’ = ay from those of the Haruki equation. But it is
not always so. Usually the most general continuous solution of equa-
tion (2) has the form

(3) f@,y) = Azy+ Bx+Cy+ D,

* Results of this paper were presented without proofs during the 1-st Inter-
national Conference on Functional Equations at Zakopane, October 1967.
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where A, B, C, D are arbitrary constants. This fact is very interesting
since functions (3) are also the most general continuous solutions of the
equation

fet+t,y+o)+f@+t,y—1)+fle—t, y+r)+flz—t,y—1) = 4f(2, y)

with 4 variables which was considered by Aczél.
Notation:

e __

pa=0la), @i=¢'1t), o'=¢'(t), @'=¢"1, o =%,

rr?

va=vyla), wi=v(), w=v"(t), v’ =vy"0), =90,
()= (z+o), y+v®),
[ 1= (z+o),y—v@),
{}=(le—o®),y+v),
(O =(z—p@®),y—v®).

We shall make use of the following theorems:
I (cf. H. Swiatak [3]). Suppose that n> 1, and

1° ay(z,t) e O in R" for every fized t from an open interval A C R,
t=1,..,k

2° ay(w,t) e C™ im R"x A (i=1,..,k),
3° @(t) = (‘Pil(t)y I3) ?in(t)) eC™in A (i=1,..,k),
4° there exists an ae A such that gia)=0 for i=1,..,k,
5° the equation
o™ :
o (Z ai(z, t)f($+¢’t(t))) =0
i=1
(where the unknown function fe C™ in R") is elliptic for t = a.
Then every locally integrable solution f of the equation

k

2, ai(@, Of (z-+ 1)) = 0

t=1
i8 equal almost everywhere to a function of class C* and every comtinuous
solution f is a function of class C*.
IT (cf. H. Swiatak [4]). Suppose that n > 1, and
1° b(x,1) e C* in R" for every fiwxed t from an open set A C R,
2° b(z,t) e C™ in R"x A and ait) e C™ in A4 (i =1, ..., k),
3° gu(t) = (9’i1(t)7 ey ‘Pin(t)) eC™in A (i=1,..,k),
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4° there exists an a e A such that pia) =0 for 1=1, ..., k,
5° the equation

o™ :

T (D) atnflo+em) = o0

m
ot =

(where the unknown function fe C™ in R") is hypoelliptic for t = a.
Then every locally integrable solution f of the equation

k
2, udf o+ pu0) = bz, 0

is equal almost everywhere to a function of class C™ and every continuous
solution f is a function of class C™.

THEOREM 1. If there exists an a such that @, = p,= 0, @y, # 0,
and if @(t), p(t) € C* in an interval A such that a € int A, then every locally
integrable solution f of equalion (2) is equal almost everywhere to a function
of class C° and every continuous solution f is a function of class C~.

Proof. To prove this theorem it is enough to show that equation (2)
satisfies all the assumptions of I.

In our case n=2, m=2, k=35, afx,t)=1 for 1=1,2, 3,4,
a(@,1) = —4, p(t) = (p(t), v(1), @u(t) = (2(2), —w (1)), @s(t) = (— (1), ¥(2)),
@a(l) = (_77(t)7 _'P(t))’ os5(t) = (0, 0), @ia)= (0,0) for = 1,2,3,4,5
and satisfying of 1°, 2° 3° and 4° is obvious.

Now, let us assume for a moment that fe C?. Differentiating equa-
tion (2) twice by ¢ we obtain

(4) @' fel )+ @ faz( )+ 2pipi fry( )+l )+ v fon( )+
+ ot 2l 1+ ¢t fezl 1—2009tfay[ 1=t fyl 1+vifnl 1—
— gt fol Yo e Y209t fe{ Y+ ol Y +vifn{ }—
— @ f2{ >+ 9 faal D420 feu{ > =i ful D+ vif >=0.

Hence, in view of the assumption ¢, = ¢, = 0, we obtain for {t = a
the equation

(5) o’ e (@) ¥) +ya fu(@, y) = 0 .

Equation (5) is elliptic since @.y; % 0. Thus also assumption 5° of I
is satisfied.

This finishes the proof.

THEOREM II. If there exists an a such that @.—= w,= 0, @i #0,

PaVa 7 PaYay and if @(t),p(t) € C* in an interval A such that a eint 4,
then the most general continuous solution of equation (2) has form (3).
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Proof. Notice that all the assumptions of Theorem I are satisfied

and therefore every continuous solution f of equation (2) is a function
of class C™.

Differentiating equation (2) three times by ¢ (we make use of (4)),
we get

(6) ot fz( )+ 3ot faz( )+ 3¢t yifay( )+ @' frz( )+
+ 39"yt fary ( )+ 3wiwd” fam ( )+ 3wiwi fou ( ) +9t ' f( )+
+3otyt fay ()9 fan( )+ ot fzl 14 3pigl fzzl 1—
— 3¢t yifayl 149t fazel 1— 30" w:fé!c’u[ 143t fan( 1+
+ 3wt fuul 1" ful 1-3¢tvi fo[ 1— % vl 1—
— @t fol }30tel foz{ } 3¢t vifn{ }— ¢ feel }+
+ 3¢yt famy{ }— 3oyt fa { }+Byivt’ { v fuf 31—
— 3oyt fau{ }+wi" vl Y=ot f2< >+ 3¢igl fard >+
+3¢t pifay < > — @t frazn{ > — 39 yifary < > — 3oty fa< >+
+ 3yt fru < > =t fy < > 3wt fay D — v fund > = 0.

Hence, in view of the assumption ¢, = y,= 0, we get the equation

(7) Pa®a fze(®y Y) + vaa fru(x,y) = 0.

We had shown in the proof of Theorem I that the function f satisfies
also equation (5). Multiplying equation (7) by ¢, and taking into account (5),
we obtain

YaPa¥a' — @a Vo) fyu(®, ¥) = 0.
In view of the assumptions . # 0 and @.y. # @5 va,

(8) (@, y)=0.
In view of ¢ # 0, it follows from (5) that also
(9) 22(T,Y) = 0.

By (8) and (9)
flx,y) = Awy+ Bx+Cy+ D,

where A, B, C, D are arbitrary constants. Q.E.D.

THEOREM IIIL. If there exists an a such that @o= ya= 0, y.= 0 (or
Pa=0), pava’ # 0 (07 @a'ya # 0), dpags’’ +3pa = 0 (or dyays’ + 3y, = 0),
and if p(t), (t) € C* in an interval A such that a € int A, then the most general
continuous solution f of equation (2) has form (3).

Proof. To prove this theorem we shall make use of II.
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It is easy to verify that assumptions 1°, 2° 3° and 4° are satisfied.
Now, suppose for a moment that fe C*. Differentiating equation (2)
4 times by ¢ (we make use of (6)) and putting ¢ = a yields

o' fodeal@, )+ (dgaga”’ + 3pa™) fal @, ¥) + 6 fomp(, ¥) +
+ (yava” + 3y fuulw, W)+ vi fumm(z, ¥) = 0 .
Since y, = 0, we obtain hence
(10)  @utfadea(®, y) + (dgaps” + 3pa™) fial@, ) + Bypa fulm, y) = 0 .
In view of our assumptions
P(&) = ga' E1+ (dpaps’” +3p") E1+ 3pa " &2 # 0

for every &= (&, &) # (0, 0).
It is easy to verify that

Y4 -
%—»0 when |£] = V& +&-5>00
for each couple of integers p,, p, such that p, > 0, p, = 0, and p,+ p, > 0.
aPH-ps
— r__ . .
(Here p = (p;,p;) and D" = ag{’*ag’;") It means that equation (10) is

hypoelliptic (c¢f. Hormander [2]). Thus assumption 5° of II is satisfied
a8 well.

Now, it follows from II that every continuous solution f of equation (2)
is a function of class C™ and all the continuous solutions of this equation
can be obtained by solving the resulting differential equations.

In view of ¢, # 0 and y, = 0, it follows from (5) that fzz(z,y) = 0.
In view of y., # 0, we conclude from (10) that f;,(z,y) = 0. Therefore

flz,y) = Aay+Bx+Cy+ D,
where A, B, C, D are arbitrary constants. Q.E.D.
LeMMA. If a continuous function f is equal almost everywhere to a solu-

tion f of equation (2) it i8 a solulion of this equation, too.
Proof. Let us fix a point (z*,y*) and a value ¢ and define

K,={(=z,9): Vie—a*P+(y—y*F < 1pp},

A ={@,y): fl@,9) =f@, 9},

Ay =@, 9): Tle+o), y+v) = fla+o®), y+v 1)},
A, = {(@,9): Tlot+o®), y—pt) = flo+o@), y—v®)},
Ay = {(#,9): T[p—p@®), y+o) = fla—e@), y+v@)}
A= (@,9): Fle—o(t), y—v(t) = flo—o (), y—v®)} -
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It is
p(AnK)=pAinK)=ap fori=1,2,34.
Therefore
B,=K,nAnA nAynA3n A, #0 and pu(B,) = a)Hr.
Let us consider a sequence (w,,%,) such that (z,,y,) e B,. At the
points (z,, y,) equation (2) can be written as
Tloto®), 4, +v0) +F (@ +0 ), =y ) +F (0. - 0), o+ v (1) +
+le—o ), y,—v 1) = 4 (=,, 9, .
Since (z,, ¥,) > (¢*, ¥*) when v->co and since the function fNis con-
tinuous,
Fle*+o), " +o0)+T " +9@), y* —p ) +7 o"— (), v* +v (1) +
+ "~ 1),y —p 1) = 4 (=, y")

that is the function f satisfies equation (2) at an arbitrary point (z*, y*)
and for an arbitrary {.
This finishes the proof.

THEOREM IV. Ewvery locally integrable solution f of equation (2) satisfying
either the assumptions of Theorem 11 or these of Theorem I1I is equal almost
everywhere to a function (3).

Proof follows immediately from the fact that every locally integrable
solution f of equation (2) is (under our assumptions) equal almost every-
where to a function of class C* which, in view of Lemma, is a solution
of this equation.
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