On the fundamental solution of the equation $\Delta^p u(X) + k(r)u(X) = 0$

by J. Musiałek (Kraków)

In this paper we construct the fundamental solution of the equation

$$\Delta^{p}u(X)+k(r)u(X)=0,$$

where $X = (x_1, x_2, x_3)$, $r^2 = x_1^2 + x_2^2 + x_3^2$, p is a positive integer greater than 1 and k is a real entire function of the variable r. In previous papers [1] and [3] we dealt with this equation when the function k(r) is constant.

1. Let $X=(x_1,x_2,x_3)$ and $Y=(y_1,y_2,y_3)$ denote two different points of the Euclidean 3-space, let $r=\overline{XY}=(\sum_{i=1}^3(x_i-y_i)^2)^{1/2}$ denote their distance.

DEFINITION. A function u(r) is called a fundamental solution of equation (1) in a bounded domain D if 1^o u is a function of class C^{2p} of the point (X, Y) ranging in $\overline{D} \times \overline{D}$, except at the diagonal, 2^o u as the function of X as well as the function of Y satisfies in D equation (1), 3^o for each function W of class C^{2p} in D and of class C^{2p-1} in \overline{D} , satisfying equation (1) in D one has

$$(2) W(X) = a_3 \sum_{i=0}^{p-1} \iint\limits_{\partial D} \left[\Delta^i u(r) \frac{d\Delta^{p-i-1} W(Y)}{dn} - \Delta^i W(Y) \frac{d\Delta^{p-i-1} u(r)}{dn} \right] dS_Y,$$

for every $X \in D$, with $a_3 = -(4\pi)^{-1}$, where d/dn denotes a normal derivative in the internal direction.

Given a function U of class C^{2p} of the real variable r defined for r > 0 we have

(3)
$$\Delta^{j}U(r) = U^{(2j)}(r) + 2jr^{-1}U^{(2j-1)}(r) \quad (j = 0, 1, 2, ...),$$

whence the transformation

$$U(r) = r^{-1}V(r)$$

converts $\Delta^{j}U(r)$ into $r^{-1}V^{(2j)}(r)$.

Therefore equation (1) takes on the form

(4)
$$V^{(2p)}(r) + k(r)V(r) = 0.$$

Let us consider this equation in the complex domain with initial data

$$V(0)=V'(0)=...=V^{(2p-3)}(0)=0\;, \ V^{(2p-2)}(0)=1\;, \quad V^{(2p-1)}(0)=c\;, \quad c
eq 0\;.$$

From well-known theorems about the solution of linear equations in complex domains ([2], p. 370) it easily follows that equation (4) has one and only one entire solution. It may be obtained by formal computations. Let

$$k(r) = \sum_{j=0}^{\infty} b_j r^j$$

be the development of k into the Maclaurin series. Upon setting

$$V(r) = r^{2p-2} + \sum_{j=0}^{\infty} d_{2p+j} r^{j}$$

we easily obtain the system of equations

$$\sum_{i=2p-2}^{j} d_i b_{j-i} + \frac{(2p+j)!}{j!} d_{2p+j} = 0 \quad (j+2p-2, 2p-1, ...)$$

which, together with conditions $d_{2p-2} = 1$, $d_{2p-1} = C_1$ determines the coefficients uniquely.

It follows that all the coefficients d_i are real, whence the function k is real.

The function U(r) = rV(r) is obviously of form $r^{2p-3} + O(r^{2p-2})$.

THEOREM. The above constructed function is a fundamental solution of equation (1).

Proof. Let us check conditions 3°, the remaing ones being obvious. Since

$$U(r) = r^{2p-3} + O(r^{2p-2}),$$

we infer by (3) that

(5)
$$\frac{d}{dr} (\Delta^{j} U(r)) = \frac{d}{dr} (U^{(2j)}(r) + \frac{2j}{r} U^{(2j-1)}(r)) = O(1)$$

for j = 0, 1, ..., p-2, whence

$$egin{align} rac{d}{dr} ig(arDelta^{p-1} U(r) ig) &= rac{d}{dr} ig(U^{(2p-2)}(r) + rac{2p-2}{r} U^{(2p-3)}(r) ig) \ &= rac{d}{dr} ig(rac{C_2}{r} + O(r) ig) = -rac{C_2}{r^2} + O(1) \; , \end{split}$$

 $C_2 \neq 0$, being a convenient constant. Let the functions u and W by of class C^{2p} in a bounded domain D, and of class C^{2p-1} in \overline{D} , let the boundary ∂D of D be of class C^{1}_{σ} , then (see [4], p. 18)

(6)
$$\iint_{\mathcal{D}} (u \Delta^{p} W - W \Delta^{p} u) dY$$

$$= -\sum_{i=0}^{p-1} \iint_{\partial \mathcal{D}} \left(\Delta^{i} u \frac{d \Delta^{p-i-1} W}{dn} - \Delta^{i} W \frac{d \Delta^{p-i-1} u}{dn} \right) dS_{F}.$$

We assume that W is a C^{2p} regular solution of (1) in D and that W is C^{2p-1} in \overline{D} . We substitute the solution of (1), U(r), into the place of u in formula (6). Thus we can apply identity (6) to the domain $D\setminus K_R$, K_R being a ball with centre X and radius R. This yields

(7)
$$\iint_{D\backslash K_R} (U\Delta^p W - W\Delta^p U) dY$$

$$= -\sum_{i=0}^{p-1} \iint_{\partial(D\backslash K_R)} \left(\Delta^i U \frac{d\Delta^{p-i-1} W}{dn} - \Delta^i W \frac{d\Delta^{p-i-1} U}{dn} \right) dS_Y.$$

The left-hand side in (7) equals zero, whence

(8)
$$\sum_{i=0}^{p-1} \iint\limits_{\partial D} \left(\Delta^{i} U \frac{d\Delta^{p-i-1} W}{dn} - \Delta^{i} W \frac{d\Delta^{p-i-1} U}{dn} \right) dS_{Y}$$

$$= \sum_{i=0}^{p-1} \iint\limits_{\partial K_{R}} \left(\Delta^{i} W \frac{d\Delta^{p-i-1} U}{dr} - \Delta^{i} U \frac{d\Delta^{p-i-1} W}{dr} \right) dS_{Y}.$$

We write the sum of integrals in the right-hand side of (8) in a brief form $\sum_{i=1}^{p-1} (J_i - K_i)$. Thus we show that

(9)
$$\lim_{R\to 0} J_0 = -4\pi C_2 W(X) , \quad \lim_{R\to 0} J_1 = \dots = \lim_{R\to 0} J_{p-1} = 0 ,$$

$$\lim_{R\to 0} K_0 = \dots = \lim_{R\to 0} K_{p-1} = 0 .$$

In view of the mean value theorem we have points $Q_1, ..., Q_{p-1}$ all $\epsilon \partial K_R$, such that there hold equalities

$$J_0 = 4\pi R^2 \left(-C_2 R^{-2} + O(1)\right) W(Q_1) \xrightarrow{R \to 0} -4\pi C_2 W(X) ,$$

$$J_i = 4\pi R^2 \Delta^i W(Q_i) O(1) \xrightarrow{R \to 0} 0$$

for i = 1, ..., p-1. An analogical estimation we have for the integrals K_i , which implies (9). Thus by (8) we obtain (2).

References

- [1] M. Filar, Konstrukcja rozwiązania podstawowego dla równania $\Delta^p u(x_1, x_2, x_3) + ku(x_1, x_2, x_3) = 0$, Prace Mat. 9 (1965), pp. 207-212.
 - [2] E. Goursat, Cours d'analyse mathématique, t. 2, Paris 1926.
- [3] J. Musiałek, Construction of the fundamental solution for the equation $\Delta^2 u(X) + ku(X) = 0$, Prace Mat. 9 (1965), pp. 213-236.
 - [4] M. Nicolescu, Les fonctions polyharmoniques, Paris 1936.

Reçu par la Rédaction le 15. 9. 1967