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1. Introduction. This paper is concerned with some aspects of the
geometry of spaces whose fundamental invariant is a parameter-invariant
multiple integral. In a special case the integrand function is the volume
element in a Riemannian space, and the geometry is determined by
the metric two-index tensor giving the inner product of two tangent
vectors. The difficulty of deriving a two-index metric tensor in the general
case has been the subject of a series of papers by Iwamoto, Katsurada,
Kawaguchi and Tandai published in Tensor in 1960-1970. Others, such
as Barthel [1], Buchin Su [4] and Rund [10] have been concerned with
the possibility of building up a geometrical theory of multiple integrals
without a two-index metric tensor at all. One universal objective has
been to find a connection which is “Euclidean” in some sense. When
a two-index metric tensor exists, the Euclidean connection is expressed
by the vanishing of the absolute differential of the metric tensor. When
no such two-index metric tensor exists, some equivalent concept is in-
troduced. In Barthel’s treatment both the metric and the connection
coeffictents refer to multivectors. In Buchin Su’s treatment the vanishing
of the absolute derivative of the two-index metric tensor is replaced by
the requirement that a set of “equations of connection” are satisfied.
Another objective has been to express the Euler-Lagrange equations
characterizing extremal subspaces in a simple way in terms of the connec-
tion and tensors derived on using it. Buchin Su sets this down as his
second postulate for the determination of the connection, but he did
not obtain the connection in terms of the fundamental integrand function
using these postulates. Barthel introduced a concept of Mean Curvature,
but the condition for an extremal subspace could not be expressed in
terms of that notion alone.

In two recent papers, the author has returned to these questions.
In one paper [7], it is proved that, using generalized Christoffel symbols
introduced by Rund [10], it is possible to determine a connection which
will satisfy the “equations of connection” of Buchin Su as well as his
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second postulate relating to the Euler-Lagrange equations. In another
paper [8], it is proved that when a two-index tensor exists, it is possible
to derive a Euclidean connection entirely from the integrand function,
but that the connection so obtained will only satisfy the second postulate
of Buchin Su on the condition for extremal subspaces provided the areal
space reduces to one of the three special cases associated with the names
of Finsler, Cartan, or Riemann.

We start with some of the well-known concepts necessary for dealing
with Areal spaces, including the possibility of introducing a two-index
metric tensor. There follows an outline of the possible treatment of an
m-dimensional subspace A, in an areal space 4,, including the first,
second and third fundamental forms of 4,, in 4,, with an indication of
the difficulty of arriving at a suitable treatment of extremal subspaces
in this approach. Finally, we dispense with the metric tensor and give
the first and second variation of the multiple integral in terms of the
tensors derivable from a connection satisfying the two postulates of
Buchin Su.

2. Areal spaces. We consider a region of an n-dimensional differen-
tiable manifold which is covered by one coordinate neighbourhood with
coordinates #° (¢ =1,...,n) and a subspace of dimension m < n given
parametrically by

i i
=" (uty ..., u
Let

(2.1) 8 = (”{L[w(u), g—z(u)] dul...du™

be a parameter-invariant integral ([10], p. 268) over a region (m) of the
subspace bounded by a fixed (m —1)-dimensional boundary. The L is
a function of n+4nm variables 2* and p% of class C* at least in all the
variables and satisfies:

(a) L(x, p,) > 0 for linearly independent p,;

(b) L(z, A2 py) = AL(z, p,) for 1 = deti > 0;

(¢) writing L;; = 0;L = 0L/op. and p; = dlogL/op: = L™'L;? we
have the relation L;; p; = 8L or pip; = ;.

For later use, we also write
(2.2) B = pips, v = 6i—Bi.

The Legendre form will be

(2.3) Ly = L™*(LL;yf —L;; L5 + L;3 Ls%).
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A function L satisfying the above-mentioned conditions may be
expressed in terms of simple m-vectors

(2.4) pirim — pT — mlpd ... pim,

where we follow Barthel [1] in using a capital letter to indicate a composite
index. It is well known that there exists a function f(x, p’) such that

(2.5) - fa, pI) = L(xiy p::)

and studies on areal spaces have often been based on this function f rather
than on the L originally given. If we write F# = L™, we follow Rund [10],
p. 288, in introducing the tensor densities
a, m Q,
(2.6) 95 = 5 F3i-
We then introduce a covariant vector density of components g,
such that

(2.7) 9:(, ) = e.050%

are the components of a covariant tensor of the second order. We impose
the further condition on the p, that if we form

(2.8) bep = g,-_,-pipfé,
then
(2.9) det (bys) = L.

Since the determinant of the b,; does not vanish in view of condition
(2.9), we can define its reciprocal »* and hence write

(2.10) | pi = baﬂgijpz}'

The tensor determined by (2.7) subject to condition (2.9) can serve
as a two-index metric tensor in the areal space 4,, and it is possible to
obtain connection parameters (deducible from the L and its derivatives)
which will have the property that the associated covariant derivative
will satisfy

(2.11) ngi]' - 0.
We refer for details to the author’s paper [7]. This is done by con-

sidering an osculating Riemannian space along a curve determined by
a relation of the form

(2.12) api +Gis(z, p)d’ =0,

where the functions G are homogeneous of the first degree in the p variables.
The three-index symbols of Christoffel for this osculating Riemannian



186 E. T. DAVIES

space are given by
(2.13) 2" = g™ (€95 + €, — €x94)
where ¢; = 0, —G.;07.
Condition (2.11) is therefore satisfied by the construction of the

functions I We have to choose the functions G to depend entirely on
the function L and its partial derivatives. There are various possibilities
given in [6] and in this paper the choice was G.'; = G;};p%, where

i ¢ i.v ) m n

the {j@k} are the three-index symbols of Christoffel formed from the g;;

defined in (2.7), and where

(2.15) tim = 9"Cinim

with

(216) 201']';2 = giy';?c'l'gmn;?cy;nﬂ?_gmn;tlch;nﬂ?’
so that

(2.17) Cisayipi = 0.

The Euclidean connection equations (2.11) could therefore be ex-
pressed by

09 m m
i Gt g TV = G

(2.18) 9iisk = 9m Oy 5% T 9mi O3 ks
where we have put
(2.19) I, = I+ 6040438,

and we can express the absolute differential of any vector field X in
the form

(2.20) DX = X4+ I} X da* + 053 X dpt = dX' + 0l X
3. Subspaces. With a subspace A4,, given parametrically by

oz’
ou*

(3.1) ¥ =a'(u®) and p=

we consider a vector field X* tangent to A4,,, so that its components as
a tangent vector field to A4,, can be given in terms of the coordinate system
] :
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u®in A,,, by &, with X’ = pi&® and & = p;X’. We define an absolute
differential for the £ by the requirement

D& = d&* + w3 &® = p; DX’
which immediately gives us
(3.2) wj = pi(dps+ wjp}),
so that, for the “mixed” tensor p: itself, we have
Dy, = dp.+ wjpi— oip;
or, assuming (3.2) and (2.2),

(3-3) Dp; = y;(dpl+ wipg).

Since the functions Cf;j satisfy (2.17), this simplifies further to
(3.4) Dp; = yj(dpl+T,0 07 da™).

From the definition -of I" given in (2.19) we can further write
(3.5) Dpl = YDy + DanB P AW = 0050,

If, with respect to the metric g,;, we introduce the n—m vectors
¢ (rys =m+1,...,n) with

(3.6) giﬂi!lﬁ = Oy, gi;'QfPf; =0, ¢ = gijQZa
we can define the second fundamental form of A,, with respect to the r*"
normal by

(3.7) ;D3 = gl ,dutdu’ = o du’dul.

1

The third fundamental form can also be introduced as follows:

Let ! be the unit m-vector corresponding to the m-vector py, ... p,,,
where (for the measure of multivectors, we refer to Duschek and Mayer [9],
p. 49) we have

D(py --- Pmy) =_'m! (Dpp)pe -+« Py +-eo+Pp - Pm—;(DPm])]-

If we denote by df6 the angle between the m-vectors ! and !+ DI,
we have
Kl, 1+DT) 1

2q — _
cos a4, 544D, 1+D> 14 Dij?’

so that sin?df = |DI|2. o
Using the abbreviation 6,5 = g;; w,’, w,/sdu’ du’, we get

b, bim
1 * o ¢« o o . . o o o
(3.8) |Dl|2 = — Z =" 0,
b | .. 0.5
bml bmm
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which, for the case of Riemannian spaces, reduces to the “angular form”
appearing in Bortolotti [3], and which, in turn, is the generalization
of the third fundamental form of a surface.

In terms of the metric coefficients which have been introduced in
this section, the Legendre form can be written as

(39) L:f = badgmn;f'y;npg baagimy;n'

The first term is written *Lj’ and is called the ecmeiric tensor by
Kawaguchi, who proved that the vanishing of this tensor is the necessary
and sufficient condition that the general areal space reduce to one of
the “model” spaces of Finsler, Cartan, or Riemann.

If we express the condition

d
(3.10) E;(L) = W(L;‘;) —L,;, =0
in terms of the connection parameters I' of (2.13), we obtain
(3.11) LY wfy+ B T § 9% = 0.

In the general case, therefore, condition (3.11) would only simplify
if connection coefficients can be found for which

(3.12) m I Pk =0

which is just the second postulate put forward by Buchin Su for the
determination of a connection in areal spaces. In a recent paper [8],
the author has expressed condition (3.12) in terms of the ecmetric tensor
and proved that condition (3.12) will only hold for any connection coeffi-

cients I' obtained by the method of section 2 if we are dealing with one
of the special cases of Finsler, Cartan, or Riemann. We may therefore
state

THEOREM L. From the integrand function L of a parameter-invariant
m-fold integral there can be defined a two-index metric tensor and a con-
nection such that the covariant derivative of the metric tensor vanishes. For
an m-dimensional subspace the first, second and third fundamental forms
can be defined. The condition for a minimal subspace can only be expressed
in the simple form

L;-']‘-G wa"ﬂ =0

for the particular cases m =1 or m = n—1 or for the case where the areal
space reduces to Riemannian space.
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4. First and second variations of a multiple integral. In his treatment
of the Calculus of Variations for multiple integrals, Rund [10] has expressed
the Euler-Lagrange equations for the vanishing of the first wvariation
in terms of a four-index metric tensor which he has introduced. If we
write F = L*™ and use the abbreviation

d
(41) By(F) = —— (F3)—F.;

a

corresponding to what has been written for L in (3.10), we have

dL

2 2 (2
4.2 E,(F) = —L*'B,(L)+ —|— —1) L¥m-? L
(4.2) (1) = — i )+m(m ) e Lt
whence, using the identity
(4.3) E,(L)p, =0,
we deduce

) 2 [2 arL
(4.4) E,(F)p, = ——(——1) Lz’"‘“—;.
m\m du

Using this and (2.2), we can give the relation
2 .
(4.5) — L*™7By(L) = E;(F)y}
m .
which is equivalent to a relation given by Rund [10], p. 290.

The metric tensor is defined by (2.6) which is related to the Legendre
form by

(4.6) g vi = I¥mLY.
Thus we can write
N - a . ‘i ’I:G m
(8.1) B(Z) = T g o+ e L oo,

where the generalized symbols of Christoffel appear in the brackets on
the right-hand side.

Using the identity
(4.8) Liifp, = 6;L3f —8,L;;
and expressing F;y in terms of the corresponding expressions for L,
we deduce

(4.9) 93 B vi = 0,

so that if we introduce the notation

i i ke m
(4.10) W,y g = yk(pakﬂ+ =hma} prﬁ) y
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then the vanishing of the first variation is characterized by
(4.11) 9w, = 0.

The generalized symbols of Christoffel appearing on the right-hand
side of (4.10) do not lend themselves to the introduction of a suitable
curvature for the examination of the second variation of the multiple
integral. For this purpose we use connection parameters recently intro-
duced [7] which can be easily deduced from these generalized symbols.
If we put

i 'is ki
Hu B — {h]ai papﬂ
and write
T 1 i . a
(4.12) Iy, = mﬂa'piﬂe,
the I' so defined satisfy the right transformation laws and also satlsfy
the two conditions

(4.13) c’)kL—I’j”‘kpf,a;-‘L =e¢,L =0
and
(4.14) BT § Bk = 0

which were imposed by Buchin Su for the determination of connection
parameters suitably related to the multiple integral. Condition (4.10)
can. now be written as

(4’15) ﬂ - yk(pa ﬂ+ 'npa pﬁ)

i.e. as a mixed tensor which is a natural generalization of the normal
curvature tensor in Riemannian geometry. Using the operator ¢, defined
in (4.13), the curvature tensor arising from connection (4.12) is

(4.16) R = eIy + i I — k1,

where %/l denotes terms obtained by interchanging the two indices k
and I. We now proceed to use (4.12), (4.15) and (4.16) in obtaining an
expression for the second variation of the multiple integral for the case
where the first variation vanishes. If a comma denotes differentiation
with respect to the coordinates a°, and a semi-colon the corresponding
differentiation with respect to p%, we have L ; given in terms of L;; and
of the connection coefficients by (4.13). From that we obtain further

(4.17) Ln‘;? = Lamypypm +L;%sz+13,fnpnfnmuf,
(4.18) L, =(L; 0 ps T+ Ly Y L+ L dps T s L) oy D™+ Ly Loy T .

Let us now consider a 1-parameter family of subspaces of the form
& =a'(uly...,u™;e) all with the same boundary of dimension m —1
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and all reducing for ¢ = 0 to #* = z*(u?, ..., ™). Then L would be a func-
tion of e, and putting S(e¢) for the integral corresponding to (2.1),
the first and second variations of the S would be given by 8'(0) and
8”(0) for which the integrand functions would be 0L/de|,_, and
0%L/0e?|,_,, respectively.

- Putting
o — ox®
 0e =0’
we get
oL X )
(4.19) — = —0'E;(L) = L; ;D"
de oo

If we take account of the identity E,(L)p’ = 0 which is an immediate
consequence of the homogeneity conditions satisfied by the functions L,
we conclude that the component of v tangential to the subspace does not
contribute to the integral S'(0) at all, so we may assume that the varia-
tion vector v is normal to the subspace at every point. From the second
equality occurring in (4.19) we can conclude

I. The first variation of S vanishes if the variation vector is parallel
along the subspace.

II. The first variation of § vanishes if the covariant derivative of
the variation vector is normal to the subspace at every point.

Using (4.17) and (4.18), we can obtain the integrand for the second
variation when the first variation vanishes in the form

0%L .
‘ = L; 3 D,v'Dyv’ + LB R,;0' v +

. 2 ,'U
0e? |e—o

(4.20)

+2LB ;50 v'D v — Lp,.'v v’F,,,kwa 5

If the variation vector is parallel along the subspace, then the right-
-hand side of (4.20) simplifies and the sign of the second variation of §
is determined by the tensor

(4.21) .B:Rirsj F‘l 3 kwu B

When m = n—1, the Legendre form becomes expressible in terms
of the first and second fundamental forms of the subspace as introduced
in (2.8) and (3.7), and (4.20) reduces to

0%L
(4.22) _ag? o = b“ﬁaawaﬁw—Uwz;
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where o is the variation along the unique normal at every point of the

subspace. The U occurring is the invariant first introduced into the

Calculus of Variations by Koschmieder, which invariant was expressed

in terms of the Cartan spaces based on the notion of area by Berwald [2].
We may now state

THEOREM II. From the integrand function L of a parameter invariant
multiple integral there can be deduced a conmection which is Euclidean in
the sense of equation (4.13) on which the geometry of an areal space can
be constructed. The second variation of the multiple integral for an extremal
subspace may be expressed in terms of the tensors of the areal space by (4.20).
If the variation vector is parallel along the subspace, the sign of the second
variation is given in terms of the tensor (4.21).
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