ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
20, 3 (1990), pp. 465482

A. CHRZESZCZYK (Kielce)

STRONG SOLUTIONS OF NONLINEAR EQUATIONS
OF VIBRATIONS OF SHELLS

1. Introduction. The existence and uniqueness of weak solutions of general
boundary value problems of the nonlinear theory of vibrations of plates were
considered in [7]. Introducing the curvature terms (see [13], pp. 19-27) into
€quations (5)-(8) of [7] we obtain the equations of vibrations of shells

(11) ghW”—IAW”+DAZW—"kijSij—(SijW’,')’j =f3 in G X (Oa T)’
(1.2) ghui —s;;,; = f; :

(the summation convention),
(1-3) Sij = Cijm€n
(1.4) eij = Y(uij+up+wiw ) —k;w,

Where i, j, k, I = 1, 2. Here G is a given bounded domain of R2,(0, T) an open
Interval of R, and the real functions

W=w(x,, X,, 1), u;=ulx;,x;1, i=1,2,(x;,x,)eG, te(0, T),

are sought for. Physically, the functions w, u; denote the displacements in the
normal and tangential directions with respect to the middle surface of the shell.
The functions

fm =fm(x1’ x2’ t)’ m= 1329 35

are assumed to be given and represent the external forces. The symbol (-)" or,
generally, (1), p=1, 2, ..., denotes the derivative with respect to ¢, (-},
=1, 2, the derivative in the x-direction, and

AC) = ()= ()11 ()22

The constants g, h, I, D, c;ju; (i, j, k, I =1, 2) are given and denote the mass
density, the tickness, the inertia coefficient, the flexural rigidity and material
Coefficients of the shell, respectively. Finally, k; = k;;(x,, x,, t) (no summation)
are given functions denoting the curvatures of the shell and k;; = 0 for i # j.
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The system (1.1)}(1.4) differs from that considered in [7] by the terms with
derivatives of lower order and it is not hard to check that all the statements of
(7] are true for (1.1)}~1.4).

In the present paper we shall show that in the case of clamped shell, i.e., if
the boundary conditions are of the form

w=w,=0

1.5 oGx(0, T
(- u={(uy,u)=0 . @1

(9G is the boundary of G and () , denotes the normal derivative with respect to
0G), the weak solutions of (1.1}(1.5) with initial conditions
— WO = ol

(1.6) weo =W, whx, O =w't) for x = (x,, x,)€G

. u(x, 0) = u®(x), ufx,0) = ul(x)
are also the strong solutions, i.e., the solutions for which all the derivatives
which appear in (1.1)«1.2) are square integrable functions. Let us note that the
only previous results regarding the regularity questions for similar ini-
tial-boundary value problems are concerned with the square integrability of
derivatives of lower order (see [4], [5]). The more precise formulation of our
results is given in Theorem 1 of the next section.

2. The main theorem. Let W™?(G), 1 <p<oo,m=0, +1, +2,..., be
the usual Sobolev space with the norm |||, , (see [6], Chapitre I, Section 4) (*).
In the case p = 2 we shall write W™?(G) = H™(G) and || |, = | |l.,- We shall
use the symbol |- |,, also to denote the norm of the space {H™(G)}>. Let H5(G)
be the closure of CJ(G) in H™(G). The symbol (-, -) will denote the duality
between H3(G) and their dual H ™ ™(G). In the special case m = 0, (-, -) reduces
to the inner product of the space H%(G) = I?(G) of square integrable functions.
For a given Banach space X the symbols L*(0, T, X) and C(0, T, X) denote the
spaces of all measurable, almost everywhere bounded and, respectively, con-
tinuous mappings [0, 7] — X. We shall frequently use the abbreviated notation

X" =L*(0, T, H"G)), X§=L*(0, T, H}(G)).

Now we can formulate precise definitions of weak and strong solutions of
our problem (1.1)~1.6). |

DErFINITION 1. A system of functions w, u = (u,, u,) such that
weXi, weX), w'eX 2 ue{X§?: uwe{X%? uwe{X )2
is said to be a weak solution of the problem (1.1)~1.6) if for arbitrary functions
beHHG), ¥ =W Ve lHYG)

0"t g x)

axy' 0x%

o+ (x)

OxY Ox%?

(hu¢mm=(l )

Gay+azsm

14 1/p
dx) s [llmew =D, esssup

artazs<m
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and for almost every te(0, T) the integral identities
2.1)  (ghw"(9), ) +(IVw' (1), Vd)+(DAw(r), A9)
— (kij(®)si(2), ¢)+(Sij(t)w.i(t)’ ¢, = (fs(t), ),

(22) (ghu (@), ¥)+(5:5(0)s ¥i3) = (fi(0), ¥)
and the initial conditions 7
(2.3) w®(0) =wk, u®0)=u*, k=01,

are satisfied.

Remark. As is well known (see [6], Chapitre I, Section 4.3), our
assumptions concerning the regularity of functions w, u imply that these
functions can be identified with functions having the following properties:

weC(0, T, H'(G)), weC(0, T, H*(G)),
w,eC(0, T, H°G), u,eC(0, T, H *(G), i=1,2.
Thus, elements
w(0)eH'(G), w(0)eH *(G), u@e{H°G)}, u0e{H '(G)}?
are well defined. |
DEerINITION 2. A system of functions w, u = (u,, u,) such that
weX* wmeXi wPeXi,
weX3, umeX), uPeXx’ i=1,2,m=0,1,2,

is §aid to be a strong solution of the problem (1.1)1.6) if the functions w, u
Satisfy equations (1.1), (1.2) almost everywhere on G x (0, T), condition (1.6)
almost everywhere on .G, and condition (1.5).in the classical sense.

Using these definitions we can state our main result.
THEOREM 1. If the conditions

24 0GeC* KPeL®(Gx(0,T), KkPeW>>(Gx(,T),
i=1,2,p=0,1,2,3, m=0,1,

(2-5) Cijt = Cjikt = Crtij>  Cijkr€ij€kt = CE;jij

Jor some positive constant c¢ and for arbitrary &;, e, i, j, k, =1, 2,

whe H* "™(G)nH}(G), u"eH?> ™(G)nH}G), m=0,1,

_%Cijkl(ugk+ul?,z),jeH(l)(G), i=1,2,

Q7)) foex® p=0,1,2,r=1,2,3, f™eX' i=1,2, m=0,1,

(2.6)
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are satisfied, then there exists a weak solution of the problem (1.1){1.6) which is
also a strong one.

The proof of this theorem is realized in several steps.

3. Approximate solutions. Let us consider the following two eigenvalue
problems:

(3.1) A*w=2Iwin G, w=w,=0 on 0G,
(3.2) Tu=puin G, u=0 on 0G,
where

Tu = ((Tw),, (Tw),), (Tu);, = —5;y i=1,2,

(3.3)
§ij = i@, €y = 30t upg).

 Repeating the argument of Section 17, Chapter III of [10] (see also
Chapter II of [9]) we can prove that the problems (3.1), (3.2) have sequences of
eigenvalues {A 721, {m}7=1 such that the corresponding eigenfunctions
{z,}2%1, {v,};2, form bases of

HYG)nH}G) and {ue{H*(G)nH}(G)}>: Tue{H)(G)}*},
respectively.
Let us define the Galerkin approximate solutions of (1.1)(1.6) as functlons
of the form

wo(x, 1) = gm(z(x), te[0, T], xeG, ‘
(34) - n=1,2,...,

u,,(x, t) = Z h,.,,(t)U,.(X), U, = (unl’ unz)a v, = (vrla UrZ)’
r=1

satisfying the following system of ordinary differential equations:
(ghW:, z,-)+(IVW;:, VZ,.)'}‘(DAW", Az,.)—(k,-js,,,-j, Zr)
+(Snijwn.is Zr,j)=(f3’zr): r= 1: 21 ceey 1,

(3.5) |
(ghuma ri)+(sm'j’ Uri,j) = (f;s vri), l = 1s 29

where -
Sﬂljkclﬂd 2(umj+unjl+wnt nj) kuw ls]= 1, 2
The system 3. 5) is supplemented by the initial conditions

wim(0) = wy S W" as n—->co in H* ™G)n H2(G),
(3.6) o(@) m=0,1,

u‘”"(O)—u —u™ as n—»o in H> ™(G)nHL(G), -

where wi, u™ are prOJectlons of w™, u™ on the spaces spanned by {z,, ..., z,}
and {v,,...,,}, respectively.
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By the theory of ordinary differential equations there exists a solution of
the problem (3.5), (3.6) defined on some interval [0, T,] = [0, T]. The estimate
(4.1) of the next section implies the existence of a solution defined on [0, T].

4. A priori estimate. In [7] the following estimates were proved:

(4.1)

Iws (@)l 5, IwP(®)]l, < Const,
2 ' te[0, T],m=0, 1,
<

O, 142 @)l

under the additional assumption that k; = 0, i, j = 1, 2 (see estimates (81) of
[7.]). The modifications needed in the case of arbitrary k;; are not essential and
will be omitted. Instead, we shall give a detailed proof of stronger estimates

4.2) WP Ola-p, 14POll5-, < Const,  p=2,3, te[0, T],

Const,

Which play a fundamental role in our considerations.
The proof of (4.2) is based on the a priori equality of the form

(4.3) E@®) = EQ)+F®)+G@®)+H(), te[0, T],
Where (we drop the fixed index n in the symbols w,, u,)
E(t) = E, () +E, (1),
@ B0 = gh(Iw" @13+ (W @13)+ TIPw" O3+ D 4w" (@)]13,
(4.5) E, (1) = (55(0), €}5(t).
(46)  F(1) = —(5;(5), wils)W/5()) b —A(si5(), WilIWi(S)ls

+ 103 (s55(5), wiils)W/j(s))ds +5 } (si1(5), Wiis)w's(s))ds,
0 0

47 Gry=2 i (K5 (5)s15(s), W () + 2(Kiy(5) (), w""(5))
0

— (K7 (s)stj(s), w(s))—3(kij(s)stj(s), w'(s))
—3(kij(s)sij(s), w'(s))} ds,

43) H® = 2{{(76), w” () +(f7(S), u"(s))} ds.
0

Remark. Assumptions (2.7) imply that the system (3.5), (3.6) admits
2 local solution with absolutely continuous third derivative with respect to
t and with fourth derivative existing almost everywhere.

S. The proof of a priori equality (4.3). To check that equality (4.3) holds
true, let us differentiate equalities (3.5) twice with respect to ¢, multiply them
Y 9m(t) and h(t), respectively, and take the sums over r =1, ..., n. We
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obtain
(5.1)  (ghw™, w®)+(IFPwW™, Fw) 1 (DAW?, Aw®)

—((kijsi)'®, W)+ ((s;w, )P, W) = (f52, w'3),
(5.2) (ghu®, u®)+ (s, u®) = (12, ul).

Adding these equalities side by side, integrating over [0, f] and using the
elementary formulas

t
J{gh[w™, w®) + @™, u®) ]+ IVw™, Pw®)+ D(Aw®, Aw)} dt
0

=1(E,(0—E,0),
— (i), W) = —((kijsy+ 2kiysi; + kyjsiy), w'™) '
= —(sij, kif w+ 3kiw' + 3kiw” + k;w”) — (kijs,;, w'™)
— 2(kijsiz, W)+ (ki sij, W)+ 3(ki;st;, w)+ 3(kisij, w”)
= — (sijs kyyw)")— (kijsyys W)= 20ki; iz W) + (KE 5%, w)
. + 3(kijsi;, W)+ 3(kijsii, w”),
ie.,
— }((kijsij)”, w'")ds = —j"(sé_’,-, (kiyw)")ds—3G(2)
and i ’
(st ui5)—(sij> (kijw)™) +((sijw0)"s wiy)

III

(Szp i,j ( 1_1’ (kUW)m)"}-(SU, W,iW”-’)+2(S£j, WI:W’”)-I-(SU, " m

III

= (sij> i) — (8555 (kiyw)")+3(s5;, wWi'w j+3wiw ;4 3w, W'+ w, w’;’
—3(8,], Wi W)+ 2(s3;, wiw' )+ (s;;, wiw']
= (si}> €i7) +3((st, Wiw)+2(si5, Wiw')))

—3(st;, Wiw)+2(sij, wiw'})—3(s};, wiw')
= (57}, €f)+3(si, wiwy) +2[(s,,, Wwj) + (S35, Wiw/ )+(s,,, wiwj)]
—3(sij, Wiw')— 5(8.1,

= 3(st), €)Y +3(sy, wiw?yy +2(s,,, wiw) —5(si;, wiw')—3(si;, wiw’),

which imphes

I[(Sljs u;:/’ ( Ua (kzjw)m) ((Sijw,i)” m)] dt = 2(S1p )I —%F(t)’

we arrive at equality (4.3).
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6. Estimates for E(0). An obvious modification of calculations leading to
formulas (5.1), (5.2) gives

(6.1)  (ghw™(0), w"(0)+(IVw" (0), Vw" (0)— (DV 4w (0), Pw" (0))
— (ki) (0), W (0)+((s:5w.,:) (0), w7 (0)) = (£3(0), w"(0)),
(6.2) (ghui” (0), ui” (0))+(5:;0), ui'}(0)) = (£ (0), u"(0)).

Using (6.1) and the equivalence of the norms gh |||, +I|V(-)ll, and -],
of the space H'(G), we obtain

63) ¢, w01 < ghllw” O3+ 1117w (0)I3 = D(V 4w (0), Fw" (0))
+((kijsi) (0), w(0) —((s:w,Y (0), W5 (0))+(f3(0), w”(0)).

Here and in the sequel ¢,, k=1,2,..., denote positive constants not
depending on w,, u,. Relation (3.6) enables us to write

(6.4) VAW ()¢ < ¢, [|w'(0)]|; < Const.

Now, let us note that from the continuity of the imbedding H*(G) = W%4(G)
and from (4.1) it follows that

1w SwWPS)o < ¢ W)l o.a IWT(S)l0,4
S Glw I IWPG)1 < ey lws)llz [W™(s)ll; < Const,  se€[0, T],m=0, 1,

and, consequently,

©6.5)  IsfPe)lo < es[lu™ ()l + i (IwP @) W™~ P(s)
_ e

+ k)]0, WP (s)lg)] < Const, m=0,1, se[0, T].
Inequality (6.5) and the continuity of the imbedding H*(G) = L® (G) allow us to
Write

Ikisi)™ Gl € Y kP (S0, I P(s)]] < Const,
rp=0
©66)  NswI™S)lo< T 15260 W P(S)lo.00
p=0

<c ), WP PE)<ey ) W™ PE)ls, m=0,1, se[0, T].
p=0 p=0

Let us remark that due to (3.6) we have |w™ P(0)}i, < Const, and therefore
the expressions ||(k;;s;;)'(0)lo and [|(s;;w,;) (0)|, are bounded by a constant. We
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have also | f3(0)ll, < Const. In consequence, we get the inequality

¢, w03 < cgllw”(O),,
ie.,

6.7 w”(0)]l, < Const.
Similar considerations concerning equality (6.2) give
ghllw” O3 = (si;,;00)+1;'(0), ui"(0)) < lIs};,;00)+15 O)lo |t Ol -

Using the continuity of the imbedding H3*(G) « W%*(G) we obtain, for
m=20,1,

I (W,iW,j)f;'” () 0

< fo(n(wff}ws"-?’)(mno+ (WP WD) O)] )
r= .

<cg Y, (IWBOo IWT P O)llo. + WP O) o, IWE P (0)llo)
p=0

< ¢1o(IW™ )2 WOl 1, + WO, W™ (O)]]1,00)

63) < ¢4 (W™ ), w0l + [ w(O)] , | w™ ()] )) < Const,

ki w70l < ZO(PI(kﬁfl’jW""“”)(O)Mo+ Ik WS~ 2)(©0)lo)

< 2 (1500, W™ P(O)lo + I KEO)o, WS~ P(0)llo)
p=0

< ci2(IwO)l, + Iw™(0)],) < Const
and, consequently,
(6.9) 53O0 < exs(1u™ @)+ ll(ww )P O,
+ (kW) 7(0)lf) < Const, m=0, 1.
If we take into account that | f/(0)l, < Const, i =1, 2, we get

ghllu” )13 < ¢y lw” (),
Le.,

(6.10) lu”(0)fl, < Const.

It remains to obtain the estimates for |w”(0)|, and f{u"(0)l;- To this
purpose let us multiply the r-th equation of (3.5) by 4}2¢/,(0) and u h.(0),
respectively, use (3.1), (3.2) and sum over r=1, ..., n. We arrive at the
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equalities

(6.11)  (ghw"”(0)—IAw"(0)+ DA*w(0)— (kijsi)(0) — (s3;w,:),5(0), (432w (0))
= (f3(0), (4%)*?w"(0)),

(6.12) (ghui (0)—s;; ;(0), 55.10) = (£0), 57,000, i=1,2

(see formula (3.3)). Here (4%)'/ is the square root of the self-adjoint positive
definite operator 4% considered as the unbounded operator in L?(G) with the
domain of definition

D(4%) = H*(G)nH}(G).
Relation (6.11) and inequality (A.1) (see Appendix) give
(613)  cislw' (O3 < I(4w"(0), (422 w"(0))
= (ghw"(O) +DA?w(0) —k;j(0)s;;(0) —(5:;jw.),(0)—£3(0), (4%)'/2 W"(O))-
Let us note that from (4.1) it follows that
lghw”(O)llo < c16W"(0); < Const,
and (3.6) gives
1D42w(0)~£3(0)llp < c17(IWOl, + I £3(0)ll5) < Const.
Furthermore, from (6.6) we get
l(k:;5:)(0)] o < Const
and from (6.9) and the continuity of the imbeddings
H*(G) =« W**(G) c W*(G)
we have
lsisw.0.Olo < Nsij /@)W i(O)llg + 550w, 5Ol
< N5 Ol IwO)llo, o + s @)l o 1,10,
< €1a(IWOl1,0 + WOl 2,) < €10 W(O)]4 < Const.
Thus relations (6.13) and (A.3) imply

W’ (O3 < c20 W (0)]l 5
ie.,

(6.14) Iw”(0)]], < Const.

Relations (6.7), (6.10), (6.14) give E,(0) < Const.
Now, using relation (6.12), Korn’s inequality

(6.15) e llull? < @, &) < €22(5, &)
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(see, e.g., [11], p. 148) and integrating by parts we obtain
(6.16)  ca3llw”" ()T < gh(2(;(0), 5(0)) = gh(ui;(0), 5;(0))
(Qh“ '(0), 5 ;(0)) = "(Sik «(0) +f-(0) 5:’,:j(0)) = (Sik 1 (0)+f; j(O), 51";"(0))-
The estimate |s;;(0)], < Const is a consequence of the inequalities
124+ 13,0150l o < 24 [u(O)]}5 < Const,
w,:w ) ;0o < €25([ WO 1,0 IWO)I| 5+ W(O) 2.4 [l W(OM] 2.4)
< ¢26[[w(0)||3 < Const,
(ki w),;O)lo < Nk (O)llo,c0 W,x;Olo + W 1 (O)llg I Kt ;O 0,0
+ (k. (O)lo,00 + ik /O, o) IW(O)I; < €37 lW(0)], < Const,
which follow from the continuity of the imbeddings
H*G) « Wh*(G), H*(G)< W**(G), H*G)< H'(G),

relation (3.6) and assumptions (24). If we take into account that, by
assumption, || f;;(0)ll, < Const and that

155 ©@)llo < c2s llu” O,
(see (3.3)), from (6.16) we get
casllw” (O)I < c2ollw”(O),
ie.,
(6.17) lu”(0)]|, < Const.
The last inequality and (6.14) imply that E,(0) < Const. In fact, .we have

(si3(0), €55(0)) < c30(€ij(0), €i(0))
2
<631(|Iu"(0)llf+ D) (12,) IIWff’(0)||%,4IIWf}"”(O)Ilﬁ.H||W"(0)||5)

p=01ij=1

2
< eaafess+ T, IWPO)I3 1w PO)I3 +¢3) < Const,
p=0

where the first inequality is a consequence of (2.5). Thus relations (6.7), (6.10), (6 14),
(6.17) imply
(6.18) E(0) < Const.

7. Estimates for F(z), G(t), H(¢), te[0, T]. We begin with the estimate for
F(t). To this purpose let us note that from Hélder’s inequality we obtain

(7.1) (), WiIWHS) < IsEPOllo WMo, 1W5) 0,0
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form =0, 1, se[0, T]. The first term on the right-hand side was estimated by
a constant in formula (6.5). To estimate the remaining ones we use the inequality

2 lol3.e < casliolllvly  for ve HY(G)
(sce Remarque 3.1, Chapitre 6 of [6]) and the ‘elementary inequality

1
ab < %az+2 b* for a,beR, ¢>0.

In consequence we obtain .

(13)  (s{PGs), wils)W(s)) < ess W’ ()l 1w (),

036 36
<= [w' N3+ IIW”(S)II2

< _’—6338"' W' @I3+es7, m=0,1, se[0, T],

where ¢, is an arbitrary positive number and ¢, = 1.
Using the Sobolev 1mbedd1ng theorems instead of (7.2) we get, for
se[0, T];

(7.4)  (sisls), wisls)awlj(s)) < lsis)llo 1Ws(s) 0,4 I Wi($)lo,4

! I’ C3 I/’
< ess W, 1w S, < 22w (13+52
0

and '
(s505), Wil)Wi(5)) < i) Wil 0,4 W)l 0,0
< Cao [I5iiS)llo Iwj(5)Ho,e < ca1((s75(5), S(s)+ W ()113).
To complete the estimates for F(t) it is sufficient to note that (2.5) implies

(75) (Si_p S:") Ca2 (eq! el]) c43 (s;_’i’ ‘e;_,] ’

and therefore we have

(7.6) F(t) < 4; 2w ()13 + cas

%

t .
+cas [ (IW (M3 +(s5(s), eifs))ds, te[0, TT.
.0
The estimate for G(t) follows from the inequalities
(ki) w?) < ”k("')”o,m Is@16 1wl < carlisPllo WP,

< cas(IsP 5+ IW9NF) < cas(eso+(si)s €+ fw"Ii3)
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for m=1,2,3,p=0,1,2, ¢=0,1,2,3, in which the estimates
| Isflo < Const, r=0,1
(see (6.5)),

w9l < esy W9y, ¢=0,1,2,3,
and
[w®|, < Const, p=0,1,2

(see (4.1) and (7.5)) were used. In consequence we have, for te[0, T],

(7.7) G(f) < cs2+cs3 [ (W ()3 +(s5(5), €}5(s)))ds.
0

Finally, assumptions (2.7) allow us to write the estimate for the expression
H():

(7.8) HO < J(1LAOIZ 1+ 1w OIF + 1A GO+ 1L IF+ lw” (s)13)ds
0

t -
< csatess [(Iw”(SHi+lw"(s)i3)ds, te[O, T].
0 .

8. Completion of the proof of estimates (4.2). Taking into account the
a priori equality (4.3) and inequalities (6.18), (7.6)(7.8), for sufficiently small ¢,
we obtain

[
E(t) < cs¢+cs7 ( E(s)ds, te[0, T].
0

Gronwall’s lemma gives :
8.1 E(t) < Const, ' te[0, T],
and, in consequence,
(el5(0), €5(0)) < csgE, (1) < Const, te[0, T].

Since the terms |w?(t)li,, p =0, 1, 2, te[0, T], are estimated by a constant
(see (4.1) and (8.1)), we have

180, < Const,  te[0, T1.
By Korn’s inequality (6.15) we have also
lw" (O, < Const, te[0, T].

Thus estimates (4.2) are proved.

Let us recall that, in a general schema of Galerkin method of proving the
existence of weak solutions, the last ones are obtained as the weak limits (in
appropriate spaces) of subsequences of Galerkin approximate solutions which
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in our case are defined in (3.4)<(3.6). Estimates (4.1), (4.2) imply that the
sequences w,, u, have subsequences with the properties

wi —sw™  as v— oo weak* in X3,

wy' —»w” as v— oo weak* in X},
u™—u™  as v— oo weak* in {X{}2, m=0,1,2,

u) »u” as vo oo weak* in {X°}%

where the weak* convergence has the following meaning: if X is a Banach
Space and X its dual, then f,—f as n— oo weak* in I*(0, T, X) if

T . T .
[0, 6@)dt— [(f(), d®)dt  as >0
0 0

for arbitrary ¢ € L1 (0, T, X). For checking that the weak* limits w, u satisfy the
requirements of Definition 1, estimates (4.1) are sufficient. The corresponding
argument is given in {7]. In our case, however, the weak solution w, u is more
regular. We have namely

82 wmexZ, um™e{X})? m=0,1,2, w"eX}, u"e{X°}
Relations (8.2) play a crucial role in the next section.

9. Application of the elliptic regularity. theory. Let us write the system (1.1),
(1.2) in the form

(9.1) DA*w = —ghw"+IAw”+k,,su+(S:jW )itfs= Fa»
9.2) - Tu=F, =(F,, Fyp),

Where Ti; is defined in (3.3) an_d

9.3) F,= ughuf’-i-cijk,(%w iWy—kuw)i+fi,  i=1,2.

With the use of (8.2), Holder’s inequality and the continuity of the imbedding
H*(G) = "*~7(G), 1 < r < 2, we can show that almost everywhere on [0, T]

f Isijl" 1w I dx < ([ Isil2dx)’? (f Iw /272 7" dx)> ~r2
G G

< Isilow,illo, 202 <1 < Cyllsislloliwlls

(in this section the positive constants are denoted by C,, i = 1, 2, ...). The last
inequality means that almost everywhere on [0, T]

Is; 0wl < C, !IS.;(I)IloHW(t)II < Const.

 On the other hand, since t—~>su(t), t-»>w;(t) are measurable mappings
[0, T]—I2(G) and [0, T]- H?(G), respectively, the mapping. t— s, (Ow, (1) is
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measurable from [0, T] to L'(G) (see [12], Corollaire 3, Théoréme 26,
Chapitre 1V.3). Thus

s;w ;€ L*(0, T, L'(G)).

The continuity of the operator

a-. P -1,r
é—;i.L(G)aW ()

gives |
(s;w,),€L°(0, T, W= "(G).

From (8.2), assumptions (2.4) and (2.7) it follows that the remaining terms of
the expression F; belong to L*(0, T, W~'*(G)), i.e,

FyeL(0, T, W™'"(G)).

Using the definition of a weak solution and integrating by parts we obtam
for almost every te[0, T and for arbitrary ¢ € H3(G)

(DAw(e), 4¢) = (F4(0), ),

i.e., w(t) is a weak solution of the elliptic boundary value problem D A%w(t) =
S F3(t) with homogeneous Dirichlet boundary conditions. Regularity theory
for such problems (see [1]) gives

w(t)e W3(G) A H3(G) and  |w(@®)l,, < C,Fs]_,, < Const

for almost every t e [0, T]. Since the operator F, —w is continuous, t — w(t) is
measurable from [0, T] to W3"(G) n H3(G), and therefore

(9.4) weL*(0, T, W3(G) n H3(G).
Inclusion (9.4) implies that, for k, I, m =1, 2,
WaW ) = WimW, +w,w,, € L0, T, L*(G)).
In fact, almost evei'ywh‘e_re"on‘ [0, T] we have

1,113 = [ 1W,mf? 12
G . :
< ([ Wkl 7@ =7 ) 2= ([ 27120 = 2) g2 =2l
¢ G

= | w,km”%,Zr/(Z -nltw, I!(z),Zr](Zr*Z)
< CollwamllFIwali3., < Cslwiid, < Const.
Here we have used Holders mequahty, the continuity of the imbeddings

Wl r(G) - L2rl(2 r)(G) . Wz '(G) - L2r/(2r 2)(6), l<r< 2’



Vibrations of shells 479

and the continuity of differential operators
82
0%, 0%,

0
—: W(G)—» W*"(G).

L WG -W(G), o
’ i

Since the 12(G)-norm of the remaining terms of F, (i = 1, 2) can be estimated
by a constant without difficulties, we have ||F,(t)|, < Const for almost every
te[0, T], i =1, 2. The measurability of t—F,(t), i =1, 2, can be proved
similarly as before. In consequence,

FeL*(0, T, {Z(G))

and as before u is a weak solution of the elliptic boundary value problem for
the system (9.2) with the homogeneous Dirichlet boundary conditions. Due to
the regularity theory for elliptic systems (see [8], Section 6) we have

lu(@)i; < CellF(@)fo < Const
and
@5 - ueL>(0, T, {H*(G)n HA(G)}?).

Here and in the sequel we omit the simple argument concerning meashrability
Now we can repeat the procedure leading to (9.4), (9.5). We have namely,
fOr almost every te[0, T,

" lJJ"O C7("(u 1+u11)1"0+“(w W )1"0+”w|l )

and relations (8.2), (9.4), (9.5) imply that |s;;, i(Ollo < Const for almost every
te[0, T]. The continuity of the imbeddings

WGy = L*(G), W'2(G) < I*r=2(G), W'*(G) <« '*~"(G)
and Holder’s inequality yield
lIsijiwillo < CglisizilloIW,illo,e
| < ColWalzs < Ciollwla, < Const,
"Sijw,ij"() € Ci1llsijllo,2r12r-2) ”W!JIIO 2riz—n < Cralisijlly Iw u”u
< Cuzlisilly Iwlls, < COHSL
The last two relations give
I(s;;w.2),;(0)]lo < Const
almost everywhere on [0, T, ie. |
(5i#.0,€L°(0, T, G).

It is not d1ﬁicu1t to see that due to (8.3) the remaining terms of F, also satlsfy
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this inclusion and we have
F,eL*(0, T, L*(G)).

By using the regularity theory we obtain

Iw@®)lls < Crall F3()llp < Const
for almost every te[0, T] and
9.6) wel*(0, T, H(G)nH}(G)).
Relation (9.6) and the continuity of the imbeddings

W*2(G) « W4(G) « W2*(G) <« WH4(G)
show that for almost every te[0, T]
lwaw Dullo < W umW,illo + IwWuw allo + Iwaw allo + lIIwiw jullo
< Cis(Iwlls,alwll 1,4 +2[wl3.4) < Cysllwli} < Const.

As a corollary we obtain (w,w j),€ L*(0, T, H!(G)). The remaining terms of F;,
i=1, 2, also have this property and we get

FeL*(0, T, {H(G)}?).
Using the regularity theory once more we obtain
9.7 ueL*(0, T, {H*(G)n H}(G)}?).

10. Completion of the proof. The regularity results (8.2), (9.6), (9.7) allow us
to integrate by parts in formulas (2.1), (2.2) defining weak solutions. In
consequence we obtain \

(DA*w—F,, ¢)=0 for arbitrary ¢eCg(G),
(Tu—F, ) =0 for arbitrary ¢ e CP(G).

Thus, the expressions 42w—F,, Tu—F vanish in the distributional sense and
are square integrable. It is well known that in this case they must vanish almost
everywhere on Gx(0, T), ie, equations (1.I), (1.2) are satisfied almost
everywhere. '

"~ On the other hand, the imbeddings

H*G) < C*(G), H*(G)=C'(G)
imply that, for almost every te[0, T1],
#()eCHG)NH}(G), u(e{C'(G)nHIG)}?,

and this implies that the boundary conditions are satisfied in the classical sense
(see [2], Lemma 9.1).
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Finally, the obtained regularity of solutions implies
w, weC(0, T, H3(G)), u, ueC(0, T, HA(G))
(see [6], Chapitre I, Section 4.3) and the initial conditions (2.3) are satisfied in
the sense of the equality of two functions from the spaces H3(G) and H}(G),
Tespectively, i.e., almost everywhere on G.
Appendix. In this appendix we prove the estimate
Ay Clw; (0)I13 < I(4w; (0), (492w} (0)),

Where W, is defined in (3.4) and C denotes a positive constant. To this purpose

€t us suppose that the system {z,}7%=1 is orthogonal with respect to the scalar
Produyct

(¢, y1=(4"2¢, 4'2y),

Where 412 js a square root of the Laplace operator considered as an
Unbounded operator in I2(G) with the domain of definition

D(4) = H*(G)n HL(G).

This assumption implies also the orthogonality with respect to the scalar
Produyct

{4,’ ‘l’} —_ (A1/2(42)1/2¢, 41/2(42)1/2'11)’

there (4)*/2 is the square root of 42 considered as an unbounded operator in
I*(G) with the domain of definition '

D(4% = H*(G)~H3(G).

In Consequence the following equalities are true:

(AW (0), (4212w @) = (4 T gial0)z,, (4312 S gin(0)z,)
r=1 r=1

= Y AT g(0)gm(0)(4(4%) P, (4)'22,)

rg=1

= T A7V 0)ginO)(A A (4D 2, 4124712z

rg=1
%, 1R (G OF 14220 = T (@O 144 23
r=1 r=1 ,

= [|4"2(4%) 4w (0)I13,

Where (42)1/4 jg the square root of the operator (42%)"/? with

]

D((4%)"?) = H2(G).
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It is known (see [3]) that
Colldly < 14'29llo < Cylidlly,  peD(4'?) = H§(G),

(A2) Coml¥mlm < 14" Ynllo < Coms s Wl m=1,2, l//meD((Az)"f’4)»
HQ(G) o D((Az)”“) < HY(G), D((4*»'?*) = H3(G),

where C,, ..., Cs denote positive constants. Using (A.2) we obtain

(A3)  Culwi 0, < 4% 2wy ()l < C5ll(4%) 4wy (O)]],

< AP0l < IO,
0
C3 2 1/2 ’" ‘ C5C3CI r |
C C, 42 wa (O)llo < TC,Co wa )1l

and (A.1) is proved.
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