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An extremal arclength problem in some classes
of univalent and p-symmetric functions

by WIESEAW MAJCHRZAK (Lodz)

Abstract. Let 4, o, p be arbitrarily fixed numbers, 4,0€<0, 1), p=1, 2, ...

Let S*P) denote the class of functions g(z) = #4- 20,‘0 @np+12"P 1 which are holomorphic

and univalent in the dise K ='{z: |2|] < 1} and 7:-..1=1t>h that Re {zf’(2)/f(2)} > o in this

dise. Let L(®)(1, o) be the class of functions f(z) = z+ Zo?lcnp +12"P+1, holomorphic
n=

and univalent in K, for which there exists a function eg(2) e S¥® such that
Re {2f’(2)/g(2)} > A, where ze€ K and |e] = 1.

Let L, (f) denote the arclength of the image f[C,], whereC, = {z: 2| =7,0<r
< 1}, and f belongs to some family of functions. The fundamental result of the present
paper is an estimate from above of the functional Z,(f) in the family L(®)(4, ¢). The
result obtained implies analogous estimates in some subclasses of the family L() (4, q),
among others in S%®). All the obtained estimates are sharp.

1. Let 8®), p =1,2,..., be the class of functions

(1) f2) =2+ D @y, e

n=1

holomorphic and univalent in the dise K = {z: [¢| < 1}. Functions of
this form are called p-symmetric; they satisfy the condition f(e*™/Pz)
= ¢™™/Pf(z) for 2 € K.

Let 83, 0 < o < 1, be the class of functions of the form (1) satisfying
in K the condition

of' (2)
re| LG
e{ @) }> v

The functions belonging to the class S are called p-symmetric starlike
funetions of order o. For ¢ = 0 we obtain the known family 8*® of p-sym-
metric starlike functions.
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Let C), 0 <1< 1, be the family of functions of the form
@) =1+ D' a,,2""
n=1

which are holomorphic and satisfy the condition Reh(z) > A for z € K.

For every function fe 8@ there exists a function heC® = O
such that

2f'(2)

(2)

f(2)

A function f of the form (1) is said t¢ be p-syﬁmetric convex of order o,
0<o<11, if for ze K

= (1—o0)h(2)+o.

zfll(z)
Re{l —l-ﬁzT—} =0

The class of such functions will be denoted by S’f,”’. For ¢ = 0 we obtain
the known family 8® of p-symmetric convex functions.

It is not difficult to verify that f e S® if and only if 2f’ € §*@.

Let L™ (4,0), 0<A<1, 0< o<1, denote the class of functions
which are p-symmetric close-to-convex of order 4 and of type o (cf. [10]).
We say that f € L® (4, o) if and only if the function f has the form (1)
and there exists a function g such that ¢™g e S® for some real a and

e { f'(2)
9(2)

(3) >
for z € K.

It follows from the definition of L® (A, ¢) that a e (—arccosi,
arccosA>. Moreover, if o, <o, or 1,<4,, then L®(1,¢,) « L¥ (4, 0,)
or LP(4,, 6) « L? (2,, o), respectively.

If fe L™ (4, o), then for ze K

2f'(2)
g(?)

where ¢“g € §;® and h e CW,

For some values of the parameters 4 and ¢ we obtain known subclasses
of the family 8®), for example L® (0, 0) is the class of p-symmetric close-
to-convex functions in K [7]. Z. Lewandowski has proved [9] that this
class coincides with the family of linearly attainable functions which was
introduced by Biernacki [1]. If ¢ = 1, then g(2) = 2 and Re{f'(2)} > 4.
Hence L®(2,1) = R{P, where R{) is the class of functions of the form
(1) whose derivatives belong to C?). Observe also that if fe L®(1, o),

(4)

= (cosa —A)h(z) +A—isina,
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then it follows from (3) that zf’(z) = g(2) in the disc K. Thus L®(1, )
— 8. It can be also easily verified that §3® < L® (s, o).

The functions from the family L®(0, 0) are univalent [7]. Hence
and from the relation between the classes introduced it follows that the
functions from S*®), §» R® and L®(4, o) are also univalent in K.

For a given function f on K let L.(f) denote the arclength of the image
(under f) of the circle |¢| = . Let f be a function of class S® and let »
be an arbitrarily fixed number from the interval (0,1). Then L. (f) is
a functional defined on the class 8™ whose values are given by the for-
mula

() L) = [ If'(2)idel.

j2|=r

The natural problem to be solved is to find a sharp estimate from
above of functional (5) in a given class.

The problem has been investigated in the family S = 8O ([11],
p. 215), but the estimate obtained there is not sharp. Also in the class S®
the solution of the problem remains unknown.

The present paper gives the sharp estimate from above of the func-
tional L.(f) in the class L® (A, o). Such an estimate exists, since L.(f) is
a continuous functional and the class considered is normal and compact.

The result obtained for the family L®¥(4, o) gives rise to a solution

of the problem in the classes §*®, §®) R®.

2. We shall need the following well-known lemmas.
LeMMA 1. g € 82 if and only if for z€ K

g(e) = zexp{— 2(1—;") f log<1—zpe-"‘>du(t>},

where (1) is a non-decreasing function for t € (0, 2=) and u(2w) —u(0) = 1.
LeMMA 2. If u() satisfies the assumptions of Lemma 1 and if @(t) is
positive and infegrable with respect to u(t) in the interval {0, 2x), then

exp{ [ logp(t)du(t)} < f"(p(t)dp(t).

LEMMA 3. fe L® (4, 0) if and only if there exist functions g e S;®
and h, with ¢“h e CP for some real a, such that

o' (2) = €°g(2)h(2).
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LEMNA 4. €¢“h e O with some ae (—arccosi,arccosi), if and
only if

Zn —3t; 9%ia ia
(6) he) = oo [ 2EECLETTER g

— z?e—tt

0

for z € K, where u(t) satisfies the assumptions of Lemma 1.

Lemmas 1 and 4 follow from (2) and (4), respectively, and from the
Hergoltz formula for the family ('”; Lemima 2 can be found in [6], p. 156.
Lemma 3 is an immediate consequence of the definition of the class
L(”)(l, g).

Let F(x) be a non-negative measurable function of the real variable »
such that the measure M (y) of the set {z: F(x) >y} is the finite and

decreasing function of y for all positive y. Hence we can define an even
function F*(x) by the condition

F [} M(y)] =y.

The function F*(z) increases for ¢ < 0 and decreases for # > 0. In general
F*(x) may tend to + oo if # tends to 0.

The function F*(x) is called ([6], p. 278) the rearrangement of F(x)
in symmetrical decreasing order.

In [3] the following lemma has been proved:

LemMA 5. If F(x), G(x), and H(x) are non-negative and integrable
in { —a, a) functions, and if F*(z), @*(z) and H*(z) are their rearrangement
in symmetrical decreasing order in this inierval, then

f F(x)G(x)H (z)dz < f F*(2)G* () H* (z) dw.
3. Let us put ([5], p. 962 and 1054)
(7 (2, w) = f £ (1 —t)v1dt,

where Rez > 0 and Rew > 0 and

1 1
(8) F(a,B,7,2) = m f 1 — 8PN (1 —tz)de,
! 0

where Rey > Ref > 0, ze K.
We shall now prove the following fundamental

THEOREM 1. If f € L')(2, o), then for v € (0, 1) there is a sharp estimate
of the form

21 i
». r|L+7PeP% (1 —22)|
(9) L.(f) < of [L— 77 %1+ 21— dd.
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The equality in (9) is realized by the functions
2z 1 2(1l—0) 1 1
10 (2 =—B(— 1)F(1+— —y 14— z”)—l—
( ) f ) p p ’ p J p ) p b
1—24)2P*H! 1 21—0 1 1
e i B(l—l-—, 1)F(1+ (——), 1+—,2+—,z”),
4 P P Y4 P

where B is Huler’s beta function (7) and F is the hypergeometric function (8).
Proof. If fe L'®(4, o), then by Lemma 3

(11) o' (2) = €°g(2)h(2),
where g(z) € 8)®), ¢”h(z) € C®). From Lemmas 1 and 2

2(1

lg(2)) = lzlexp{——p_—") f log]l—zf’e‘i‘[dy(t)},

and hence
27

(12) g < J2l [ L —2Pe 20N du 1),
0

From (11) and (12) we have
2m

lf" (2)] < J2l R (2 f]l—zpe““]‘2(1 NP Gy (1),

and thus for z = re*?
27

h 10
Lr(f)=frif (re”)|d9 < ff T rikire”)| du(t)dd.

,'.p ipd —1tl2(1 a)/p

Putting 4 = ¢+1t/p and interchanging the order of integration,

we obtain
T orih(et? )
Lr(f) \f f L= dodu(t),

where { = r¢®. Observe that if €“h(¢) € 0P, then é“h(e?7¢) e CP.
Hence

r ("7 0)] - rh(2)]
ma,xf f — - dpdu(l) ma,xf f —— dpdp(t).
hec&p) 1 — &P 1 _ 7P 20—9)p w(t) e C(p) 11— 7| T _ rp21—=a)ip
Observe that the integrand does not depend on ¢ and u(27)—u(0) =1,

and consequently

2n
rh({)| dg
13 L(fil< max | ——————-
(13) (f) heC'(}_p)o ll_cplz(l—ﬂ)lp
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Let h, denote the function for which the maximum in (13) is attained.
By Lemma 4 there exists a function u.(?) such that

2n
‘e 1 0 ,—il 21a —22 3
ko (8) = ¢ f et 1— (Cp —it ) d-uo(t)'

Hence

r|1+¢p —u 2ia 2).6”)[
\ff 11— ¢p|2(1 a)/p]]_ e —1l| dpo(t)dgo.

Interchanging the order of integration, we obtain

27

2r
T|l+cp —1!( 2ia 2).6“)[
< d t).
Lr(f) = of {012223: f Il _ gp 2(1 - g)/pll . Cp6—1t| (P} d,“o( )

Since po(27) —u#e(0) =1, we have

ll + C]J —1!( 2%u 226“)]
11— 4-11 2(1—o)/p 11— Cpe—ttl

2rc
L,.(f) < r max f

0<Ii<2n b

Let us put ¢ = 9+¢/p, £ = re’®. Then

I +,’.p 1(p19+2a)(1 —24e” w)i 1
L ()< v max f T 1 — P gorDEI oD di.
Now put 1—23e"™ = g(a)e’™, where o(a) = V1—4lcosa+44% for

a € { —arccosi, arccosi). It can be ecasily seen that p(a) € {J1 —24], 1).
Then

F(9) = [L+rPe®o+29(1 D3¢~
=V1+2r°p(a)cos (pd +2a+7(a)) + 77 ¢*(a).

Observe that the rearrangement of F(#) in symmetrical decreasing
order in the interval (—m=/p, =/p)> is the function F*(§) = (1+
+2r? g(a) cospd +1°? o*(a))**; indeed, this function is even, increasing
for & <0 and decreasing for 4 > 0 and both the functions F(#) and

F*(#) have identical sets of values.

Similarly we show that the rearrangement in symmetrical decreasing
order of the function @G(9) = 1/[1—7rPe®?+20=9P in the interval
{(—m/p, =/p) is the function G*(#) = 1/[1 —rP¢P?*1=°V?  Finally, notice
that the function H(#) = 1/|1 —rPe®?| is itself its own rearrangement
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In symmetrical decreasing order in the interval { —=/p, n/p). Since

L+ 1P (1 2461y @
I(a,t,2,0) = f 1L —rPe™®| 11 — 7P @O0 2(1=)/p
0

ni/p

L+ 7P PP+29(1 —2267)| a9
=P f ll _ Tpe‘i_‘p!')l Il — P ei(p"+¢)l2(l—a)/p ’

—T/p

we obtain by Lemma 5 that for any values of a and ¢

Ila,1, 2, f [1+2r1’g(a ycos p? + 7P o (a) ]2 A
a .

—rPe ind l 1+2(1—a)/p

Thus

maxI(a,t, 4, o) —max
at

f [1 4277 g(a)cos pd +r*? "'(a)]”’dﬁ

ll rp zp011+2(1 o)/p

We shall show that

(16)

f”‘ [L 4277 o(a)cos pd +7°? g (a) T2 d&
max

1—rP 81'11"’|l+2(1—°)/p

" [1+2r7 [1 —22| cos pd -+ rP(1 —24)* ]
= |1 ,rpeuw'l 2(1—a)/p dad
0

for a e ( —arccos i, arccosi) and for arbitrary values of 1 and o.

S. S. Miller has proved [13] that I(ae,t,0,0)<1(0,0,0,0) for
te (0,2n) and a € {—=/2, =/2). This result can be easily generalized, by
using the same method, to the case of 1 = 0 and o € {0,1>. Thus

(17) I(a,t,0,0)<I(0,0,0,0)

for t € (0, 2=) and a € ( —=/2, =/2)>. The function I(a,t?, 1, o) is contin-
uous with respect to A and thus inequality (17) holds true also for 2 which
are sufficiently close to 0. So for small values of 4

(18) max |14 rPe®?+2) (1 —22¢7%) | dd

a,t ; l]. —7rP Bipal 11— r? e‘i(P’3+!)l2(l-—a)/p

B j-" [1+2¢7 1 —2A|cospd +#*7(1 —24]*d

» ipo 1+2(1—0)/p
1—r I

From (18) and (15) we obtain (16) for A sufficiently close to 0. Hence
it follows that the function W(g) = 1+2rPcospde(a)+7*?o*(a) defined
in the interval (|1 —2i|,1) attains the maximal value for g = [L—21|,

6 — Annales Polonici Mathematiel XXXVI.3
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if 4 is sufficiently close to 0. This shows that the function W () decreases
in {|]1—24},1) and attains the maximal value for ¢ = |1 —21| for any
2 €40, 1.

Thus (16) is valid for any admissible 2 and ¢. From (14), 15), (16)
and (18) we have

2m N
r|14rP 6?1 21|
|1 _ rpeip3|l+2(l—a)lp

(19) L, (f) < ad

for any values of 2 and ¢ and r €(0, 1).
If A< 4, then (19) yields (9). For l>

j‘ﬂ |1 47?1 —2)]|dd —f r|1+1 ePP+m (1 —23)]

|l _ 7,:p 61:;m5|1+2(1—cr)/p Tp 1p6|1+2(1 a)/p d'ﬁ?

and by Lemma 5

’

f 1+ 7P (1 —2])| a9 f r[147Pe®P?(1 —24)| dd

1—rP zpr3|1+°(l o)lp r”e”"“”(‘ a)ip

which proves that estimate (9) holds for 1> } as well.
The equality in (9) takes place for the function

T 14(1-20)¢°
(20) f(z) =f (1_C17)1+2(1—°)/p dc’
0

which belongs to the class L™ (4, o). It turns out that function (20) can
be expressed by formula (10) in terms of Euler’s special beta functions
-and a hypergeometric series.

4. We have already observed that S3® < L®)(¢, o). Moreover, for
A = ¢, function (20) is of the from

4

(21) flz) = (1 — 2Py

and belongs to the class S3®. Thus from Theorem 1 we obtain
COROLLARY 1. If f e 85®), then for r € (0,1)

2 .
ril+rPe®? (1 —20)|dd
(22) LN | s g
o

and the equalily is realized by function (21).

Since 8 = L®(1, ¢) and L™ (4, 1) = R{”, we obtain the following
corollaries of Theorem 1.
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COROLLARY 2. If fe 8, then for r e (0, 1)

- rdd
(23) LINS [ G ragmmaer’
0
where the equality is realized by the functions f, € :?f}" given by the formulas
1—(1—z)?
filey =1 201 for o # 1,
| —log(1—2) for o =14,
24) z 3 s
o 2
‘ B DF(—0, b, 3,5 for o %0,
fa(2) = 14
L%logl_z for o =0,
z _ (1 2(1—0) 1 1
@ e =g )
where p = 3,4, ...
COROLLARY 3. If f € R{®), then for r € (0, 1)
2t .
ril+rPeP?(1—24)|
(26) LS | T g

0
and the equality is realized by the functions f, € R given by the formulas
f1(2) = 2(A—1)log(1 —2)+(24—1)z,
2 1 1 1 (1 —21)27P*! 1
(2) = —B(— 1)F(1 —y14+— z”) +——B|1+— 1) X
fp ) P ’ ’ P ] ) ’ P P ’
1 1
xF(l, 1+—,24—, z”),
P P
where p = 2,3, ...
5. For some values of the parameters 4, ¢, p one can easily express
the integrals in the obtained estimates in terms of hypergeometric function
(8) (e.g., for the integral in (9) for A = o = 0 and p =1 cf. [4]).

Consider (9) for A =14, 6 =0, p =1. If p =1, then the extremal
function (20) has the form

( 2(L—0)(1—2) 4 (A— o)L — (1 —2)~7) 1
(1—0)(1—20) (1 —2)"=9 for o #2 1,

7@ =11 _aiylog(1—2)+ 2_(11:# for o =%’

(2(A—1)log(1—2)+(22—1)2 for ¢ = 1.
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Then making use of [2], 110.08, 111.06, 160.02, and [5], 8.114, we obtain

2nr 1—r2 P2 11 4r
= Fl——)— 1, ———|.

If in (22) ¢ = 0 and p = 2, then from [2], 110.06, 160.02, and [5],
8.113, we have
2nr 11 4r?
=——F|—, —,1,———].
L) = 1o P50 300 o)
6. Observe that functions (24) and (25) map the dise K onto a domain
with a boundary whose arclength is given by the formula

27

- dai 2o—1)p . P \e=Dip
Ll(fp) =0f |1_61'lp|2(1—0)/1’ =2 0f (sm?) ad

for p > 2; and this yields

kg

2
L ( fp) = 22+4(o—1)/17f (S]'.Iltp)z(u_ )/p (COS(p)ud_ 1)/p dy.
0

Since for function (7) we have

T

2
B(z, w) = 2 f sin*~ % cos™ "9 dd,
0

where Re 2z > 0, Re w > 0, it follows that

o—1
P

Vo 1 o—-1 1
(24) Bt =B (T2 g, T )
where 0 < 0 <1 when p =2 and 0 < o<1 when p = 3,4, ...
One can easily verify that the functional L. (f) increases with respect
to r, r € (0, 1), and thus from Corollary 2 and (27) we obtain

COROLLARY 4. For any function f e S"f,’”’, p=2,3,..., and for every
r€(0,1) we have

a—1+1 n
p 2 p 2

and o> 0 when p =2 and 6> 0 when p = 3,4, ...
Note that in the particular case 1 = ¢ = 0 from (9), (22), (23) and
(28) we obtain Miller’s results [13]. If, moreover, p = 1, then from (9),

(22) and (23) we obtain the results of Duren, Clunie [3], [4], Marx [12]
and Keogh [8].

- c—1 1
(28) L)<z )



Lxtremal arclength problem 297
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