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Characteristic function of a meromorphic
function and its derivative

by 8. K. SINGH (Kansas City, Mo.) and V. N, KuLkarnI (Dharwar, India)

Abstract. In this paper relations between T'(», f) and T'(r, f*) have been obtained,
whore T'(», f) and T'(r, f’) are the Nevanlinna characteristic functions of the mero-
morphie funetions f(z) and f’(z) respeciively. Also results pertaining to Nevanlinna
exceptional values have been established, and bounds for % (f’) in terms of Nevanlinna
defeets have been given, where

E(f) = limenp N f %?;1; )(r,llf’)’ .

For instance it has been shown that if }o(ai) = a (a2 # oo and o(o0)= 2—a), then
i

e—1 k(f) 2(a 1)

1. Let f(2) be a meromorphic function of order. ¢ (0 < p < o). For
a number a (0 < |a| < oo) letb

“(0.) = o) =limint 705 = 3 limup 2
6(a, f) = 0(a) = l—l]I[lSIl]_) ZET ;))

— — 1 m(r,a) N(r, a)

A(a, f) = 4(a) -—llffriﬂ.lp T f) lnr:mnf o)

where n(r, a), N(r, a), m(r, a), %(r, a), N(r, a) and T(r, f) have the usual
meaning, as in Nevanlinna Theory. See [9] and [10].
It is known that 0 < }'o(a)< 2. If Yo(a) = 2, the function. (f)is

said to have the maximum defect. We also say that a is an e.v. N or e.v.
V, according as o(a)> 0 or d(a)> 0. If o(a) =1, we say that ¢ is an
e.v. N with maximum defect. Similarly a is called an e.v. ¥V with maximum
defect if A(a) = 1.
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Let I denote a set of positive non-decreasing functions ¢ () such

that f I J)

< co. If for some g¢e®, liminf—————— >0, a is cal-
u oy (@) raoo 1 (75 @) (1)

led an e.v. E for f(z). See [11].
For meromorphic functions f(z) of finite order we have

(r,f)
(1) Hmint 7 Lm>2

(1) follows from the fact that (i) N(r, f') < 2N (r,f) since a pole of
f(2) of order m is a pole of f'(2) of order m+1 < 2m and (ii) m(r, ')
_m(r, ]; f)g m(r, f7)+m('r, ) a,ndm(r, fT) = 0(1) if f(2) is a ration-

al function and m(r,f’[f) = O(logr) if f(2) is a transcendental mero-
morphic function (of finite order).

2. We prove:

THEOREM 1. Let f(2) be a meromorphic function of order p (0 < g < o0).
Then

oL )
@ EST
T'(kr, f)
liminf ———= < o0
@) T S

for all positive constants k.

TeEOREM 2. Let f(2) be a meromorphic function of finite order having
{a;} as en. N such that

Dlo(a)=a (a; # =) and Zo'(ai) =2,

i 1

where a's are distinct (0 < |a;| < ). Then

T(r, f')y ~aT(r,f). )
CoROLLARY 1. If D' o(a;) = 1, a; # oo and o(oo) =1, then
1

T(r,f') ~Tf).
OoroLLARY 2. If 2"(“’1) =2, a, # oo, then

T, f') ~2T(rf).
See [11] and [14].
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TrHEOREM 3. Let f(2) be a meromorphic function of finite order and let
T(r,f') ~ al(r,f), where a>1, Then

6(co,f)<2—a and D o@)<e, @ # co.
CoroLLARY 3. If T(r,f') ~2T(r,f), then oo 1is neither ev. N nor
en. V for f(2). '
COROLLARY 4. If 2{0(’&;)-]—,1»(%)} =a and o(o0)+pu(o0) =2—a
(1< a<2), then " |
T(r, f') ~ al'(r, f);
where as usual u(a) 18 defined by '

R T .N(ﬂ", a) —N(".l a’)
wlo) =ttt ——rn -

THEOREM 4. If f(2) is a meromorphic funclion of finite order with
{a;} as e.v. N's (a; # o) such that > o(a;) = a, and p(o0) =2 —a, then oo
;

is not an e.n. N for f'(2).
CoROLLARY 5. If f(2) has two finite e.v. E, then oo 38 mot an en. &
for f'(2). (See [14], Theorem 5.)
THEOREM b. If f(2) is a meromorphic function of finite order with
{a;} as ew. N, such that Dlo(a) =a, a; # co and o(oo) = 2~ a, then
.

a—1 2(a—1
— < k(f) < ( ),
a a

fwh;ere
N(r, f)+N (1) .

- T(r,f")

k(f') = limsup

r—00

See [2], [3] and [9], p. 51.
CorOLLARY 6. If f(2) is a meromorphic function of finite order having 0
and oo as e.v. B, then f'(z) has 0 and oo as ev. N with maximum defect.

See [14], Theorem 4. |

Sinece ¢(0,f) = o(oo,f) =1 if 0 and o~ are e.v.® so a =1 and
hence, by Theorem 5, %(f’) =0, which gives ¢ (0,f’) = o(co, f’) =1.

CorOLLARY 7. If a =1, then ¢ must be a positive integer.

3. Proof of Theorem 1. We know that

ek
k—

(A) T(nf) <40 log l’—"(767',f’)+10g+(707‘)+5+10g+ I£(0)1

(k>1,7>0).

k-1

See [1], p. 171.
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Combining (A) with (1) we immediately deduce, that the order of
f'(#) is equal to p, the order of f(2). Thus

tmsup BT S _
>0 logr

Since 0 < g < oo, it follows that there exists a proximate order g(r)
relative to T'(r, f') such that T(r, f') < r°® for » > r, and T(r, f') = 7*® for
a sequence 7 = r,~>oc as n—oo, Hence, by (A), we have
T(rf)y < O0T(kr,f') (C constant, k> 1)
< O (Jer)eltr) for 7 = r,
~ OFeqe(
=0T (r,f') for a sequence r =r,.

.o L(r,f)
T )

‘This proves (2). The proof of (3) is similar to that of (2). We con-
sider a proximate order g(r) relative to T'(r, f) and use the fact that
T(kr, f) < (r)?™ for r=v

Remark 1. (1) is not true if f(2) is of infinite order. Consider

o= D(&]"

1

Hence

where 2, is a rapidly increasing sequence of positive integers. If we define

1
v = 3VV2(N —1)Ay_} N1,

then 7y ~3Y as N — oo, and

(4) T(ry,f) = {Nlog3+4-0(1)} Ay, +log(2NAy_,) +0(1),
(B) T(ryny f') > T(ryy, f)+1log iy +0 (1) —logry.
Hence, by (4), (5) and the choice of Ay, it follows that
. T(ry,f)
lim = 0.
Nosen TPy )

For details sece [6], p. 17.

Proof of Theorem 2. In what follows we take > r,. From the
inequality

PT(r, f) < T, +2Nr, ( f,)-i—O(logr)
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of Milloux [8], p. 298, we have

IS 2 Nira) N1y oo

<T@, f) T(r,f)  T(rf)

_ It ) {T(r,f'-)—N(r, 1/f’)} Ly ¥na

(r,) T, ) 2 Ty O

_ T(r,f") m(r,llf)+0(1) > Nirya)
- T(r,n{ T(r, f }+Z T, f)

Hence

(6) P < limsup

r—o00

{ m(r, 1/f')

T(r, 1) o} fimint iy

r-r0o T("7f)

N (r, “i
+Zl"im1’ T(rf)

Thus

3 O (0%
(7) Za(af.f) < 4(0, flimint 7ok

Now, given an &> 0, we can choose a,, @y, ..., 6, (p > 3) 80 that

Zo(a,.) <& (@ % o0).
p+1

Hence
o

ZO’(G;.;)>(I—S (a,;’:oo).

1
P
Since 1< a<2 and o(o0) = 2—aq, it follows that D o(a)> a—&>0,
1
go A4(0,f') > 0. Hence, by (7), we get

P

2 o'(a'i) T ’

1 . . (r)f)
20,7 ST

Further we Imow ([9], p. 104) that
T !
(r, ') 9

(9) lh?fgpmg —a(oo)—y'(oo)<_2-—0'(oo) =2—(2—a) =q,

(8)
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Hence, by (8) and (9),

D
)
ams _ W TS T

T0,7) S A0 ) S it T ) S e T f) S

Thus T'(r, f') ~ oT'(r,f) and 4(0,f’) =1, since ¢ is arbitrary.
Remark 2, The above theorem is not true for functions of infinite
order. For instance, it is known that if y(z) is any arbitrary positive

increasing function of 2 for 2 =0, then there exists an entire function
I'(z) such that

lim sup Z(r, ) =
o0 Y(T(r, F))

See [5], Theorem 11.

Using the above theorem we can easily construct an entire function
of infinite order for which Theorem 2 does not hold.

Remark 3. For any integer ¢ (1 < ¢ < oo) there exists a mero-
morphic function f(2) for which 7'(r, f') ~ (2 —1/q)T'(r, f), where for g= oo
we interpret 2—1/g as 2.

If ¢ =1, take f(z) =

I ¢ = oo, take f == ”/1-|—c ) or f(2) = tanz.

Then

I(r, f') ~2T(r, f).

So assume that 2 < ¢ < oo,
Let ¢(z) = f o~ dt,
0

onik [ |
a =— fe-"-’dt, =1, .00,
0
Let f(2) = ! Then
‘P(z)._ch.

r? 1 r?
mr,p) ~—, m|r, ~—, k=12,...,4q,
[ @ — 0y q’ﬂ?

H(rf) = Nir, oo, f) = (r;' ! ) =(1—%) T(r, 9) ~(1—%)T(r, 9.

P—

Hence

1.
g(oo, f) = E
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Also, for &k # 1,

N (r, :il—) = N(r, q:—lak) = (1—%) (Z(r, £)+0(1)).

Hence

1 1
d(a ,f)——- for £ =2,3,...,q, ¢o(0,f) =1.
i q

Now if we put a = (2 —1/g), then the total defect is attained and so

T(r, f') ~(2—%)T(r,f).

Remark 4. In the above example the defect at infinity is positive
and less than one and the total defect is attained and the function is of
finite order. Let us note that there do exist meromorphic functions of
infinite order for which the defect at infinity is positive and less than
one and the total defect 2 is attained. For instance, consider the entire
function f(2) given in [4], Theorem 4.1. For that function f(z), we have
o(o0) =1, o(a,,f) =0, (» =1 to o), where the a,’s form an arbitrary
sequence of distinet (finite) complex numbers and the o ’s form an arbi-
trary sequence of positive numbers such that ) o, = 1.

1
Put 0, = 2—a (where 1< a< 2), F(2) =m. Then
—

a(00,f) = 0(a1,f) =2—a

No@m) = 3 o0, —a(oo,f)+2cr.-—a

aF o bea)

and

Hence the total sum 2 is attained and 0 < o(oo, F) < 1.
Remark 5. Theorem 2 is true even if
D ole) =a and D o(a)+p(co) =2.
ajAco
This is an easy consequence of (9).
Remark 6. We have shown in Theorem 2 that 0 is an e.v. ¥ for f'(z)

with maximum defect. Under the same hypothesis we can prove that 0 is
an e.v. N for f/(z) with maximum defect, since we could have written in (6)

<m0 imme 0D 3himan 0

Which gives o(0, f') =1,
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Proof of Theorem 3. Since f(2) is of finite order,

mir, ') = m(r, %f) <m (r, J} )+m(r, £) < mr, f)+0 (logr).

Also -
N, f) =N )+N(f). .

Hence
T(r, ') = N(r, f')+m(r, ;) < N, )+ N(r, ) +m(r, f) +0(logr)
= T(r,f)+N(r,f)+0(logr).
Now, by assumption, T'(r,f') ~ oT (r,f). Hence
(a=1)T(r,f) < F(r,£)+0(logr).
Thus 6(c0) < 2—
Further we have from (7)

('}‘,f)
;) h.mm:E
a%‘o o (a) < 4(0, 1) TR

Hence, using the hypothesis again, we get

Do@)<a

e
Putting a =2 we get 6(o0)= 0. Hence ¢(oo, f)= 0. Thugco is not an e.v. ¥

for f(z).
Also putting ¢ =2 in (a—1).T (r, f) < N(r,f)+0(logr) we get

: N(r f) N(r,f) _

et Te,n e Ten
Hence 4(oo, f) = 0. Thus oo is not an e.v. V for f(2). Thls proves Corol-
lary 3.

Also
(10) llmsup T(r ’?)) 2—0(c0)—pu(o0) =2—(2—a) =a
and [15], p
T

(11) hmmf T((’ J})’ > 3 fola)+ (o) = a.

Combining (10) and (11) we get T'(r, f’) ~ aT'(7, f). Tlus proves Corollary 4.

Remark 7. From Corollary 4 we deduce that if o(c0) =1 and
Y {o(a;)+u(a)}=1, then T(r,f') ~ T(r,f). Because then o =1, as
a; 700

0(00) + p(o0) never execeeds 1.
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This improves a result of S.M. Shah and S. XK. Singh [14] which
states that if 0 and co are e.v. N with maximum defect, then T'(r,f’)
~ T'(r, f).

Proof of Theorem 4. From the second fundamental theorem of
Nevanlinna [9] we have for ¢>>3 (¢ an integer),

-

a
=)< ) 71, a)+5 ) +0Gogn).

(a—2) T(r, )+ 2N (, f) +N(r, :

Hence

Nind) , N1 g
Tf) T Tnf) T f)

N{r, a; N("‘af')_T(faf')
<Z T(r,f) YT T
By Rematk 5 we have T(r, f') ~ oT(r, f) and o(0, f') = 1if ' o(a) = a
and Z o(a;) +pu(oo) = 2. e
Hence, by (12), we get

(12) (g—2)+2

+0(1).

N(f) , Nmllf)  ~aN@ra) Nef)
—92)+ . o).
O e T ) S 4 T T ) T O

So

(18)  (¢—2)+2limsup 11\':((]{)) + liminf%

q
. N{(r, a;) . N(r, f")
< limsup IE —W—I— athnsup Tir i )

By assumption oo is not an e.v. N; hence

N f)
S T )

Further

th(r’ 1/f")

by T 0 smee o(0,f) =1

a
Hence, by (13) and the hypothesis ) o(a;) = a, we deduce a(oo, f') = 0.
: 1
This proves the theorem,
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Proof of Theorem 5. From N(r,f') < 2N (r,f) we get

N(rf)T(rf) _ 2N(nf)
T f) Tirf)  Tf) '

The equalities > o(a;) = a, D a(a;) = 2 imply that T(r, f') ~ aT'(r, f).

(14)

ajoo
Hence, from (14), we have
N(r, f') N(r, f)
15) alimsu < 2limsu = 2{1l—0c(o0 = 2{a—1).
( r_'mp T ,f r—,mp T( f) { ( ’f)} (a )

In Remark 6 we have shown that

N 1/f')

o me Tf)
Hence '
an E(f) = limsup i, fz),:;’l\; y 117 < 1i1i§1pi,r((:—:;:,l)) +

+h.1£§:1p l\;(f(‘;lflf)) < 2(aa—1') .

Further we have N (r, f) < N(r,f’) and

N, f) N ) I f) NaN(f';f')
T(r f) T("';f) I(r, f) T('r’f’).

Hence

(18) limsup (1:’ f,l)) | > 2 —

(Since by hypothesis ¢(co0) =2 —a.)
Finally we have
Ny f) N 1jf)  a—1

R > limsup gy H i = ey 2

by (16) and (18).

Combining the above inequality with (17) we get the result. If a= 1,
then %(f') = 0. Hence the order of f'(2) must be an integer. See [9], p. 61,
[4], p. 10, [12], [18]. This proves Corollary 7 since the order of f(2) is the
same a8 the order of f'(2).
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