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REMARKS ON JOINT DISTRIBUTIONS OF OBSERVABLES

BY

K. URBANIK (WROCLAW)

In the quantum probability theory the o-field of random events is
replaced by the lattice of orthogonal projectors in a separable infinite-
dimensional Hilbert space H. A countably additive function from this lattice
to the unit interval constitutes a state, the non-commutative analogue of a
probability measure. The Theorem of Gleason [3] asserts that every state is
of the form

(1) -t T,

where I runs over all projectors and Tis a probability operator on H, ie., a
positive operator of unit trace. Conversely, every probability operator deter-
mines a state by (1). From now onwards let ‘B stand for the set of all
probability operators on H. We shall denote by I; the space of all nuclear
operators acting in H with the norm ||T||, = tr(TT*)/2. Of course, B is a
convex and closed subset of I,. Further, by I, we shall denote the space of
all Hilbert-Schmidt operators on H with the norm ||T||, = (tr TT*)"/2. Ob-
viously, I; = T,, ||T|l, <||T||, for TeZI,, and

(2) NTUll, < (I TlI2 11Ul

for T, Ue I,.

In quantum theory, to every physical quantity or observable there
corresponds a self-adjoint not necessarily bounded linear operator on H. Let
A be such an operator. The probability distribution of 4 at the state T is
defined for all Borel subsets E of the real line R by the formula

pT(E) =tr I1,(E) T,
where I1, is the projector-valued spectral measure associated with A, i.e.,

A= [ (dd).
R
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The characteristic function of p#, i.e., its Fourier transform p%, is then given
by the formula

pR()y =tre" T

A system A,, A,, ..., A, (k = 2) of observables is said to be regular if

there exists a dense linear manifold D in H such that for arbitrary real
k

numbers ay, 4, ..., 4, the operator Y a;A; is well defined on D and is

j=1
essentially self-adjoint, so that the probability distribution py“1* "% jg

well defined at every state T. Of course, all systems of bounded observables
are regular.

In [9] I introduced the concept of the joint probability distribution for
regular systems of observables. Namely, a Borel probability measure p on the
k-dimensional Euclidean space R* is said to be the joint probability distribu-
tion at the state T of a regular system A,, A4,, ..., A, of observables if for
every k-tuple a,, a,, ..., a, of real numbers the projection of p onto the real
line defined by

k
(X1, X2, o0y Xi) = 3 4%
j=1
coincides with py”t " " %% Tt is clear that the joint probability distribution
is uniauely determined provided it exists. In the sequel it will be denoted by

pr' "% Then we have the equation

X
Y. | .
(3) ﬁ'T" “(ty, by ...y 1) = trexp(i Y t;Aj)yr.

j=1
Further, by P(A,, A,, ..., A) we shall denote the set of all states T for

which pr! " exists. It is evident that Te B(4,, A4,, ..., A,) if and only if the
function

k
(tl’ tz, ey tk)—’trexp(i Z tJAJ)T
j=1

is continuous and positive definite on R*. Consequently, B(4,, 4,, ..., 4,) is
a convex and closed in the topology of I, subset of P.
A relation between the existence of joint probability distribution at every

state and the commutability of observables is given by the following state-
ment:

Let A,, A,, ..., A, be a regular system of observables. Then
%(Al’ Az, ceey Ak) = SI;

if and only if A4,, A,, ..., A, commute with one another.
For observables with purely point spectrum this statement was proved
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in [9]. Recently, an elementary proof was given by Ruymagaart [8]. Without
any restriction on the spectrum a proof can be found in [4] and [6]. In the
more general framework of quantum logics the theorem was proved by
Varadarajan [11].

We say that a regular system A4,, 4,, ..., A, of observables fulfils the
probabilistic commutation condition if there exists a regular system
B,, B,, ..., B, of commuting observables such that
) p;;_l,...,Ak _ pz;l,...,ak
for every Te B(A,, A,, ..., A;). Recently, I proved in [10] that every system
of bounded observables with purely point spectrum fulfils the probabilistic
commutation condition. The aim of the present note is to show that this
result cannot be extended to an arbitrary regular system of observables.
Namely, we shall prove that any pair of canonical observables does not fulfil
the condition in question.

Given a subset X of I,, we shall denote by [X] the linear subspace of
I, spanned by X.

First we shall prove the following simple statement:

ProposiTiON 1. If a regular system A,, A,, ..., A, of observables fulfils
the probabilistic commutation condition, then

‘B(Ah AZ, LR Ak) = ‘Bn[‘B(AI’ AZ’ RS Ak)]

Proof. Let By, B,, ..., B, be a regular system of commuting observ-
ables satisfying equation (4). Let S be the set of all operators T from I, for
which the equation

k K
(5) trexp(i Y t;A;)) T=trexp(i ). t;B)) T
j=1

]=1 j=

holds for all (¢, t, ..., ty)e R*. It is clear that S is a linear subspace of I,
and, by (3) and (4),

[‘B(Ala A29 ey Ak)] Ce.

Since for every Te P the right-hand side of (5) is continuous and positive
definite on R, we infer that for every Te Pn[P(A4,, 4,, ..., A,)] the left-
hand side of (5) is also continuous and positive definite on R*. In other
words, we have the inclusion

‘B(Al’ AZ’ ERX) Ak) > sI;(\[‘I;(l‘il’ A2a [ERE) Ak)]

The converse inclusion is obvious, which completes the proof.
By a pair of canonical observables we mean a pair P, Q for which there
exists a dense linear manifold D in H contained in the domains of definition
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of P, Q and invariant under P, Q. When restricted to D, the observables
P, Q satisfy the Heisenberg commutation relation

PQ—QP = —il,

where I is the identity operator. Moreover, the operator P2+ Q? on D is
essentially self-adjoint. From von Neumann [7] and Dixmier [2] results it
follows that the system P, Q is regular and the function (x, y) — tr“?*>@ T
is continuous on R? for every Te ¥, ([1], Proposition 3). For each point
z=(x,y) of R? and Te I, we put

T(z) =tre=PHoT

Then, by (3), p52 = T for all Te B(P, Q). Consequently, Te B(P, Q) if and
only if T is positive definite on R2. Further, it is well known ([5], Chapter 5)
that the map T— T (Te I,) extends uniquely to a linear isometric transforma-
tion from I, onto the space L?(R?) of all complex-valued functions on R?
which are square integrable with respect to the Lebesgue measure. Moreover,

(6) T*2) = T(—2)

and

7 V() = — | Tw) U (z—w)exp (iA (W, z))dw,
2r ) 2 ,

where A(w, z) = w,z,—w,z; for w=(w;, w,;) and z =(z,, z;).

Let B be the subspace of I, consisting of all operators T for which
T() =f(z*, where |z12=x2+y? if z=(x,y). The map T—f is an
isomorphism between Hilbert spaces B and I[?(R,), where R, denotes the
positive half-line.

LEMMA. For every Te B with ||T||, =1 we have TT*e ‘R [P(P, Q)].

Proof. We define the operators G, (a > 1) by the formula
G,(z) = exp (—j—:lz|2>.

It is known that G, are Gaussian states ([5], Chapter 5), which yields G,e B
(a = 1). Since G, are positive definite on R?, we have also

@) G,eP(P,Q) (az=1).
Moreover, taking into account (7), we get by a simple calculation the formula
2

Ga Gb = ch(a.b) (a, b ; l),

where c(a, b) = (1+ab)/(a+b) = 1. Consequently, by (8),
&) G,G,e [PB(P, Q)]
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We recall that the linear span of the sequence {e™"™*! (n>1) is dense in
L*(R,). Consequently, by the isomorphism between B and L?(R,), the linear
span of the sequence {G,} (n> 1) is dense in B. Hence it follows that for

every operator Te B there exists a sequence {T,} of linear combinations of
G,, G,, ... such that ||T,— TJ|, — 0. By (9),

(10) LTrXe[BP, 0] (=12 ..),
and, by (2),
T, T = TT*||, < TN T — Tl + I TN T, — Tl
which yields || T, T,* — TT*||, — 0 and, by (10), TT* e [*B(P, Q)]. If in addition
[IT|l; =1, then TT*e B, which completes the proof.
ProrosiTioN 2. We have '

B(P, Q) # PN[P(P, Q)].
Proof. Let U be the operator from I, defined by the equation
U(2) = (1=} |z exp(—3lz?).

By (6) the operator U is self-adjoint. Moreover, using formula (7), by a
simple calculation we get U? = U, which yields U?>=U. Thus U is a
projector and, consequently, ||U||, = ||U||; = U(0) = 1. Applying the Lemma
we have the relation

Ue B LB(P, Q)]

Suppose that U e B(P, Q). Then U is positive definite on R? and, consequent-
ly, its Fourier transform h is continuous and non-negative. But, by a simple
calculation, we have

h(0) = | (1-3lz1*) exp(—3(z1*)dz = —4m,
R2
which shows that U ¢ B(P, Q). The proposition is thus proved.
From Propositions 1 and 2 we get the following

CoRQLLARY. The pair P, Q of canonical observables does not fulfil the
probabilistic commutation condition.
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