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The purpose of this paper is to propose an abstract mathematical
concept of a kit motivated by some problems of classifying things according
to their features and, in particular, by kits used in teaching logic and
set theory at a kindergarten or primary school level.

The category of kits is discussed in Section 4 and an explicit form
of a free kit is established.

In Section 5 there is a construction of a canonical functor from the
category of Mealy automata to the category of kits, which is a left adjoint
of the corresponding forgetful functor.

Section 6 is devoted to relations between kits and Brainerd’s mathe-
matical model of a phonetic system.

The author is obliged to Professors P. C. Baayen, H. Ehrig, F. W. Law-
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1. First motivation : logical educational materials. One of the charac-
teristic features of modern mathematics teaching in kindergartens and
primary schools is an extensive use of various logical kits, i.e., factory-
-made or home-made kits designed for special activities to help the child
to conceive some basic notions of set theory and logic. During a game
or another activity the set of things of the given kit plays the role of
a universe and the children are concerned with various subsets of this
universe, their intersections, unions, complements, etc.

The most popular kit (the kit of Dienes logiblocks, cf. [4]) consists
of 48 plastic blocks; each block has four easily distinguished features:
colour (a block may be either red, or blue, or yellow), shape (circle, triangle,
square, oblong), size (large, small), and thickness (thick, thin). Moreover,
there is exactly one block having any given combination of these features.
Thus, a mathematical model for this kit is the Cartesian product

(1-1) X = Yoolour X Yshnpex Yslze X Ythloknesa ’
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where
Y oorour = {red, blue, yellow}, Ynape = IO’ A, O, [] }7
Y.,e = {large, small},  Yiicuness = {thick, thin}.

Logical kits listed in catalogues of various firms may differ one from
another in the choice of things and their features (they may be, e.g.,
kits of dolls classified according to sex, age, clothes, etec.), but, otherwise,
they almost invariably follow the same pattern of a Cartesian product
of two, three or four (rarely more) given sets. Also, in educational reports,
too little attention seems to be paid to more general kits, though, from
a didactical point of view, a systematic use of a Cartesian product as
a universe is not desirable and the children should be given opportunities
to work with other types of kits as well.

However, if one wants to start a systematic investigation of merits
and demerits of various types of kits, a natural question arises: What
is actually meant by a kit? Certainly, it is not just a set of things, since
it is essential that these things could be classified according to some
distinguishable features.

The following definition of a kit is motivated by, but not confined
to, logical kits which have been used, or may be useful, in teaching ma-
thematics.

Definition. A kit is a quadruple
(1-2) X = (X’ S’ (Ys)se87 ()'s)scs)’

where X is a set whose elements are called things, S is a set whose elements
are called features, Y, is the set of admissible values of the feature ¢, and

(1.3) A: X7,

is a function which assigns to each thing x the actual s-feature of this
thing.
In the example described before, § is the set !

(1.4) 8 = {colour, shape, size, thickness}

and 4, is just the s-th coordinate projection (e.g., if x is the blue-square-
-small-thin block, then A, o (#) = blue and A, () = small).

It should be stressed that the set X itself does not determine the Kkit.
We can, e.g., consider a kit in which the set of things is given by (1.1),
and the set of features is given by (1.4), but one of the sets Y, is different,
namely

Y ootour = {Wa’rm’ cold}

with Acgour () = cold if x is blue and A,g0u (%) = warm if x is either
red or yellow. Still another kit can be obtained if one considers the
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set (1.1) of things with another set of features, e.g.
8 = {shape, size, thickness},

the colour being neglected as if the blocks were for colour-blind children.
There are also two extreme cases (not interesting from an educational
point of view): the set (1.1) of 48 elements regarded as a kit with 48
features (each feature having values 0 and 1) and the set (1.1) with one
feature of 48 values.

The maps (1.3) need not be surjections; as an example, one can
consider the set (1.1) of things with the set (1.4) of features and

Y o10ur = {red, blue, yellow, green},

though none of the blocks is actually green.

2. Second motivation: classification according to certain data. The
abstract notion of a kit can well turn out to be useful in some mathema-
tical aspects of methodology of science and in theoretical problems con-
cerning the use of computers for recognizing or classifying given things.
In fact, related concepts (usually in non-formalized forms) have already
been used in some papers.

There are numerous natural examples of kits in problems of applied
mathematics. One of them is discussed in Section 6. Let us now consider
three other examples.

Suppose, first, that ‘X is a set of railway tickets,

S = {initia) station, terminal station, distance, price, date, ...};

if s is, e.g., “distance’, then Y, is the set of possible distances between
stations; if xe¢ X and se8, then A(s, ) is the value of the feature s printed
on the ticket z, e.g., if s is “terminal station’’, then A(s, #) is the name
of the terminal station printed on the ticket 2 and Y, is the set of admis-
sible terminal stations (if there are alternative terminal stations printed
on some tickets, then A(s, ) can be the set of terminal stations for which
the ticket x is valid and Y, can consist of sets of stations rather than
of single stations). This yields a kit (1.2).

The responses to a questionnaire can also be regarded as a kit: X
is the set of people who have filled up the inquiry sheets, 8§ — the set of
questions to be answered ; if seS, then Y, is the set of admissible answers
(including, e.g., “not answered”); if seS and weX, then A(s, «) is the
answer to the question s written by the person z. '

Another example of a kit is described as follows. S is a set consisting
of 7 elements represented by bars in Fig. 1. For each s in 8, the set Y,
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consists of two numbers: 0 and 1. The set X consists of 10 elements
which are subsets of 8§ shown in Fig. 2 by heavy bars, and for each z in
X the function s> 4,(z) is just the characteristic function of the set .

HOddHHGBHHAH

Fig. 2

The discussion of computer-science merits of kits was recently taken
up in [6] and [9].

3. Some basic types of kits. Let X be an arbitrary kit (1.2). The cano-
nical map
(3.1) A X~->3Pgl’s
is defined by A" (x) = (A,(%))ges-

A kit X will be called a monokit if the map (3.1) is an injection. This
means that for any x, #’ in X with « # 4’ there is an 8 in § such that
Ag(®) # Ag('), i.e., there are enough features to distinguish the things.
Kits of railway tickets are not monokits (there are several tickets with
the same text printed on them). The kit shown in Fig. 2 is, obviously,
a monokit. ‘

An epikit is a kit such that (3.1) is a surjection, i.e., for every family
(Ys)ses With y, in Y,, there is an « in X such that y, = A,(x) for 8 in 8.
(F. W. Lawvere has pointed out that this notion is related to Platonism:
every “idea of a thing” (y,),.s is realized by a thing x.)

An epikit which is not a monokit can be obtained by taking two
sets of plastic blocks described in Section 1 and putting them together.
In such an epikit there can be two blocks not distinguishable by scru-
tinizing. One can also produce a kit similar to the above one, but having,
e.g., several red-square-small-thin blocks such that a child can distinguish
them since the colours of the red blocks are not identical (though all are
classified as red). '

A product kit is a kit which is both a monokit and an epikit, i.e.,
a kit such that (3.1) is a bijection. As we have already mentioned, most
commercial logical kits for kindergartens are product kits.
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4. The category of kits.
Definition. By a morphism from a kit (1.2) to a kit

X = (X8, (Tses (Ae)ses)
we mean a triple (&, ¢, (7,)s.5), Where
(4.1) £: X->X', o0: 8->8, 75 Y >Y,
are maps such that

V.V n,4(x) = 3;(3)5(“’)-

zeX geS

For instance, the map (3.1) yields a morphism from the kit X to
a product kit. The obvious function

{red, yellow, blue} — {warm, cold}

also gives rise to a morphism of the corresponding kits.
The kits X and X' are isomorphic if the maps (4.1) are bijections;
if this is the case, then the inverse maps

(‘5_17 ‘7—1; (77:-11(3'))3"5")
also form a morphism of kits.

It is clear that the kits and their morphisms form a category. This
category will be the subject of the rest of the paper. For unexplained
categorical terms see, e.g., [6] and [8].

For categorical purposes, however, it will be convenient to make
a formal modification of the definition of a kit. Let Y be the sum, i.e. the
disjoint union, of the sets Y, (s¢8), let A(s, ) be the element 4,(x) regarded
as an element of Y, and let p be the map which assings to each y in Y
the corresponding index s. Thus ‘

V.V pi(s,z) =s.

zeX geS

By a kit we now understand a quintuple
(4'2) x=(X,S, Y,ﬂ.,p),

where X, 8, Y are sets, and 1: §x XY and p: Y—» 8§ are functions
such that the diagram

A

SxX >Y

AN 4
(4.3) N
N
S
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is commutative, i.e.,
(4.4) PA ==,
n: 8 x X—8 being the first-coordinate projection. If X £ 0, then p is

a surjection.
A morphism from a kit (4.2) to an analogous kit

¥ =X,8,Y,%p)
is a triple (&, o, ) of maps §: X—>X’, 0: § -8’ and #: Y—>Y' such that
the diagram

SxX——L—>Y
x P
S
6x§ n
(4.5) s

S"‘.X' A Y'
;r\\ /
S!

is commutative, where (o x &)(s, #) = (o(s), &(x)).

It is obvious that the new definition of a kit and that of a morphism
of kits are essentially equivalent to the former ones. These new definitions
have been suggested by F. W. Lawvere in order to make it clear that the
category Kt of kits and their morphisms is an equationally definable
category of algebras over three sets (X, §, Y) with the only equational
axiom (4.4). From well-known theorems concerning such -categories
(see, e.g., [7] and [10]) it follows that Kt is complete (with respect to
equalizers, coequalizers, products and coproducts of small families of
objects) and the forgetful functor

(4.6) U: Kt —Ens®,
defined by U(X, 8, Y,4,p) =(X, 8, Y) and U (¢, o, 9n) = (&, 0, 7), has
a left adjoint

F: Ens® - K¢t.

(Ens denotes the category of sets, and Ens® is Ens x Ens x Ens.) How-
ever, the general proof of existence gives a rather complicated descrip-
tion of ¥ and it seems worth-while to establish directly an explicit form
of a free kit

(4°7) F(Tu Tzr Ts) = (Xo, SG; YO, ’191 p@)'
By definition, a free kit is a kit (4.7) together with three maps

130 T, > X9, 15 Ty—>8° 150 Ty—>Y®
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such that, for each kit (4.2) and each triple of maps

(4.8) ¢: T,—>X, @0 T,—>8, ¢ T3->Y,
there is a unique morphism

(4.9) (&, 0,7): (X%, 8%, Y°, 2% »°)—>(X, 8, Y, 4, D)

of kits such that (&, o, ) composed with (7,, 75, 75) i8 (@1, P2, Ps), i.e.,

(4.10) &t = ¢y, 0Ty =@y, T3 = @s.
THEOREM 1. The free kit F(T,, Ty, T;) is (i8omorphic to) the quiniuple
(4.11) (T1y, T+ Ty, [(To+Ts) X T,]1+ T, 4°, p°)
with the obvious funclions
(4.12) A°: (Tg+Tg) X Ty - [(Ty+Ts) x T,1+ T,
(4.13) P°: (T3+T5) x T,]1+T;—T,+ T,
(4.14) 7,0 T, —>T,,
(4.15) 7t Ty > Ty + T,
(4.16) Tyt Ty —> [(Ty+T,y) x Ty]1+ 1.

Here + denotes the sum of sets (coproduct in Ens). The “obvious”
map (4.13) is the unique map which yields the first-coordinate projection
on (I',+T,) x T, and the identity on T,; the maps (4.12), (4.15) and (4.16)
are the canonical embeddings into the respective sums while (4.14) is
the identity on 7,.

Proof. Let X be any kit (4.2) and let (4.8) be any triple of maps.

We are looking for a unique morphism (4.9) satisfying (4.10). The con-
dition that (4.9) be a morphism in Kt is that the diagram

®
(Ty+Ty) xT, —2 o [(T+T3) <] +T5

N

Ty+Ty
(4.17) 6%§

SxX A .Y

/
\



144 Z. SEMADENI

be commutative. The commutativity of the bottom triangle follows from
the assumption that X is a kit; the commutativity of the upper triangle,
i.e., the condition that (4.11) is a kit, is obvious. We are to find maps

£ T, X, o:Ty+Ty—~8, n:[(Te+T,)xT]+T~Y

such that 91°® = A(o x &) and pn = op® (the condition on® = n(o X &)
is satisfied for any choice of £ and o). We can assume, for simplicity, that
the sets T,, T, Ty are pairwise disjoint and the sums in (4.11)-(4.16)
are just unions. Write

(4.18) §(t)) = @1(ty) for ¢, in T,
(4.19) o(ty) = pa(ty) for t3 in T,
(4.20) o(ts) = pes(ty) for &3 in T,
(4.21) N(tay 8,) = 1(%(":); ‘Pl(tl)) for (t4,¢;) in T, x T,
(4.22) n(tsy 8,) = 1(1’%(%)1 ‘Pl(tl)) for (&,%,) in Ty xT,,
(4.23) n(ls) = @s(ty) for ¢y in T,

A straightforward verification shows that the maps &, ¢ and 7 are
well defined and yield the desired morphism (4.9), which is unique. Speci-
fically, equations (4.18), (4.19) and (4.23) imply, and are implied by,
equations (4.10) while (4.20), (4.21) and (4.22) imply, and are implied
by, the condition that the diagram (4.17) be commutative.

COROLLARY 1. The free kits generated by the objects (1,0, 0), (0,1, 0)
and (0,0,1) of Ens® are

F(1,0,0) = (1,0,0,...), F(0,1,0) =(0,1,0,...),
F(0,0,1) = (0, 1,1,...).

Here 0 denotes the empty set, 1 = {0}, and the dots stand for the
corresponding maps A° and p®.
Let us now consider the three forgetful functors

(4.24) U,: Kt -Ens, U;: Kt>Ens, U,: Kt>Ens

obtained by composing the functor (4.6) with three projection functors
from Ens® to Ens. Thus

U,X,8,Y,A4,p) =X, U,X,8,Y,4,p) =38,
Usg(X,8,Y,4,p) =Y.
Since the projection functors have left adjoints determined by
T,~(Ty,0,0), T3—(0,T,,0), Ty (0,0,T,),
respectively, we get the following corollary:
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COROLLARY 2. The left adjoints of the functors (4.24) are determined
by the correspondences:

T,~FT,0,0)=(T,0,0,...), Ty—>F(0,T,,0) =(0,T,,0,...),
Ty—>F(0,0,Ts) = (0, Ts, T, ...).

In a similar way, we infer that a left adjoint of the forgetful functor
from Kt to Ens? determined by (X, 8, Y, 4, p)— (X, 8) is the functor
from Ens? to Kt determined by

(Ty, T3) > F(Tyy Ty, 0) = (T, Ty, Ty x Ty, ...).

Recently, Wiweger' [11] found explicit forms of coproducts and
coequalizers in Kt (products and equalizers are obvious); in [12] he
applied a similar technique to find coproducts of automata.

5. Relations between kits and automata. By an automaton we mean
a deterministic Mealy automaton, i.e., a quintuple

(6.1) (X, 8, ¥, 4, 9),

where X, 8, Y are sets, and 1: S x X—Y and é: § x X—8 are any functions
(see [1], p. 57, [6] and [3]). X is called the inpui alphabet, S the set of
states, Y the output alphabet, 2 the newt-output function, and 8 the next-
-gtate function.

A morphism from (5.1) to an automaton (X', 8’, Y’, 4’, 8’) is a triple
(&, o, ) such that the diagram

8«—2  gxx—* ,v

ox§ L]

(6.2) ’
Y A 4 Y
S' *——d,—— S' X.X' —T—> Y'

is commutative. In this way we get the category Au of automata and
their morphisms.
Any kit (4.2) determines an automaton

(6.3) o&,s8,Y,4,p) =(X,8, Y,4,n)

in which the role of the function 6 is now played by the first-coordinate
projection m: § X X— S. Therefore, the automaton (5.3) has a very special
property: no input signal can change the state. If the automaton is in
a state 8 (i.e., a feature s has been fixed), then, for any given thing @ in
the input alphabet, the automaton gives the signal A(s, #) at the output.

Thus, from a formal point of view, a kit can be interpreted as an
automaton which can be set in any given state s and then, if a thing
@ appears as an input signal, the automaton “reads’ the s-feature of

10 — Colloquium Mathematicum XXXI.1
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this thing and the result appears at the output. In other words, a kit
is an automaton to recognize certain features of given things.

We can say that a kit is a commutative diagram (4.3). If we erase
the map p in that diagram, we get an automaton. Similarly, a morphism
in Kt is a commutative diagram (4.5); if we erase p and p’ in (4.5), we
get a diagram of the form (5.2). Consequently, there is a forgetful functor

(b.4) 0O: Kt — Au.

The rest of this section will be devoted to an explicit construction
of a left adjoint of the functor (5.4).
Suppose that (5.1) is an automaton. We define a kit

(5.5) (X, 8% X%, 2%, p%)
as follows. The set 8* is the sum
8 = (YNY,))+8)~,

where Y, = {A(8,): (8,x)eS x X}, and ~ is the smallest equivalence
relation on S satisfying the conditions

(5.6) [ 3 A, o) =48, a”)] >(s~¢'),
zr'zuex
(5.7) YV V i(s, x)~s.
zeX 8¢S

The set Y* is the quotient Y/~ , where ~ is the smallest equivalence
relation on Y such that

(5.8) V (8~s")=|V A8, ) ~A(s', @)].
zeX

8,8’¢eS

Let us note that the relation ~ does not identify any points of
Y\Y,; more precisely,

V V (y~y)=(y =y).
YeP\Y v e¥

The function i*: 8* x X - Y*, i.e,,
% [(INY )+ 8/ ~Ix X > Y/~
is defined by

My, ) = {y} for y in Y\Y,, z in X,

(5.9) . : :
A (8)/~,x) =A(8,2)/~ for ¢in 8, z in X.

By (5.8), this definition does not depend on the choice of s in the
equivalence class 8/~.
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The function p*: ¥Y*—8* is defined by
) if yeY\Y,,

(5.10) P (y/=~) = s~ ify =A@, x)eY;.

This definition is independent of the choice of ¥ in y/~ and of the
choice of (s, ) such that A(s, ) = y. Indeed, suppose that (s’, #')eS x X
and A(s, ) ~ A(8’, '). Since =~ is the smallest equivalence relation
satisfying (5.8), there exist finite sequences

(805 815 +v9 8)s  (8gy 81y-vey 8y) aDA  (@g, Tyy..., &p)
of elements of S and X, respectively, such that
(30, @o) = (8, @), (8, @) = (8, @),
8o~ 8yy 8181y ...,  8,~8,
A(89y @) = A(815 @1);,  A(8y, @1) = A(8s, @),
vey  A(8_yy Zp_y) = A(S,, X,).

Consequently, by (5.6),
8g~81,  81~83, ..y  8p_1~S,,
and hence s,~s,, i.e., s~s'.

From (5.9) and (5.10) it follows that p*A*(s, ) = s for s in S".
This means that (5.5) is a kit.

The construction of the kit (5.5) can be interpreted as follows. (5.6)
means that two states s and 8’ of the given automaton (5.1) are identified
in each case where they have at least one output signal in common (even
for different input signals). According to (5.7), if the automaton can change
from a state & to a state s’ (after having received some input signal z),
then s and 8’ are also to be identified. As a consequence, if states 8 and 8’
have been identified in the way described above and the output signals
¥ and y’ are obtained from the same input signal in states s and s’, respec-
tively, then y is to be identified with ¥’.

(6.6) can be regarded as an automaton classifying the elements of
the input alphabet depending on the way the automaton (5.1) acts upon
them.

The above-given construction of the automaton (5.5) from the
automaton (5.1) can be simulated as follows: keep the input alphabet
without any change; switch off the device 4 which changes the states
of the automaton (5.1); leave precisely one state s of each equivalence
class s/~ (and abandon the other states); regard those elements of the
original output alphabet which can never be output signals (for any x
and s whatsoever) as additional states of the new automaton; and identify
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(with a coding device) those pairs of elements of the output alphabet
which satisfy y ~ y'.
THEOREM 2. The correspondence

(X,8,Y,4, 90— (X, 8, T 2 p")

i8 the object transformation of a covariant functor from Au to Kt which is
a left adjoint of the functor (5.4).

Proof. The canonical morphism from (X, 8, ¥, 4, ) to the auto-
maton [J(X, 8% Y*, A%, p*) is the triple (v,, 75, 7;), Where 7;: X—>X
is the identity while

790 S >(¥Y\Y,)+8/~ and 151 Y>Y/w~
are quotient maps. This triple is a morphism in Au since the diagram

S«—2 Ixx—2 ¥

Ty 1P th T3

A 4

A 4 A 4
Fe— ' xX— > 7

n* A

is commutative (the commutativity of the left-hand square follows

from (5.7)).
Let (X', 8, Y', A, p') be any kit and let

(5.11) (& 0,7): (X, 8, Y, 4, 8) > 0O(X, 8, X', ¥, p)

be an Au-morphism. We claim that there is a unique Kt-morphism
(¢, 0y n'): (X, 8% Y 2% 9") - (X, 8, Y, &, p')

such that the diagram
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is commutative, i.e., §'7, = &, o'ty = o, 7’13 = 7. The maps &, o', 5’
are defined as follows:

&(x) = () for 2 in X,
o'(y) =n(y) for y in Y\Y,,
g'(8/~) =o(8) for sin 8§,
n'(y[~) =n(y) for y in Y.
We have to show that the function ¢’ is well defined, i.e.,
(6.13) 8~g' implies o(s) = o(8’).

We recall that 8 ~s’ is determined by (5.6) and (5.7). Suppose, first,
that A(s, ') = A(s8’, «'’) for some 2’, '’ in X. Since (5.11) is a morphism
of automata, from the commutativity of the right-hand square of the
diagram (5.2) it follows that

A(o(s), E(@)) = nA(s, @') = 9A(s', 2"') = A'(a(s"), E(2")),
and hence
a(8) =p'A'(0(8), E(a")) = p'A'(0(s), E(@")) = a(s").

Suppose now that d(s, ) = 8. We again make use of the assumption
that (5.11) is a morphism. In view of ¢ = n’(0 X §), we infer that

(5.14) 0d(s, x) = 7"(0'(3)’ ‘5("”)) = o(8),

i.e., o(8) = o(8'). Since ~ is the smallest equivalence relation satisfying
(b.6) and (b.7), we get (b.13).

The function %’ is also well defined. Indeed, by (5.8), the relation ~ is
the smallest equivalence relation satisfying the following conditions:

(5.15) [x, 3 Als, @) = A(s, )] = [zyxz(s, @) ~ A8, 2)],

(5.16) V.V A8, x) ~ A(6(8, 2), ).

z'eX z¢X

Suppose that y ~y'. If y =4(s,2), ¥ = A(s’,2) and Ai(s, ')
= A(8’y '), then, in virtue of (5.13),

1(y) = 7A(8, @) = V'(0(8), §(@)) = A'(0(s"), &(x) = nA(s, @) = n(y").

On the other hand, if y = A(s, ) and y’ = 1(d(s, #'), @), then, by
equation (5.14),
7(y’') = ’71(6(87 z'), w) = 1'(06(8’ 2'), E(w))
= ;-'("(3)’ 5(“’)) = 9A(8, ) = n(y).
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Thus, if y is identified with %', in view of (5.15) or (5.16), we have
n(y) = n(y’). Therefore, n is constant on each equivalence class y/~

and the function %’ is well defined.
It is now trivial to verify that &', ¢’ and %’ defined above are unique
functions for which (5.12) is commutative.

6. Relations between kits and some mathematical models of classical
linguistic structures. Brainerd ([2], p. 72) defines an etic system (') as
a quadruple
(6.1) . (X, Y, P, ¢),
where X is a non-empty finite set of signs, Y is a non-empty finite set
of features, P is a partition of ¥, and ¢: X— 2% is a function which assigns
to each = in X a subset ¢(x) of Y such that, for each P in P, the inter-

section ¢(x) N P is either empty or contains exactly one element.
A weak homomorphism from an etic system (6.1) to an etic system

(6.2) (X', Y', P, ¢')
is a pair of maps §: X—X" and n: Y—>Y' such that

(6.3) Yo' (&@) 0 n(Y) = nlp(a))
and
(6.4) Y _[p) =pH)] = [p'1(y1) =1 n(y2)],

Y VeeY

where p: Y—P and p’': Y'— P’ are the respective quotient maps.

We shall show that finite kits can be interpreted as etic systems of
a special kind. Technically, let Kt, denote the full subcategory of Kt
consisting of those kits (4.2) for which X, 8, ¥ are finite and non-empty
and let Et denote the category of etic systems and weak homomorphisms.
We define a functor

(6.5) #: Kt, - Et

as follows: Let )" (X, S, Y, 4, p) denote the etic system (X, Y, P, ¢),
where P is the partition {p“(s)},s of Y and

p(x) = {A(8, ©)}seg for z in X.

Let (¢, o, n) be a morphism from (X, 8, ¥, 4, p) to (X', 8, X', ', p')
in Kt,. Then (&, %) is a weak homomorphism of the corresponding
etic systems. Indeed, suppose that ¥’ belongs to the left-hand side of (6.3).

(}) An etio system is meant to be an abstract model for phonetic systems while
an emio system is meant in [2] to be a model for phonemic systems.
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Then there is a ¥ in ¥ such that ¥’ = 5(y) and there is an 8’ in 8’ such
that y' = 4’(s’, &£(=)). Hence

8 =p'A(s', &(@)) =p'n(y) = op(y)
and
y' = V(op(y), &) =nA(p(¥), 2) € np()).

Consequently, (6.3) must hold. Condition (6.4) is an immediate
consequence of the condition p’'n = op. This yields the desired functor
(6.6), which is obviously faithful.

Conversely, let Et, denote the full subcategory of Et consisting of
those etic systems (6.1) which satisfy the condition ¢(x) NP # 0 for
all # in X and P in P, i.e., such that each set ¢(x) N P is a singleton
{A(P, «)}. In this case, let #,(X, Y, P, ¢) denote the kit (X, P, Y, 4, p);
if (&, ) is a weak homomorphism from (6.1) to (6.2), then it follows
from (6.4) that there is a unique map o: P —P’ such that op = p'y
(specifically, o(P) = p'n(y) for any y in P). We claim that (&, o, %)
is a Kt-morphism ‘from #,(X, ¥, P, ¢) to %,(X’', Y, P, ¢'). Indeed,
if #eX and PeP, then, by (6.3), 7nA(P, ) belongs to ¢’'(&()), i.e.,
nA(P, &) = A'(P’, £(x)) for some P’ in P’; moreover,

P' = p'X(P', &(@)) = p'nA(P, ®) = opA(P, @) = o(P).
Hence 7A(P, ) = A'(o(P), £(z)). This construction yields a functor
%1: Etl - K,t’to

Clearly, o¢'%, is the identity functor on Et,, and %, is naturally
equivalent to the identity on Kt,. Thus, the categories Et, and Kt, are
equivalent.

We are now going to show that Et, is a reflective subcategory of Et.
Let (6.1) be any etic system. Write "

M ={P,r): PeP&zxeX &p(x) NP = 0}
and

(6.6) %X,Y,P,p)=(X,P, Y+ M, A, p),
where the function A: Px X - Y +M is defined by
the unique element of p(z) NP if () NP # 0,
(P, x) otherwise,
and the function p: ¥ +M — P is defined by p(P, ) = P for (P, ) in M

and by p(y) =P for y in P.

THEOREM 3. The correspondence (6.6) yields a left adjoint of the
Sfunctor (6.5).

AP, x) =
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Specifically, for any kit X' = (X', 8’y X', X', p’) and any Et-morphism

(&, n) from (X,Y,P,qp) to X (X'), there i8 a unique Kt-morphism
(&*, o*, 1*) from %(X, X, P, ¢) to X' such that the diagram

(‘x")

(X, ¥, P, 9)
N
AN
(fh\
N ¥

A (%)

>»XU(X, Y, P,qp)

x(e" U.,ﬂ‘)

18 commutative, where s: Y —~ Y + M 18 the canonical injection.

Proof. A straightforward verification shows that (ix, ¢) is a weak
homomorphism. Suppose that (£*, ¢* 7*) is a Kt-morphism such that
the above-given diagram is commutative. The condition £*ix = & implies
that &* = £ while 5*¢ = 7 implies that

(6.7) n*(y) =n(y) {foryin Y.
If PP, then from the condition p’n* = o*p it follows that

(6.8) o*(P) = o*(p(y)) =p'n(y) for y in P.
If (P, x)e M, then
(6.9) n*(P, x) = n*A(P, ) = X (p'n(y), &(x)).

We have thus shown the uniqueness of (£, o, *). On the other
hand, it follows from (6.4) that o*(P) is well defined by formula (6.8).
It is now clear that formulas (6.7)-(6.9) define the desired Kt-morphism;
jn particular, the condition 7*A = A’(¢* x &*) follows from (6.3) and (6.9).

Remark. The assumption that the involved sets are finite plays
no role in the above-given argument. The assumption that X +# 0,
however, is essential. For example, the kit (0, 1, 0) described in Sec-
tion 4 cannot be interpreted as an etic system, since in this case the
function p: 0 -1 is not a surjection.
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