CONCERNING A PROBLEM DUE TO SAM B. NADLER, JR.

BY

KAROL BORSUK (WARSAWA)

A function \(f: X \to X \) is called a contraction map if there is a positive number \(a < 1 \) such that

\[
q(f(x), f(y)) \leq aq(x, y) \quad \text{for all } x, y \in X.
\]

Nadler, Jr., asked (\(^1\)) the following question:

Is it true that, for every compactum \(X \) for which the identity map \(i_X: X \to X \) is a pointwise limit of contraction maps, all Čech cohomology groups of \(X \) (over integers) are trivial?

In order to give an affirmative answer to this question, let us recall first some notions belonging to the homology theory.

By a sequence of chains in a compactum \(X \) we understand a sequence \(\kappa = \{\kappa_i\} \) with

\[
\kappa_i = a_{i,1} \sigma_{i,1} + a_{i,2} \sigma_{i,2} + \ldots + a_{i,m_{i}} \sigma_{i,m_{i}},
\]

where \(a_{i,j} \) are elements of an abelian group \(\mathbb{A}_i \) (depending, in general, on \(i \)) and \(\sigma_{i,j} \) are oriented simplexes (i.e., finite systems of points (vertices) of \(X \)).

Let \(\text{mesh}(\kappa_i) \) denote the maximal diameter of the simplexes \(\sigma_{i,1}, \ldots, \sigma_{i,m_{i}} \). Let us prove the following

Lemma 1. If \(X \) is a compactum and \(f: X \to X \) is a map satisfying the condition \(q(f(x), f(y)) < q(x, y) \) for every \(x, y \in X \) with \(x \neq y \), and if \(\{\kappa_i\} \) is a sequence of chains in \(X \) with

\[
\lim_{i \to \infty} \text{mesh}(\kappa_i) \leq \epsilon, \quad \text{where } \epsilon > 0,
\]

then

\[
\lim_{i \to \infty} \text{mesh}(f(\kappa_i)) < \epsilon.
\]

Proof. Otherwise there would exist a sequence of indices \(i_1 < i_2 < \ldots \) such that in \(\kappa_{i_n} \) there is a simplex \(\sigma_{i_n,j_n} \) containing two vertices \(x_n, y_n \)

\(^1\) S. B. Nadler, Jr., *Some problems concerning stability of fixed points*, Colloquium Mathematicum 27 (1973), p. 263-268; see Problem 2.11 on p. 268.
with
\[q(f(x_n), f(y_n)) \geq \varepsilon - \frac{1}{n}. \]

Since \(X \) is compact, we may assume \(x_n \to x \) and \(y_n \to y \), where \(x, y \in X \). Then \(q(f(x), f(y)) \geq \varepsilon \) and, consequently, \(q(x, y) > \varepsilon \). It follows that there exists a number \(\eta > \varepsilon \) such that the inequality \(q(x_n, y_n) \geq \eta \) is satisfied for almost all \(n \). Hence \(\limsup_{i \to \infty} \eta_i \geq \eta \geq \varepsilon \) for almost all \(n \), which contradicts our hypothesis that
\[\lim_{i \to \infty} \text{mesh}(\kappa_i) \leq \varepsilon. \]

Thus the proof of Lemma 1 is complete.

If \(\kappa = \{\kappa_i\} \) is a sequence of chains in \(X \) satisfying the condition
\[\lim_{i \to \infty} \text{mesh}(\kappa_i) = 0, \]
then we say that \(\kappa \) is an infinite chain in \(X \). An infinite chain \(\gamma = \{\gamma_i\} \) in \(X \) is said to be an infinite cycle in \(X \) if all chains \(\gamma_i \) are cycles, i.e. if their boundaries \(\partial \gamma_i \) vanish. If there is a sequence of chains \(\kappa = \{\kappa_i\} \) in \(X \) such that
\[\lim_{i \to \infty} \text{mesh}(\kappa_i) \leq \varepsilon \quad \text{and} \quad \gamma_i = \partial \kappa_i \quad \text{for} \quad i = 1, 2, \ldots, \]
then the infinite cycle \(\gamma \) is said to be \(\varepsilon \)-homologous to zero in \(X \) and we write \(\gamma \sim 0 \) in \(X \).

If there is an infinite chain \(\kappa = \{\kappa_i\} \) in \(X \) such that \(\gamma_i = \partial \kappa_i \) for \(i = 1, 2, \ldots, \) then we write \(\gamma = \partial \kappa \) and we say that the infinite cycle \(\gamma \) is homologous to zero in \(X \) (notation: \(\gamma \sim 0 \) in \(X \)). A compactum \(X \) is said to be acyclic if every infinite cycle in \(X \) is homologous to zero in \(X \).

Lemma 2. An infinite cycle \(\gamma \) in \(X \) is homologous to zero in \(X \) if and only if \(\gamma \sim 0 \) in \(X \) for every \(\varepsilon > 0 \).

Proof. It is evident that the relation \(\gamma \sim 0 \) in \(X \) implies \(\gamma \sim 0 \) in \(X \) for every \(\varepsilon > 0 \). On the other hand, if \(\gamma \sim 0 \) in \(X \) for every \(\varepsilon > 0 \), then for every \(n = 1, 2, \ldots \) there is in \(X \) a sequence \(\{\kappa_i^{(n)}\} \) of chains such that
\[\lim_{i \to \infty} \text{mesh}(\kappa_i^{(n)}) \leq \frac{1}{n} \quad \text{and} \quad \partial \kappa_i^{(n)} = \gamma_i \quad \text{for} \quad i = 1, 2, \ldots \]

Then for every \(n = 1, 2, \ldots \) there is an index \(i_n \) such that \(\text{mesh}(\kappa_i^{(n)}) \leq 2/n \) for \(i \geq i_n \). We may assume that \(i_{n+1} > i_n \) for \(n = 1, 2, \ldots \) Setting
\[\kappa_i = \begin{cases} \kappa_i^{(1)} & \text{for} \ i = 1, 2, \ldots, i_1, \\ \kappa_i^{(n)} & \text{for} \ i_n \leq i < i_{n+1}, n = 1, 2, \ldots, \end{cases} \]
we get an infinite chain \(\kappa = \{ \kappa_i \} \) satisfying the condition \(\partial \kappa = \gamma \). Thus the proof of Lemma 2 is complete.

Now let us prove the following

Theorem. Let \(X \) be a compactum satisfying the following condition:

For every \(\varepsilon > 0 \) there exists a map \(f: X \to X \) such that \(\rho(f(x), x) < \varepsilon \)

for every \(x \in X \) and that

\[
\rho(f(x), f(y)) < \rho(x, y) \quad \text{if} \quad x, y \in X \quad \text{and} \quad x \neq y.
\]

Then \(X \) is acyclic.

Proof. If \(X \) is not acyclic, then there is an infinite cycle \(\gamma = \{ \gamma_i \} \)

in \(X \) such that \(\rho \sim 0 \) in \(X \). We infer, by Lemma 2, that there exist positive numbers \(\varepsilon \) such that

\[
(2) \quad \text{the relation} \quad \rho \sim 0 \quad \text{in} \quad X \quad \text{fails}.
\]

Let \(\varepsilon_0 \) denote the least upper bound of the set of all such numbers \(\varepsilon \).

We see easily that then there exists a sequence of chains \(\kappa = \{ \kappa_i \} \) in \(X \)

such that

\[
\partial \kappa_i = \gamma_i \quad \text{for} \quad i = 1, 2, \ldots \quad \text{and} \quad \lim_{i \to \infty} \text{mesh} \kappa_i \leq \varepsilon_0.
\]

By our hypothesis there is a map \(f: X \to X \) satisfying condition (1) and such that \(\rho(f(x), x) < \varepsilon_0 \) for every \(x \in X \). Then there is an infinite chain \(\lambda = \{ \lambda_i \} \) in \(X \) such that \(\partial \lambda_i = \gamma_i - f(\gamma_i) \) for \(i = 1, 2, \ldots \). Moreover, \(\{ f(\kappa_i) \} \) is a sequence of chains in \(X \) satisfying, by Lemma 1, the condition

\[
\lim_{i \to \infty} \text{mesh} f(\kappa_i) < \varepsilon_0.
\]

Setting \(\kappa'_i = \lambda_i + f(\kappa_i) \) for \(i = 1, 2, \ldots, \) we see that

\[
\lim_{i \to \infty} \text{mesh} \kappa'_i < \varepsilon_0.
\]

Since \(\partial(f(\kappa_i)) = f(\partial \kappa_i) = f(\gamma_i) \), we infer that

\[
\partial \kappa'_i = \gamma_i - f(\gamma_i) + \partial(f(\kappa_i)) = \gamma_i \quad \text{for} \quad i = 1, 2, \ldots
\]

But this contradicts (2). Thus the proof of the Theorem is complete.

Since every contractive map \(f: X \to X \) satisfies the condition \(\rho(f(x), f(y)) < \rho(x, y) \) for \(x, y \in X \) and \(x \neq y \), and since for an acyclic compactum \(X \) all Čech cohomology groups are trivial, the just proved theorem gives an affirmative answer to the problem of Sam B. Nadler, Jr.

Reçu par la Rédaction le 19. 12. 1974