1976

FASC. 1

CONCERNING A PROBLEM DUE TO SAM B. NADLER, JR.

 \mathbf{BY}

KAROL BORSUK (WARSZAWA)

A function $f: X \rightarrow X$ is called a contraction map if there is a positive number a < 1 such that

$$\varrho(f(x), f(y)) \leqslant a\varrho(x, y)$$
 for all $x, y \in X$.

Nadler, Jr., asked (1) the following question:

Is it true that, for every compactum X for which the identity map $i_X \colon X \to X$ is a pointwise limit of contraction maps, all Čech cohomology groups of X (over integers) are trivial?

In order to give an affirmative answer to this question, let us recall first some notions belonging to the homology theory.

By a sequence of chains in a compactum X we understand a sequence $\kappa = \{\varkappa_i\}$ with

$$\kappa_i = a_{i,1} \sigma_{i,1} + a_{i,2} \sigma_{i,2} + \ldots + a_{i,m_i} \sigma_{i,m_i},$$

where $a_{i,j}$ are elements of an abelian group \mathfrak{A}_i (depending, in general, on i) and $\sigma_{i,j}$ are oriented simplexes (i.e., finite systems of points (vertices) of X).

Let $\operatorname{mesh}(z_i)$ denote the maximal diameter of the simplexes $\sigma_{i,1}, \ldots, \sigma_{i,m_i}$. Let us prove the following

LEMMA 1. If X is a compactum and $f: X \to X$ is a map satisfying the condition $\varrho(f(x), f(y)) < \varrho(x, y)$ for every $x, y \in X$ with $x \neq y$, and if $\{x_i\}$ is a sequence of chains in X with

$$\overline{\lim_{i\to\infty}} \operatorname{mesh}(\varkappa_i) \leqslant \varepsilon, \quad \text{where } \varepsilon > 0,$$

then

$$\overline{\lim_{i\to\infty}} \operatorname{mesh} (f(\varkappa_i)) < \varepsilon.$$

Proof. Otherwise there would exist a sequence of indices $i_1 < i_2 < \dots$ such that in \varkappa_{i_n} there is a simplex σ_{i_n,i_n} containing two vertices x_n, y_n

⁽¹⁾ S. B. Nadler, Jr., Some problems concerning stability of fixed points, Colloquium Mathematicum 27 (1973), p. 263-268; see Problem 2.11 on p. 268.

with

$$\varrho(f(x_n), f(y_n)) \geqslant \varepsilon - \frac{1}{n}.$$

Since X is compact, we may assume $x_n \to x$ and $y_n \to y$, where $x, y \in X$. Then $\varrho(f(x), f(y)) \geqslant \varepsilon$ and, consequently, $\varrho(x, y) > \varepsilon$. It follows that there exists a number $\eta > \varepsilon$ such that the inequality $\varrho(x_n, y_n) \geqslant \eta$ is satisfied for almost all n. Hence $\operatorname{mesh}(x_{i_n}) \geqslant \eta > \varepsilon$ for almost all n, which contradicts our hypothesis that

$$\overline{\lim_{i\to\infty}} \operatorname{mesh}(\varkappa_i) \leqslant \varepsilon.$$

Thus the proof of Lemma 1 is complete.

If $\kappa = \{\kappa_i\}$ is a sequence of chains in X satisfying the condition

$$\lim_{i\to\infty} \operatorname{mesh}(\varkappa_i) = 0,$$

then we say that κ is an *infinite chain in X*. An infinite chain $\gamma = \{\gamma_i\}$ in X is said to be an *infinite cycle in X* if all chains γ_i are cycles, i.e. if their boundaries $\partial \gamma_i$ vanish. If there is a sequence of chains $\kappa = \{\kappa_i\}$ in X such that

$$\overline{\lim_{i \to \infty}} \operatorname{mesh}(\varkappa_i) \leqslant \varepsilon$$
 and $\gamma_i = \partial \varkappa_i$ for $i = 1, 2, ...,$

then the infinite cycle γ is said to be ε -homologous to zero in X and we write $\gamma \sim 0$ in X.

If there is an infinite chain $\kappa = \{\kappa_i\}$ in X such that $\gamma_i = \partial \kappa_i$ for i = 1, 2, ..., then we write $\gamma = \partial \kappa$ and we say that the infinite cycle γ is homologous to zero in X (notation: $\gamma \sim 0$ in X). A compactum X is said to be acyclic if every infinite cycle in X is homologous to zero in X.

LEMMA 2. An infinite cycle γ in X is homologous to zero in X if and only if $\gamma \sim 0$ in X for every $\varepsilon > 0$.

Proof. It is evident that the relation $\gamma \sim 0$ in X implies $\gamma \sim 0$ in X for every $\varepsilon > 0$. On the other hand, if $\gamma \sim 0$ in X for every $\varepsilon > 0$, then for every $n = 1, 2, \ldots$ there is in X a sequence $\{\kappa_i^{(n)}\}$ of chains such that

$$\overline{\lim_{i o \infty}} \operatorname{mesh}(\varkappa_i^{(n)}) \leqslant \frac{1}{n} \quad \text{ and } \quad \partial \varkappa_i^{(n)} = \gamma_i \ \text{ for } \ i = 1, 2, \dots$$

Then for every $n=1, 2, \ldots$ there is an index i_n such that $\operatorname{mesh}(\kappa_i^{(n)}) \leq 2/n$ for $i \geq i_n$. We may assume that $i_{n+1} > i_n$ for $n=1, 2, \ldots$ Setting

$$\mathbf{x}_i = egin{cases} \mathbf{x}_i^{(1)} & ext{ for } i = 1, 2, \dots, i_1, \ \mathbf{x}_i^{(n)} & ext{ for } i_n \leqslant i < i_{n+1}, \ n = 1, 2, \dots, \end{cases}$$

we get an infinite chain $\kappa = \{\kappa_i\}$ satisfying the condition $\partial \kappa = \gamma$. Thus the proof of Lemma 2 is complete.

Now let us prove the following

THEOREM. Let X be a compactum satisfying the following condition: For every $\varepsilon > 0$ there exists a map $f \colon X \to X$ such that $\varrho(f(x), x) < \varepsilon$ for every $x \in X$ and that

(1)
$$\varrho(f(x), f(y)) < \varrho(x, y)$$
 if $x, y \in X$ and $x \neq y$.

Then X is acyclic.

Proof. If X is not acyclic, then there is an infinite cycle $\gamma = \{\gamma_i\}$ in X such that $\gamma \sim 0$ in X. We infer, by Lemma 2, that there exist positive numbers ε such that

(2) the relation $\gamma \sim 0$ in X fails.

Let ε_0 denote the least upper bound of the set of all such numbers ε . We see easily that then there exists a sequence of chains $\kappa = {\{\kappa_i\}}$ in X such that

$$\partial \varkappa_i = \gamma_i \; ext{for} \; i = 1, 2, \ldots \quad ext{and} \quad \overline{\lim_{i o \infty}} \operatorname{mesh}(\varkappa_i) \leqslant arepsilon_0.$$

By our hypothesis there is a map $f: X \to X$ satisfying condition (1) and such that $\varrho(f(x), x) < \varepsilon_0$ for every $x \in X$. Then there is an infinite chain $\lambda = \{\lambda_i\}$ in X such that $\partial \lambda_i = \gamma_i - f(\gamma_i)$ for i = 1, 2, ... Moreover, $\{f(x_i)\}$ is a sequence of chains in X satisfying, by Lemma 1, the condition

$$\overline{\lim_{i\to\infty}} \operatorname{mesh} f(\varkappa_i) < \varepsilon_0.$$

Setting
$$\varkappa_i' = \lambda_i + f(\varkappa_i)$$
 for $i = 1, 2, ...$, we see that
$$\overline{\lim} \operatorname{mesh}(\varkappa_i') < \varepsilon_0.$$

Since
$$\partial (f(\varkappa_i)) = f(\partial \varkappa_i) = f(\gamma_i)$$
, we infer that $\partial \varkappa_i' = \gamma_i - f(\gamma_i) + \partial (f(\varkappa_i)) = \gamma_i$ for $i = 1, 2, ...$

But this contradicts (2). Thus the proof of the Theorem is complete. Since every contractive map $f \colon X \to X$ satisfies the condition $\varrho(f(x), f(y)) < \varrho(x, y)$ for $x, y \in X$ and $x \neq y$, and since for an acyclic compactum X all Čech cohomology groups are trivial, the just proved theorem gives an affirmative answer to the problem of Sam B. Nadler, Jr.

Reçu par la Rédaction le 19.12.1974

^{5 -} Colloquium Mathematicum XXXV.1