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A funetion f: X— X is called a contraction map if there is a positive
number a < 1 such that

Q(f(w)’f(?/))<ae(w,?/) for all z,yeX.
Nadler, Jr., asked (*) the following question:

Is it true that, for every compactum X for which the identity map
ix: X—X is a pointwise limit of contraction maps, all Cech cohomology
groups of X (over integers) are trivial?

In order to give an affirmative answer to this question, let us recall
first some notions belonging to the homology theory.

By a sequence of chains in a compactum X we understand a sequence
x = {x;} with

%y = @101+ G0t F Qo Oy

where a,; are elements of an abelian group %; (depending, in general,
on ¢) and o; ; are oriented simplexes (i.e., finite systems of points (vertices)
of X). ‘ ‘

‘Let mesh(x;) denote the maximal diameter of the simplexes o, ,, ...
sevy Oy, Liet us prove the following

LEMMA 1. If X i8 a compactum and f: X—X is a map satisfying
the condition g(f(m),f(y)) < o(w,y) for every x,yeX with x # vy, and if
{%;} is a sequence of chains in X with

li_mmesh(x,- )< e  where >0,

1i=>00
then
limmesh (f(2;)) < e.
i—>00
Proof. Otherwise there would exist a sequence of indices 7, < %3 < ...
such that in x; there is a simplex ;4 containing two vertices w,,y,

() 8. B. Nadler, Jr., Some problems concerning stability of fixzed points, Collo-
quium Mathematicum 27 (1973), p. 263-268; see Problem 2.11 on p. 268.
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with
1

Since X is compact, we may assume z,—z and y,—y, where z, ye X.
Then o(f(x), f(y)) > ¢ and, consequently, o(x, y) > . It follows that there
exists a number 7 > ¢ such that the inequality o(z,, y,) = # is satisfied
for almost all ». Hence mesh(x; ) > n > & for almost all n, which con-
tradicts our hypothesis that

limmesh (x;) < ¢.

1—>00

Thus the proof of Lemma 1 is complete.
If ¥ = {»;} is a sequence of chains in X satisfying the condition

limmesh(x;) =0,

i—o00
then we say that x is an infinite chain in X. An infinite chain y = {y;}
in X is said to be an infinite cycle in X if all chains y; are cycles, i.e. if
their boundaries dy; vanish. If there is a sequence of chains x = {x,}
in X such that

li?lmesh(xi)g ¢ and y;, =0x; fori=1,2,...,
i—00
then the infinite cycle y is said to be &-homologous to zero in X and we
write y 0 in X.
If there is an infinite chain x» = {x;} in X such that y; = dx; for
i =1,2,..., then we write y = 0x and we say that the infinite cycle y
is homologous to zero inm X (notation: y ~ 0 in X). A compactum X is
said to be acyclic if every infinite cyecle in X is homologous to zero in X,
LEMMA 2. An infinite cycle y in X is homologous to zero in X if and
only if y~'0 in X for every &> 0.
Proof. It is evident that the relation y ~0 in X implies y~ 0
in X for every ¢ > 0. On the other hand, if y~’ 0 in X for every &> 0,
then for every n = 1, 2, ... there is in X a sequence {»{"} of chains such
that
limmesh(»A") < = and 9™ =y, for i =1,2,...
i—00 n
Then for every n =1, 2, ... there is an index %, such that mesh (x{™)
< 2/n for 4 > i,. We may assume that 4,,, > i, for n =1, 2, ... Setting
o« fori=1,2,...,14,

”-=
i %gn) for i, <i<4,.,,n=12,...,
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we get an infinite chain x» = {x;} satisfying the condition dx = y. Thus
the proof of Lemma 2 is complete.
Now let us prove the following

THEOREM. Let X be a compactum satisfying the following condition:
For every e > 0 there exists a map f: X—X such that g(f(a:),w) <e
for every xeX and that

1) e(f(x), fW) < o(®,y) if #,yeX and & #y.

Then X i8 acyclic.

Proof. If X is not acyclic, then there is an infinite cycle y = {y;}
in X such that y » 0 in X. We infer, by Lemma 2, that there exist pos-
itive numbers & such that

(2) the relation y~' 0 in X fails.

Let ¢, denote the least upper bound of the set of all such numbers .
We see easily that then there exists a sequence of chains ¥ = {%;} in X
such that

Ox; =y, for ¢ =1,2,... and ﬁamesh(xi) < &.

1—»00

By our hypothesis there is a map f: X—X satisfying condition (1)
and such that g( f(x), ®) < &y for every weX. Then there is an infinite
chain 2 = {4} in X such that 04; = y;—f(y;) for ¢ = 1,2, ... Moreover,
{f(x;)} is a sequence of chains in X satisfying, by Lemma 1, the condition

lim meshf(x;) < .
{—>00
Setting »; = Ai+f(x) for ¢ =1,2,..., we see that
lim mesh (x;) < &.
1—>00

Since 9(f(x;)) = f(0%) = f(v;), we infer that

0n; = yi—f(ye) +0(f()) = for i=1,2,...
But this contradicts (2). Thus the proof of the Theorem is complete.

Since every contractive map f: X—>X satisfies the condition
o(f(=), f(¥)) < o(®,y) for #,yeX and x #*y, and since for an acyclic
compactum X all Oech cohomology groups are trivial, the just proved
theorem gives an affirmative answer to the problem of Sam B. Nadler, Jr.
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