Some extremal problems for certain families
of analytic functions I

by W. JANOWSKI (Łódź)

Abstract. Let Ω be the class of functions $\theta(z)$, $\theta(0) = 0$, $|\theta(z)| < 1$ regular in the disc $K = \{z: |z| < 1\}$, A and B — arbitrary fixed numbers, $A \in (-1, 1)$, $B \in [-1, A)$, $\varphi(A, B)$ — the class of functions $P(z)$, $P(0) = 1$, regular in K such that $P(z) \in \varphi(A, B)$ if and only if $P(z) = (1 + A\theta(z))(1 + B\theta(z))^{-1}$ for some function $\theta(z) \in \Omega$ and every $z \in K$, and $S^*(A, B)$ — the class of functions $f(z)$, $f(0) = 0$, $f'(0) = 1$, regular in K satisfying the condition: $f(z) \in S^*(A, B)$ if and only if $zf'(z)f(z)^{-1} = P(z)$ for some $P(z) \in \varphi(A, B)$ and all z in K.

In the present paper the author determines the bounds for $\text{re}(P(z) + zP''(z)) (P(z))^{-1}$ and $\text{re}(zP'(z)(P(z))^{-1})$ on $|z| = r < 1$ within $\varphi(A, B)$, the bounds of $|f(z)|$ and $|f'(z)|$ in $S^*(A, B)$ and the exact value of the radius of convexity for $S^*(A, B)$.

1. Introduction. Let Ω be the family of functions $\theta(z)$ regular in the disc $K = \{z: |z| < 1\}$ and satisfying the conditions $\theta(0) = 0$, $|\theta(z)| < 1$ for $z \in K$.

Next, for arbitrary fixed numbers A, B, $-1 < A \leq 1$, $-1 \leq B < A$, denote by $\varphi(A, B)$ the family of functions

\begin{equation}
P(z) = 1 + b_1 z + \ldots
\end{equation}

regular in K and such that $P(z)$ is in $\varphi(A, B)$ if and only if

\begin{equation}
P(z) = \frac{1 + A\theta(z)}{1 + B\theta(z)}
\end{equation}

for some function $\theta(z) \in \Omega$ and every $z \in K$.

Moreover, let $S^*(A, B)$ denote the family of functions

\begin{equation}
f(z) = z + a_2 z^2 + \ldots
\end{equation}

regular in K and such that $f(z)$ is in $S^*(A, B)$ if and only if

\begin{equation}
\frac{zf'(z)}{f(z)} = P(z)
\end{equation}

for some $P(z)$ in $\varphi(A, B)$ and all z in K.
Finally, we consider the following classes of functions defined in \(K \) (the first five of them consisting of functions of form (1.1) the remaining ones — of form (1.2)): \(\varphi \) — the class of Carathéodory functions, i.e. of functions \(P(z) \) for which \(\text{re} P(z) > 0 \) in \(K \); \(\varphi_a \) — the class of Carathéodory functions of order \(a \), \(0 < a < 1 \), i.e. such that \(\text{re} P(z) > a \) for \(z \in K \); \(\varphi(M) \), \(M > \frac{1}{2} \), \(\varphi^{(b)} \) and \(\varphi^{(e)} \), \(0 < \beta \leq 1 \) — the classes of functions satisfying the conditions

\[
|P(z) - M| < M \quad [1], \quad \left| \frac{P(z) - 1}{P(z) + 1} \right| < \beta, \quad |P(z) - 1| < \beta
\]

for \(z \in K \), respectively and \(S^* \) — the class of functions starlike w.r.t. the origin; \(S_a^* \) — the class of functions starlike of order \(a \) [7]; \(S^*(M) \), \(S^{(b)} \) and \(S^{(e)} \) — the classes of functions satisfy (1.3), where \(P(z) \) belong to \(\varphi(M) \), \(\varphi^{(b)} \) and \(\varphi^{(e)} \) for \(z \in K \), respectively.

The classes \(S^*(M) \), \(S^{(b)} \) and \(S^{(e)} \) have been introduced in [1], [6] and [4].

It is easy to prove that

\[
\varphi(A, B) \leq \varphi_{1 - A, 1 - B}, \quad \varphi(A, B) \leq \varphi \left(\frac{1}{1 + B} \right),
\]

\[
\varphi(A, -1) \equiv \varphi_{-A, -1}, \quad \varphi(1, B) \equiv \varphi \left(\frac{1}{1 + B} \right), \quad \varphi(1, 1) \equiv \varphi,
\]

and

\[
\varphi(A, -A) \equiv \varphi^{(-A)}, \quad \varphi(A, 0) \equiv \varphi^{(A)}.
\]

Analogous relations hold for the corresponding classes of starlike functions.

In this paper we give the greatest lower bound and the smallest upper bound for \(\text{re} \left[P(z) + \frac{zP'(z)}{P(z)} \right] \) and \(\text{re} \left[\frac{zP'(z)}{P(z)} \right] \) on \(|z| = r < 1 \) within \(\varphi(A, B) \), the bounds of \(|f(z)| \) and \(|f'(z)| \) in \(S^*(A, B) \) and the exact value of the radius of convexity for \(S^*(A, B) \) for every admissible \(A \) and \(B \). As corollaries we obtain certain results given by the present author [1], Libera [2], Mac Gregor [3], [4], Nevanlinna [5], Padmanabhah [6], Robertson [7], [8] and Zmorović [9].

2. Auxiliary lemmas. From the definitions of the classes \(\varphi \) and \(\varphi(A, B) \) we easily obtain the following

Lemma 1. If \(P(z) \in \varphi(A, B) \), then

\[
(2.1) \quad P(z) = \frac{(1+A)p(z) + 1-A}{(1+B)p(z) + 1-B}
\]

for some \(p(z) \in \varphi \) and conversely.
Let ζ be an arbitrary fixed point of K. We consider the functional

\[(2.2) \quad F(P) = P(\zeta), \quad P(z) \in \wp(A, B).\]

Lemma 2. The set of values of the functional (2.2) is the closed disc with centre c and radius ϱ, where

\[(2.3) \quad c = c(r) = \frac{1 - ABr^2}{1 - B^2r^2}, \quad \varrho = \varrho(r) = \frac{(A - B)r}{1 - B^2r^2}, \quad r = |\zeta|.

Proof. Every boundary function $P_0(z)$ of $\wp(A, B)$ w.r.t. the functional (2.2) is of form (2.1), where

\[p(\zeta) = \frac{1 + \varepsilon z}{1 - \varepsilon z}, \quad |\varepsilon| = 1\]

[8]. Hence

\[(2.4) \quad P_0(z) = \frac{1 + A\varepsilon z}{1 + B\varepsilon z}.

Since for $z = r e^{i\varphi}, 0 \leq \varphi \leq 2\pi$,

\[(2.5) \quad P_0(z) = c + \varrho \eta_0,

where

\[(2.6) \quad \eta_0 = \varepsilon r e^{i\varphi} \frac{1 + B r e^{-i\varphi}}{1 + B r e^{i\varphi}},

the lemma has been proved.

Denote by $\wp_2(A, B)$ the subclass of $\wp(A, B)$ containing all functions of form (2.1), where

\[(2.7) \quad p(z) = \frac{1 + \lambda}{2} p_1(z) + \frac{1 - \lambda}{2} p_2(z),

\[(2.8) \quad p_k(z) = \frac{1 + \varepsilon_k z}{1 - \varepsilon_k z} \quad \text{for } k = 1, 2\]

and

\[(2.9) \quad |\varepsilon_k| = 1, \quad -1 \leq \lambda \leq 1.

Next let $F(u, v)$ be an analytical function in the v-plane and in the half-plane $\text{re } u > 0$, such that

\[|F_u|^2 + |F_v|^2 > 0\]

at every point (u, v).

Since every boundary function of \wp w.r.t. the functional $F[p(z), zp'(z)], |z| = R$, is of form (2.7) [8], every boundary function of $\wp(A, B)$ w.r.t. the functional $F[P(z), zP'(z)], |z| = R$, belongs to $\wp_2(A, B)$. Thus, the extremal problem for $\text{re } F[P(z), zP'(z)], |z| = R$, in $\wp(A, B)$ can be replaced by an analogous problem for this functional in the class $\wp_2(A, B)$.

LEMMA 3. If $P(z) \in \wp_{\alpha}(A, B)$, then for $z = re^{i\varphi}$, $0 \leq r < 1$, $0 \leq \varphi \leq 2\pi$, we have

$$P(z) = c + x\varphi,$$

where

$$x = \frac{A(1 + \lambda)\eta_1 + (1 - \lambda)\eta_2}{(1 + \lambda)\eta_1 + (1 - \lambda)\eta_2}, \quad \varphi = \frac{(1 + \lambda)h_1 \eta_1 + (1 - \lambda)h_2 \eta_2}{|(1 + \lambda)h_1 \eta_1 + (1 - \lambda)h_2 \eta_2|},$$

$$h_k = \frac{g + (1 + B)\varphi \eta_{k-1}}{v}, \quad v = 2g + (1 + B)[(1 + \lambda)\eta_2 + (1 - \lambda)\eta_1]\varphi,$$

$$g = (1 + B)c - 1 - A, \quad \eta_k = e^{x \varphi} \frac{1 + B \varepsilon_k re^{-i\varphi}}{1 + B \varepsilon_k re^{i\varphi}} \quad \text{for} \quad k = 1, 2,$$

c and φ are given by (2.3) and $0 \leq x \leq \varphi$.

Proof. Assume

$$x(p(z); \mu) = (1 + \mu)p(z) + 1 - \mu$$

for every function $p(z)$ of \wp and every number μ. Next let $P(z) \in \wp_{\alpha}(A, B)$. Then

$$P(z) = \frac{(1 + \lambda)x(p_1(z); A) + (1 - \lambda)x(p_2(z); A)}{(1 + \lambda)x(p_1(z); B) + (1 - \lambda)x(p_2(z); B)}$$

for some functions $p_k(z)$ of form (2.8).

Let

$$P_k(z) = \frac{x(p_k(z); A)}{x(p_k(z); B)}, \quad Q_k(z) = (1 + B)P_k(z) - 1 - A,$$

$$V(z) = (1 + \lambda)Q_2(z) + (1 - \lambda)Q_1(z), \quad H_k(z) = \frac{Q_{k-1}(z)}{V(z)}, \quad k = 1, 2.$$

Since

$$x(p_k(z); B) = 2(B - A)Q_k^{-1}(z) \quad \text{and} \quad (1 + \lambda)H_1(z) + (1 - \lambda)H_2(z) = 1,$$

we find after some calculation that $P(z)$ can be represented in the form

$$P(z) = (1 + \lambda)P_1(z)H_1(z) + (1 - \lambda)P_2(z)H_2(z).$$

Since

$$P_k(re^{i\varphi}) = c + \varphi \eta_k$$

(comp. (2.4)-(2.6)), we have

$$Q_k(re^{i\varphi}) = g + (1 + B)\varphi \eta_k, \quad V(re^{i\varphi}) = v$$

and

$$H_k(re^{i\varphi}) = h_k.$$
Therefore
\[P(re^{i\theta}) = c \left[(1 + \lambda) \bar{h}_1 + (1 - \lambda) h_1 \right] + \sigma \left[(1 + \lambda) h_1 \eta_1 + (1 - \lambda) h_2 \eta_2 \right]. \]

The first term of the last sum is equal to \(c \), and thus \(P(re^{i\theta}) \) is of form (2.10), where
\[(2.17) \quad \kappa^2 = \sigma \left[(1 + \lambda) h_1 \eta_1 + (1 - \lambda) h_2 \eta_2 \right]. \]

Equality (2.17) implies
\[\kappa^2 = \sigma^2 \left| (1 + \lambda) h_1 \eta_1 + (1 - \lambda) h_2 \eta_2 \right|^2. \]

Assuming \(\eta_k = e^{i\phi_k}, k = 1, 2 \), we find hence the relationship
\[\kappa^2 = \sigma^2 \left[(1 + \lambda) h_1 \bar{\eta}_1 + (1 - \lambda) h_2 \bar{\eta}_2 + (1 - \lambda^2)(h_1 \bar{\eta}_2 \eta_1 + h_2 \bar{\eta}_1 \eta_2) \right] \]
and because of
\[(1 + \lambda) \bar{h}_1 = 1 - (1 - \lambda) \bar{h}_2, \quad (1 - \lambda) \bar{h}_2 = 1 - (1 + \lambda) \bar{h}_1 \]
we get
\[\kappa^2 = \sigma^2 \left(1 - (1 - \lambda^2) \left| (1 - \eta_1 \bar{\eta}_2) h_1 \bar{\eta}_2 + (1 - \bar{\eta}_1 \eta_2) \bar{h}_1 h_2 \right| \right). \]

Finally we obtain
\[(2.19) \quad \kappa^2 = \sigma^2 \left[1 - 4(1 - \lambda^2) \frac{g^2 -(1 + B)^2 \sigma^2}{|\eta|^2} \sin^2 \frac{\gamma_1 - \gamma_2}{2} \right]. \]

Since
\[(2.20) \quad g^2 -(1 + B)^2 \cdot \sigma^2 = \frac{(A-B)^2(1 - \sigma^2)}{1 - B^2 \sigma^2} > 0, \]
we have \(\kappa \leq \sigma \), which ends the proof.

Lemma 4. If \(P(z) \in \mathcal{O}_2(A, B) \), then on \(|z| = r < 1 \)
\[(2.21) \quad zP'(z) = \frac{-BP^2(z) + (A + B)P(z) - A}{A - B} - \frac{1}{2} \frac{\sigma^*}{\sigma} \left[g^2 - |P(z) - c|^2 \right] \eta^*, \]
where \(c, \sigma \) are given by (2.3),
\[(2.21') \quad \sigma^* = \frac{2r}{1 - r^2} \quad \text{and} \quad |\eta^*| = 1. \]

Proof. The differentiation in (2.14) yields
\[(2.22) \quad zP'(z) = U(z) + W(z), \]
where
\[U(z) = z[(1 + \lambda) P_1(z) H'_1(z) + (1 - \lambda) P_2(z) H'_2(z)], \]
and
\[W(z) = z[(1 + \lambda) H_1(z) P'_1(z) + (1 - \lambda) H_2(z) P'_2(z)]. \]
Using (2.14), we obtain after simplification

\[
U(z) = \frac{(1 - \lambda^2)(1 + B)}{(A - B) \xi^2(z)} \left[P_1(z) - P_2(z) \right]^2 N(z),
\]

where

\[
N(z) = A^2 + B + B(1 + B)P_1(z)P_2(z) - B(1 + A)[P_1(z) + P_2(z)],
\]

and

\[
W(z) = \frac{-A + (A + B)P_1(z) - BT(z)}{A - B},
\]

where

\[
T(z) = (1 + \lambda)P_1^2(z) \cdot H_1(z) + (1 - \lambda)P_2^2(z) \cdot H_2(z).
\]

Because of (2.18) we have

\[
[(1 + \lambda)P_1(z)H_1(z) + (1 - \lambda)P_2(z)H_2(z)]^2
\]

\[= (1 + \lambda)P_1^2(z)H_1(z) + (1 - \lambda)P_2^2(z)H_2(z) - (1 - \lambda^2)H_1(z)H_2(z)[P_1(z) - P_2(z)]^2;
\]

thus

\[
T(z) = P_1^2(z) + (1 - \lambda^2)[P_1(z) - P_2(z)]^2 H_1(z)H_2(z).
\]

From (2.22) - (2.26) we conclude that (2.21) may be represented in the form

\[
\pi P'(x) = \frac{-BP_2(x) + (A + B)P_1(x) - A}{A - B} + \frac{(1 - \lambda^2)(A - B)}{\xi^2(z)} \left[P_1(x) - P_2(x) \right]^2
\]

for every \(P(x) \in \phi_\lambda(A, B) \) and \(x \in K \).

Let \(x = re^{i\phi}, 0 \leq r < 1, 0 \leq \phi \leq 2\pi \). Then from (2.15) it follows that

\[
[P_1(re^{i\phi}) - P_2(re^{i\phi})]^2 = -4g^2\eta\sin^2 \frac{\gamma_1 - \gamma_2}{2},
\]

where

\[
\eta = \eta_1 \cdot \eta_2.
\]

Hence in view of (2.19) and because of

\[
\frac{A - B}{g^2 - (1 + B)^2 g^2} = \frac{1}{2} \frac{g^*}{\ell},
\]

we obtain

\[
\frac{(1 - \lambda^2)(A - B)}{\xi^2(re^{i\phi})} \left[P_1(re^{i\phi}) - P_2(re^{i\phi}) \right]^2 = -\frac{1}{2} \frac{g^*}{\ell} (g^2 - \kappa^2) \eta^*,
\]
where
\[\eta^* = \frac{V(re^{i\varphi})}{V(re^{i\varphi})} \eta, \]

which ends the proof.

COROLLARY. If \(P(z) \in \mathcal{G}_2(1, -1) \), then on \(|z| = r < 1 \)

\[zP'(z) = \frac{1}{2} [P^2(z) - 1] - \frac{1}{2} [q^2 - |P(z) - c|^2] \eta, \]

where

\[c^* = \frac{1 + r^2}{1 - r^2}, \]

cf. [9].

3. **An extremum problem over \(\mathcal{G}(A, B) \).**

I. Let \(P(z) \in \mathcal{G}_2(A, B) \). Thus, because of (2.1), (2.7)-(2.9), where
\[\varepsilon_k = e^{i\theta_k} \ (k = 1, 2), \] and in view of Lemma 4, the expression

\[\omega(r) = \min \left\{ \text{re} \left[P(z) + \frac{zP'(z)}{P(z)} \right] : |z| = r < 1, P \in \mathcal{G}_2(A, B) \right\} \]

may be represented for \(z = re^{i\varphi}, 0 \leq r < 1, 0 \leq \varphi \leq 2\pi \), as follows:

\[\omega(r) = \min_{\lambda, \delta, \eta_1, \eta_2} L(P(re^{i\varphi})), \]

where

\[L(w) = \frac{(A - 2B)w^2 + (A + B)w - A}{(A - B)w} - \frac{c^*}{2\varepsilon} \left[q^2 - |w - c|^2 \right] w^{-1} \eta^*, \]

\[-1 \leq \lambda \leq 1, \ 0 \leq \delta_k \leq 2\pi \text{ for } k = 1, 2 \text{ and } c, q, q^*, \eta^* \text{ are given by } (2.3), (2.21'), \text{ and } (2.28), \text{ respectively.} \]

Let

\[(3.2) \quad P(re^{i\varphi}) = se^{it}, \quad s > 0, \ \text{im} \ t = 0. \]

Since

\[(3.3) \quad r \text{e}^{i\eta^*} e^{-it} \leq 1, \]

we obtain because of (3.1)

\[(3.4) \quad \omega(r) \geq \tau(r), \]

where

\[(3.5) \quad \tau(r) = \min_{s, t} \Phi(s, t) \]

and

\[(3.6) \quad \Phi(s, t) = \Phi(s, t; r) = (E_1s + E_2 + E_3s^{-1}) \cos t + E_4s + E_5 + E_6s^{-1} \]
with
\[
E_1 = \frac{A - 2B}{A - B}, \quad E_2 = -c \frac{q^*}{q} = -2 \frac{1 - ABr^2}{(A - B)(1 - r^2)}, \\
E_3 = \frac{A}{A - B}, \quad E_4 = \frac{q^*}{2q} = \frac{1 - B^2r^2}{(A - B)(1 - r^2)}, \\
E_5 = \frac{A + B}{A - B}, \quad E_6 = \frac{q^*(c^2 - q^2)}{2q} = \frac{1 - A^2r^2}{(A - B)(1 - r^2)}.
\]

(3.7)

In view of Lemmas 2 and 3 the function \(\Phi(s, t) \) is defined in the region
\[
D = \{(s, t): c - q < s < c + q, -\psi(s) < t < \psi(s)\}
\]
and on its boundary \(\partial D \), where
\[
(3.9) \quad \psi(s) = \arccos \frac{s^2 + c^2 - q^2}{2cs}, \quad 0 \leq \psi(s) \leq \psi(s_0)
\]
with \(s_0 = \sqrt{c^2 - q^2} \).

If, at some point \((s_1, t_1) \) of the region \(D \), \(\Phi(s, t) \) attains its minimum, then \(s_1 \) and \(t_1 \) are the solutions of the system of equations

\[
\frac{\partial \Phi(s, t)}{\partial s} = 0, \quad \frac{\partial \Phi(s, t)}{\partial t} = 0
\]

with the unknowns \(s \) and \(t \), i.e. of the system
\[
(3.10) \quad (E_1 - E_3 s^{-2}) \cos t + E_4 - E_6 s^{-2} = 0, \quad \sin t = 0
\]
or
\[
(3.11) \quad (E_1 - E_3 s^{-2}) \cos t + E_4 - E_6 s^{-2} = 0, \quad E_1 s + E_2 + E_6 s^{-1} = 0,
\]
where \(|\cos t| \neq 1 \).

The numbers \(s_1 \) and \(t_1 \) do not satisfy (3.11) (2); thus, in view of (3.8)-(3.10), the minimum problem for \(\Phi(s, t) \) if \((s, t) \in D \) is equivalent to an analogous problem for
\[
(3.12) \quad \tilde{\Phi}(s) = \tilde{\Phi}(s; r) = \Phi(s, 0, r),
\]
where \(\tilde{\Phi}(s) = \tilde{\Phi}(s; r) \) is defined in the interval \(I = \{s: c - q < s < c + q\} \).

(1) In the sequel \(|\overline{a}| \), for \(a > 0 \) will be denoted by \(\overline{a} \).

(2) In fact, putting
\[
\delta(s, t) = \frac{\partial^2 \Phi(s, t)}{\partial s^2} \frac{\partial^2 \Phi(s, t)}{\partial t^2} - \left(\frac{\partial^2 \Phi(s, t)}{\partial s \partial t} \right)^2,
\]
we obtain \(\delta(s_1, t_1) = -(E_2 - E_3 s_1^{-2}) \sin^2 t_1 \). Supposing \(\delta(s_1, t_1) = 0 \) for \(\sin t_1 \neq 0 \), we would have, because of (3.11), \(E_1 E_4 = E_2 E_6 \), whence in view of (3.7) and (3.3) we would obtain \(2 - A(A - B)r^2 = 0 \), which is impossible (cf. (1.2)).
Lemma 5. The function $\tilde{\Phi}(s) = \tilde{\Phi}(s; r)$ attains its minimum at the point

$$s_1 = s_1(r) = \sqrt{\frac{(1 - A)(1 + Ar^2)}{A - 2B + 1 - (A - 2B + B^2)r^2}}$$ \hspace{1cm} (3.13)$$

of I only for $r^* < r < 1$, where $r^* = r^*(A, B)$ is the unique root of the polynomial

$$g(r; A, B) = A(A - B)r^4 - 2A(1 - B)r^3 - (A^2 - AB + 2A + 2B - 2)r^2 + 2(1 + A)r - 2$$ \hspace{1cm} (3.14)$$
in the interval $(0, 1]$.

Proof. Differentiating (3.12) w.r.t. s we obtain

$$\tilde{\Phi}'(s) = E_1 + E_4 - (E_3 + E_5)s^{-2},$$

where

$$E_1 + E_4 = \frac{A - 2B + 1 - (A - 2B + B^2)r^2}{(A - B)(1 - r^2)},$$ \hspace{1cm} (3.15)$$

$$E_3 + E_5 = \frac{(1 - A)(1 + Ar^2)}{(A - B)(1 - r^2)}.$$

Since $E_1 + E_4 > 0$ and $E_3 + E_5 > 0$ for every admissible A, B, r, the function $\tilde{\Phi}(s)$ attains its minimum in s_1 if $s_1 \in I$.

For $A \neq 1$ put

$$k(r) = [c(r) - g(r)]^2, \hspace{0.5cm} l(r) = s_1^2(r), \hspace{0.5cm} n(r) = [c(r) + g(r)]^2.$$ \hspace{1cm} (3.16)$$

It is easy to verify that the function $k(r)$ decreases and $l(r)$ increases for $0 < r < 1$. Since $k(0) > l(0)$ and $k(1) < l(1)$, we have $s_1 > c - g$ for $r^* < r < 1$, where $r^*, 0 < r^* \leq 1$, is the root of the equation $k(r) - l(r) = 0$, i.e. the root of the polynomial $g(r; A, B)$.

At the same time $n(r) - l(r) > 0$ for $0 < r < 1$. In fact, if $A + B > 0$, then $l(1) < n(0)$; hence $l(r) < n(r)$ for $0 < r < 1$. If $A + B < 0$ and $A > 0$, then $B < 0$. Thus

$$l(r) - n(r) < \frac{(1 + Ar)^2}{1 - B^2r^2} \left[(1 - A) \frac{1 + Ar^2}{(1 + Ar)^2} - \frac{1 - Br}{1 + Br} \right]$$

$$< \frac{(1 + Ar)^2}{1 - B^2r^2} \left(1 - \frac{1 - Br}{1 + Br} \right) < 0.$$

Finally, for $A + B < 0$ and $A < 0$, because of $n(r) > c(r) + g(r)$, we have

$$l(r) - n(r) < \frac{(B - A)\chi(r)}{(1 + Br)[A - 2B + 1 - (A - 2B + B^2)r^2]},$$
where
\[\chi(r) = -A(1-B)r^3 - (2-A-B)r^2 + (1+A)r + 2 > 0. \]

Hence we always have \(s_1 < c + \varrho \) for \(r^* < r < 1 \), which ends the proof of the lemma.

Corollary. If \(0 < r \leq r^* \), then \(\Phi(s, t) \) attains its minimum at a point of \(\partial D \).

Remark. If \(A = 1 \) and only in this case we have \(r^* = 1 \).

Therefore, if \(A = 1 \), \(\hat{\Phi}(s) \) does not attain its minimum in \(I \).

Assuming
\[s_2 = s_2(r) = c(r) - \varrho(r) \]
and \(\hat{\Phi}(s_2) = \hat{\Phi}(s_2, 0) \), we have
\[\hat{\Phi}(s_1) < \hat{\Phi}(s_2) \quad \text{for} \quad r^* < r < 1. \]

Let \((s, t) \in \partial D \). Then, because of \(\Phi(s, t) = \Phi(s, -t) \), we have
\[\Phi(s, \varphi(s)) = \Phi(s, -\varphi(s)) = \hat{\Phi}(s), \]
where \(\varphi(s) \) is given by (3.9) and \(s \in J \), where \(J = \{ s : c - \varrho \leq s \leq c + \varrho \} \).

Thus
\[\hat{\Phi}(s) = (E_1 s + E_3 s^{-1}) \cos \varphi(s) + E_6 \]
with
\[\cos \varphi(s) = -\frac{E_4 s + E_8 s^{-1}}{E_2}. \]

Lemma 6. Let
\[Z_1 = \{(A, B) : -1 < A < 0, \quad -1 \leq B < A \}, \]
\[Z_2 = \{(A, B) : 0 \leq A \leq 1, \quad -1 \leq B < \frac{A}{2} \}, \]
\[Z_3 = \{(A, B) : 0 < A \leq 1, \quad \frac{A}{2} \leq B < A \}, \]
\[s' = s'(r) = \sqrt{\frac{E_2 - E_6}{E_1 - E_4}} \quad \text{for} \quad (A, B) \in Z_1 \]
and \(I = \{ s : c - \varrho < s < c + \varrho \} \).

Then
\[
\min_{(s, t) \in \partial D} \Phi(s, t) = \min_{s \in I} \hat{\Phi}(s) = \begin{cases}
\hat{\Phi}(c - \varrho), & \text{if} \ (A, B) \in Z_2 \cup Z_3 \ \text{or} \ (A, B) \in Z_1, \ s' \notin I, \\
\hat{\Phi}(s'), & \text{if} \ (A, B) \in Z_1, \ s' \in I.
\end{cases}
\]
Proof. Differentiating (3.19) w.r.t. s, we find by (3.20) that
\[
\hat{\phi}'(s) = -\frac{1}{E_2} \left[(E_1 - E_2 s^{-2})(E_4 s + E_6 s^{-1}) + (E_4 s + E_6 s^{-1})(E_4 - E_6 s^{-2}) \right],
\]
i.e.
\[
\hat{\phi}'(s) = -\frac{2(E_1 E_4 s^4 - E_2 E_6)}{E_2 s^3}.
\]

For any admissible A, B and r we find from (3.7) that $E_2 < 0$, $E_4 > 0$ and $E_6 > 0$. If $(A, B) \in Z_1$, then $E_1 > 0$, $E_3 > 0$; for $(A, B) \in Z_2$ we have $E_1 > 0$, $E_3 < 0$ and the condition $(A, B) \in Z_3$ implies $E_1 < 0$ and $E_3 < 0$. Thus, in view of $\hat{\phi}(c - \varphi) < \hat{\phi}(c + \varphi)$, the lemma has been proved.

Lemma 7. If $s' \in I$, where s' is given by (3.21), then
\[
\hat{\phi}(s') < \hat{\phi}(s').
\]

Proof. Since $\hat{\phi}(s) = \Phi(s, 0)$, then, in view of (3.6) and because of (3.19), we obtain
\[
\hat{\phi}(s) - \hat{\phi}(s) = U(s)[1 - \cos \psi(s)] + V(s),
\]
where
\[
U(s) = E_1 s + E_2 s^{-1}, \quad V(s) = E_4 s + E_6 s^{-1}.
\]
Since
\[
1 - \cos \psi(s) = \frac{V(s)}{E_2},
\]
equality (3.24) now becomes
\[
\hat{\phi}(s) - \hat{\phi}(s) = \frac{V(s)}{E_2} [U(s) + E_2].
\]

Since $E_2 < 0$, we find from (3.36) that $V(s) < 0$. Because of (3.22) and (3.25) we obtain for $s = s'$
\[
U(s') + E_2 = E_2 \left[\frac{E_1 s'^2 - E_2}{E_4 s'^2 - E_6} \cos \psi(s') + 1 \right].
\]
From (3.7) we get $E_4 < E_1$, and thus
\[
E_1 s'^2 - E_2 > E_1(s'^2 - 1).
\]
On the other hand, basing ourselves on Lemma 6, we conclude that $E_2 > 0$ in (3.28); thus we obtain $A^2 < B^2$. Hence $E_4 > E_6$. Therefore
\[
E_4 s'^2 - E_6 < E_4(s'^2 - 1).
\]
From (3.29) and (3.30) because of $E_2 < 0$ we have $U(s') + E_2 < 0$. Thus, in view of (3.27), inequality (3.23) is true.
Let \(\Phi \) be the minimal value of \(\Phi(s, t) \) in \(D \cup \partial D \). In view of Lemmas 5–7 and inequality (3.18) \(\Phi = \Phi(s_2, 0) \) for \(0 < r \leq r^* \) and \(\Phi = \Phi(s_1, 0) \) for \(r^* < r < 1 \).

We shall now prove the following

Theorem 1. For all \(P(z) \) in \(\varrho(A, B) \) and \(|z| = r, 0 < r < 1 \)

\[
(3.31) \quad \text{re} \left[P(z) + \frac{zP'(z)}{P(z)} \right] \geq \begin{cases}
X_1(r; A, B) & \text{for } 0 < r \leq r^*, \\
X_2(r; A, B) & \text{for } r^* < r < 1,
\end{cases}
\]

where

\[
(3.32) \quad X_1(r; A, B) = \frac{A^2 r^2 - (3A - B)r + 1}{(1 - Ar)(1 - Br)},
\]

\[
(3.33) \quad X_2(r; A, B) = 2 \frac{\sqrt{\mathfrak{B}} - (1 - ABr^2)}{(A - B)(1 - r^2)} + \frac{A + B}{A - B},
\]

\[
(3.34) \quad \mathfrak{H} = \mathfrak{H}(r; A, B) = A - 2B + 1 - (A - 2B + B^2)r^2,
\]

\[
(3.35) \quad \mathfrak{B} = \mathfrak{B}(r; A, B) = (1 - A)(1 + Ar^2)
\]

and \(r^* = r^*(A, B) \) is the unique root the polynomial

\[
(3.36) \quad g(r; A, B) = A(A - B)r^4 - 2A(1 - B)r^3 - \quad
- (A^2 - AB + 2A + 2B - 2)r^2 + 2(1 + A)r - 2
\]

in the interval \((0, 1]\).

These bounds are sharp, being attained at the point \(z = re^{\theta} \), \(0 \leq \varphi \leq 2\pi \), by

\[
(3.37) \quad P^*(z; A, B) = \frac{1 - Ae^{-i\varphi} z}{1 - Be^{-i\varphi} z} \quad \text{for } 0 < r \leq r^*
\]

and by

\[
(3.38) \quad P^{**}(z; A, B) = \frac{1 - (1 - A)de^{-i\varphi} z - Ae^{-2i\varphi} z^2}{1 - (1 - B)de^{-i\varphi} z - Be^{-2i\varphi} z^2} \quad \text{for } r^* < r < 1
\]

respectively, where

\[
(3.39) \quad \hat{d} = \hat{d}(r; A, B) = \frac{1}{r} \frac{(1 - Br^2)s_1 - (1 - Ar^2)}{(1 - B)s_1 - (1 - A)}, \quad s_1 = \sqrt{\mathfrak{B}^{-1}}.
\]

Proof. For \(s_2 \) and \(s_1 \) given by (3.17) and (3.13), respectively, we obtain \(\Phi(s_2, 0) = X_1(r) \) and \(\Phi(s_1, 0) = X_2(r) \); thus, in view of (2.9), (3.4), (3.5) and Lemmas 5–7, inequality (3.31) is true. We shall prove that this estimation is sharp.

To this end we observe first that if a function \(P^*(z) \) of the family \(G_2(A, B) \) satisfies condition (3.2) at some point \(re^{\theta} \), \(0 < r \leq r^* \), \(0 \leq \varphi \leq 2\pi \), with \(s = s_2 \) and \(t = 0 \), then

\[
(3.40) \quad P^*(re^{\theta}) = s_2.
\]
To make notation simpler, we denote the values of the parameters appearing in Lemma 3 by the same letters as the parameters themselves.

Since \(s_2 = s - q \), from (2.10) we obtain \(z = q \) and \(\psi = -1 \). Therefore from (2.19) it follows that \(\lambda^2 = 1 \) or \(\gamma_1 = \gamma_2 \). If \(\lambda^2 = 1 \), then because of (2.7), (2.8) and (2.1) we get

\[
P^*(z) = \frac{1 + Az}{1 + Bz}
\]

for some \(|e| = 1 \).

If \(\gamma_1 = \gamma_2 \), then in view of \(\eta_k = e^{iy_k} \) \((k = 1, 2) \) and because of (2.11) we obtain \(e_1 = e_2 \). Thus, from (2.7) and (2.8) and because of (2.1) we infer that \(P^*(z) \) is also of form (3.41).

We find \(s \). For \(z = re^{i\psi} \) we have

\[
P^*(re^{i\psi}) = \frac{1 + Arre^{i\psi}}{1 + Bre^{i\psi}}.
\]

Equating (3.40) and (3.42) we obtain

\[
\varepsilon = \frac{1}{r} \frac{s_2 - 1}{A - B} e^{-i\psi}
\]

and because of (3.17) we obtain \(\varepsilon = -e^{-i\psi} \). Thus \(P^*(z) \) is of form (3.37). Evidently \(P^*(z) \in \varphi(A, B) \). It is easy to verify that for \(z = re^{i\psi} \)

\[
P^*(z) + \frac{zP''(z)}{P'(z)} = X_1(r; A, B).
\]

Next, if a function \(P^{**}(z) \) of \(\varphi(z, A, B) \) satisfies condition (3.2) at some point \(r = r^* \), \(r^* < r < 1 \), \(0 \leq \varphi \leq 2\pi \), with \(s = s_1 \) and \(t = 0 \), then

\[
P^{**}(re^{i\psi}) = s_1.
\]

We accept the foregoing agreement concerning the notation of values of the parameters corresponding to the function \(P^{**}(z) \).

Since \(t = 0 \) (comp. (3.2) and (3.12)), by (3.3)-(3.6) we have \(\eta^* = 1 \). Therefore, in view of (2.27)

\[
\frac{\Omega(re^{i\psi})}{\Omega(re^{i\psi})} \eta_1 \eta_2 = 1
\]

i.e.

\[
\frac{\Omega}{\varphi} \eta_1 \eta_2 = 1
\]
(cf. (2.16)). Hence

\begin{equation}
\frac{2g + (1 + B)[(1 + \lambda) \bar{\eta}_2 + (1 - \lambda) \bar{\eta}_1]}{2g + (1 + B)[(1 + \lambda) \eta_2 + (1 - \lambda) \eta_1]} \eta_1 \eta_2 = 1
\end{equation}

(cf. (2.11)).

We conclude from (3.44) that

\begin{equation}
g(\eta_1 \eta_2 - 1) + \lambda (1 + B) \varphi(\eta_1 - \eta_2) = 0.
\end{equation}

Moreover, since \(P^{**}(re^{i\varphi}) \) is real, by (2.10) and (2.11) we have \(\psi = \bar{\psi} \), i.e.

\begin{equation}
(1 + \lambda) h_1 \eta_1 + (1 - \lambda) h_2 \eta_2 = (1 + \lambda) \bar{h}_1 \bar{\eta}_1 + (1 - \lambda) \bar{h}_2 \bar{\eta}_2.
\end{equation}

By (3.46), in view of (2.11), an easy calculation yields

\begin{equation}
\lambda g(\eta_1 - \eta_2) + (1 + B) \varphi(\eta_1 \eta_2 - 1) = 0.
\end{equation}

We shall solve the system of equations (3.45) and (3.47) with the unknowns \(\lambda, \eta_1 \) and \(\eta_2 \).

Supposing that for \(\eta_1 = \eta_2 \) we would have \(s_1 = s_2 \); then because of (2.13), (2.7), (2.8) and (2.16) we would obtain \(h_1 = h_2 = \frac{1}{2} \); hence, in view of (2.17), we would get \(\kappa \psi = \varphi \cdot \eta_1 \) where \(\eta = \eta_1 = \eta_2 \). Therefore, because of (2.12) we would obtain \(P^{**}(re^{i\varphi}) = c + \varphi \eta \) and because of the equalities \(P^{**}(re^{i\varphi}) = \bar{P}^{**}(re^{i\varphi}) \) and (3.43) we would find that \(s_1 = c - \varphi \) or \(s_1 = c + \varphi \), which is impossible. Thus, \(\eta_1 \neq \eta_2 \). From (3.47) we find

\begin{equation}
\lambda = -\frac{(1 + B) \varphi(\eta_1 \eta_2 - 1)}{g(\eta_1 - \eta_2)}.
\end{equation}

Substituting \(\lambda \) from (3.48) into (3.45), we obtain

\begin{equation}
(\eta_1 \eta_2 - 1)[g^2 - (1 + B)^2 \cdot \varphi^2] = 0.
\end{equation}

Since \(g^2 - (1 + B)^2 \cdot \varphi^2 \neq 0 \) (cf. (2.20)), we have

\begin{equation}
\eta_1 \eta_2 = 1.
\end{equation}

It follows from (3.49) and (3.47) that

\begin{equation}
\lambda = 0.
\end{equation}

Because of (3.49) we find from the equality

\begin{equation}
\eta_k = \varepsilon_k e^{i\varphi} \frac{1 + B \tilde{e}_k re^{-i\varphi}}{1 + B \tilde{e}_k r e^{i\varphi}} \quad (k = 1, 2)
\end{equation}

(cf. (2.11)) that

\begin{equation}
\varepsilon_1 \varepsilon_2 = e^{-2i\varphi}.
\end{equation}
Thus, because of (3.50), (2.12) and (2.8),

\[P^{**}(z) = \frac{1 - \frac{1}{2}(1-A)(\varepsilon_1 + \varepsilon_2)z - A\varepsilon_1 \varepsilon_2 z^2}{1 - \frac{1}{2}(1-B)(\varepsilon_1 + \varepsilon_2)z - B\varepsilon_1 \varepsilon_2 z^2}. \]

Let

\[2\hat{d} = \varepsilon_1 e^{i\varphi} + \varepsilon_1 e^{-i\varphi}. \]

From (3.51) and (3.52) we obtain \(\varepsilon_1 + \varepsilon_2 = 2e^{-i\varphi} \cdot \hat{d} \); thus

\[P^{**}(z) = \frac{1 - (1-A)\hat{d} e^{-i\varphi} z - A\varepsilon_2 z^2}{1 - (1-B)\hat{d} e^{-i\varphi} z - B\varepsilon_2 z^2}. \]

It follows from (3.43) and (3.53) that

\[s_1 = \frac{1 - (1-A)\hat{d} r - Ar^2}{1 - (1-B)\hat{d} r - Br^2}. \]

Therefore \(P^{**}(z) \) is of form (3.38) with \(\hat{d} \) given by (3.39). Evidently \(P^{**}(z) \in \mathcal{G}(A,B) \).

Finally we prove that, for \(z = re^{i\varphi} \),

\[P^{**}(z) + \frac{zP^{**'}(z)}{P^{**}(z)} = X_4(r; A, B). \]

Differentiating the function \(P^{**}(z) \), we obtain

\[P^{**'}(z) = (A-B)e^{-i\varphi} - \frac{\hat{d} - 2e^{-i\varphi} z + e^{-2i\varphi} \hat{d} z^2}{[1 - (1-B)\hat{d} e^{-i\varphi} z - B\varepsilon_2 z^2]^2}. \]

Therefore, for \(z = re^{i\varphi} \),

\[P^{**}(z) + \frac{zP^{**'}(z)}{P^{**}(z)} = s_1 + \frac{A - B}{s_1} \frac{dr(1 + r^2) - 2r^3}{[1 - (1-B)\hat{d} r - Br^2]^2}, \]

and by (3.39) we get

\[P^{**}(z) + \frac{zP^{**'}(z)}{P^{**}(z)} = \frac{\mathcal{U}(r; A, B)s_1^2 - [2 - A - B + (B - 2AB + A)r^2]s_1 + \mathcal{B}(r; A, B)}{(A-B)(1-r^2)s_1}, \quad z = re^{i\varphi}. \]

Since \(s_1 = \sqrt{\mathcal{B}\mathcal{B}^{-1}} \), we have, for \(z = re^{i\varphi} \),

\[P^{**}(z) + \frac{zP^{**'}(z)}{P^{**}(z)} = 2 \frac{\mathcal{B}(r) - (1-ABr^2)s_1}{(A-B)(1-r^2)s_1} + \frac{A + B}{A - B} = X_4(r; A, B), \]

which ends the proof of Theorem 1.
II. Let

$$\omega_1(r) = \max_{P(z) \neq 0, |z| = r < 1} \text{re} \left[\frac{P(z) + zP'(z)}{P(z)} \right].$$

Proceeding as in part I of this section and preserving the same notation, we obtain first $\omega_1(r) \leq \tau_1(r)$, where

$$\tau_1(r) = \max_{(s, t) \in D \cap \partial D} \phi_1(s, t)$$

and

$$\phi_1(s, t) = \phi_1(s, t; r) = (E_1s - E_2 + E_3s^{-1}) \cos t - E_4s + E_5 - E_6s^{-1}.$$

Next we prove that if $\phi_1(s, t)$ attains its maximum at a point $(\hat{s}, \hat{t}) \in D$, then $\hat{t} = 0$. Let

$$\hat{\phi}_1(s) = \bar{\phi}_1(s; r) = \phi_1(s, 0, r).$$

Since

$$\hat{\phi}_1'(s) = E_1 - E_4 + (E_6 - E_5)s^{-2}$$

and $E_6 - E_5 > 0$, the point \hat{s} exists only if $E_1 < E_4$. Hence

$$\hat{s} = \hat{s}_1(r) = \sqrt{\frac{E_6 - E_5}{E_4 - E_1}},$$

if $1^0 E_1 < E_4$ and $2^0 [(E_6 - E_5)(E_4 - E_1)^{-1}]^{1/2} \in I$.

$E_1 < E_4$ only if $1^0 A - 2B - 1 \leq 0$, $0 < r < 1$ or $2^0 A - 2B - 1 > 0$, $r_0 < r < 1$, where $r_0 = \sqrt{(A - 2B - 1)/(A - 2B - B^2)}$.

Putting $\hat{l}(r) = \hat{s}_1^2(r)$ in these cases, we find that $\hat{l}(r)$ decreases for $0 < r < 1$ and for $r_0 < r < 1$, respectively. The function $k(r)$ defined by (3.16) decreases for $0 < r < 1$ and $k(0) = 1$. Next, we obtain $\hat{l}(r) > k(r)$ for $0 < r < 1$ and for $r_0 < r < 1$, respectively (*) and $\hat{l}(r) < n(r)$ (cf. (3.16)) for $r^** < r < 1$, where r^** is the unique root of the polynomial $g(r; -A, -B)$, in the intervals $(0, 1)$ and $(r_0, 1)$, respectively.

Summing, we obtain

Lemma 5'. The function $\hat{\phi}_1(s) = \bar{\phi}_1(s; r)$ attains its maximum at the point

$$\hat{s}_1 = \hat{s}_1(r) = \sqrt{\frac{(1 + A)(1 - Ar^2)}{(A - 2B - B^2)r^2 - (A - 2B - 1)}}$$

(*) In fact, if $A + B < 0$, then $\hat{l}(1) > k(0)$; hence $\hat{l}(r) > k(r)$ in this case. If $A + B > 0$, then $A > 0$ and $\hat{l}(r) - k(r) > (A - B)\hat{\chi}(r)/(1 - Br)[(A - 2B - B^2)r^2 - (A - 2B - 1)]$, where $\hat{\chi}(r) = A(1 + B)r^2 - (A + B + 2)r + (1 - A)r + 2 > 0$ for $0 < r < 1$.

of I only for $r^{**} < r < 1$, where $r^{**} = r^{**}(A, B)$ is the unique root of the polynomial
\[A(A - B)r^4 + 2A(1 + B)r^3 - (A^2 - AB - 2A - 2B - 2)r^2 + 2(1 - A)r - 2 \]
in the interval $(0, 1)$.

Corollary. If $0 < r < r^{**}$, then $\Phi_1(s, t)$ attains its maximum at a point of ∂D.

Remark. If $B = -1$ and only in this case we have $r^{**} = 1$. Therefore, if $B = -1$, then $\Phi_1(s)$ does not attain its maximum in I.

We see that for $r^{**} < r < 1$
\[\Phi_1(\delta_1) > \Phi_1(c + q). \]

As in part I we obtain

Lemma 5'. Let
\[\Phi_1(s, \psi)(s) = \Phi_1(s), \]
where $\psi(s)$ is given by (3.7), $s \in J, J = \{s: c - q \leq s \leq c + q\}$ and let
\[s' = s'(r) = \sqrt{\frac{E_3 E_6}{E_1 E_4}} \quad \text{for} \quad (A, B) \in \mathbb{Z}_3 \]
(cf. Lemma 6). Then
\[\max_{(s, t) \in \partial D} \Phi_1(s, t) = \max_{s \in J} \Phi_1(s) = \begin{cases} \Phi_1(c + q), & \text{if} \quad (A, B) \in \mathbb{Z}_1 \cup \mathbb{Z}_2 \text{ or} \\ \Phi_1(s'), & (A, B) \in \mathbb{Z}_3, s' \notin I; \\ \Phi_1(s'), & \text{if} \quad (A, B) \in \mathbb{Z}_3, s' \in I. \end{cases} \]

Remark. If $(A, B) \in \mathbb{Z}_3$, then $A - 2B - 1 < 0$.

We prove the following

Lemma 7'. If $s' \in I$, then
\[\Phi_1(s') > \Phi_1(s'). \]

Proof. Preserving the notation adopted in Lemma 7, we easily obtain the equality
\[\Phi_1(s') - \Phi_1(s') = V(s') [T(s') \cos \psi(s') - 1], \]
where
\[T(s') = \frac{E_1 s'^2 - E_3}{E_4 s'^2 - E_6}. \]

Since $(A, B) \in \mathbb{Z}_3$, we have $E_3 < E_1 < 0$ and $E_4 > E_6 > 0$.

Putting $h(r) = E_6 E_4 - E_1 E_3$, we get
\[h(r) = \frac{h_1(r)}{(A - B)^2 (1 - r^2)^2}, \]

5 — Annales Polonici Mathematici XXVIII.
where
\[h_1(r) = A(AB^2 - 2B + A)r^4 + (A - B)(B - 3A)r^2 + A^2 - 2AB + 1. \]

If \(h_1(r) > 0 \) for \(0 < r < 1 \), then \(h(r) > 0 \) and because of \(E_1E_6 - E_3E_4 > 0 \) we obtain after some calculation the inequality
\[s'^2 > \frac{E_6 - E_3}{E_4 - E_1}. \]

Hence \(T(s') < 1 \); thus, because of \(\cos \psi(s') > 0 \) and \(V(s') < 0 \), in case of \(h_1(r) > 0 \), the lemma is proved.

The relation \((A, B) \in Z_1 \) implies \(0 < A \leq 2B \). Thus \(h_2(0) > 0 \); moreover, \(h_1(1) \geq 0 \). Therefore \(h_1(r) > 0 \) for \(0 < r < 1 \) if \(AB^2 - 2B + A < 0 \). Similarly for \(AB^2 - 2B + A > 0 \) this inequality is true, which ends the proof.

Basing ourselves on Lemmas 5'-7', we obtain

Theorem 2. For all \(P(z) \) in \(g(A, B) \) and \(|z| = r \), \(0 < r < 1 \)

\[(3.54) \quad \text{re} \left[\frac{zP'(z)}{P(z)} \right] \leq \begin{cases} X_1(r; -A, -B) & \text{for } 0 < r \leq r^*; \\ X_2(r; -A, -B) & \text{for } r^* < r < 1, \end{cases} \]
equality holding in \(z = re^{i\phi} \) for \(P^*(r; -A, -B) \) if \(0 < r \leq r^* \) and for \(P^*(z; -A, -B) \) if \(r^* < r < 1 \), respectively, where \(r^* = r^*(A, B) \) is the unique root of the polynomial \(g(r; -A, -B) \) in the interval \((0, 1] \) (cf. Theorem 1).

III. Similarly we prove the following

Theorem 3. For all \(P(z) \) in \(g(A, B) \) and \(|z| = r \), \(0 < r < 1 \)

\[1^o \quad \text{re} \frac{zP'(z)}{P(z)} \geq \begin{cases} Y_1(r; A, B) & \text{for } 0 < r \leq \hat{r}^*, \\ Y_2(r; A, B) & \text{for } \hat{r}^* < r < 1, \end{cases} \]

where
\[Y_1(r; A, B) = -\frac{(A - B)r}{(1 - Ar)(1 - Br)}, \]
\[Y_2(r; A, B) = 2\frac{\hat{\Phi}B^2 - (1 - ABr^2)}{(A - B)(1 - r^2)} + \frac{A + B}{A - B}, \]
\[\hat{\Phi} = \hat{\Phi}(r; A, B) = (1 - B)(1 + Br^2), \quad \hat{B} = B \]
(cf. Theorem 1) and \(\hat{r}^* = \hat{r}^*(A, B) \) is the unique root of the polynomial \(g(r; A, B) = AB^2 - 2AB + 2A + 2B - A^2 + 1 \) in the interval \((0, 1] \). Functions \((3.37) \) and \((3.38) \), where \(d \) is given by \((3.39) \) and \(s_1 = V.B^{\hat{\Phi}^{-1}} \) shows this result to be sharp.

\[2^o \quad \text{re} \frac{zP'(z)}{P(z)} \leq \begin{cases} Y_1(r; -A, -B) & \text{for } 0 < r \leq \hat{r}^{**}, \\ Y_2(r; -A, -B) & \text{for } r^{**} < r < 1, \end{cases} \]
equality holding for functions $P^*(z; -A, -B)$ and $P^{**}(z; -A, -B)$, respectively; $\hat{\gamma}^{**}$ is the unique root of the polynomial $\hat{g}(r; -A, -B)$ in the interval $[0, 1]$.

Remark. If $A = 1$ and only in this case we have $\hat{\gamma}^* = 1$, $\hat{\gamma}^{**} = 1$ only for $B = -1$.

Applying Theorem 3 to the special cases where $A = 1 - 2\alpha$ and $B = -1$, $A = 1$ and $B = \frac{1}{M} - 1$, $A = \beta$ and $B = -\beta$, $A = \beta$ and $B = 0$, we obtain the corresponding theorems on $\text{re} \frac{zP'(z)}{P(z)}$ in the families φ_α, $\varphi(M)$, $\varphi^{(\beta)}$ and $\varphi_{[\beta]}$, respectively. If $A = 1$ and $B = -1$, then we obtain a result of Libera [2].

4. The estimations of $|f(z)|$ and $|f'(z)|$ in $S^*(A, B)$.

Theorem 4. If $f(z) \in S^*(A, B)$, then for $|z| = r, 0 \leq r < 1$

\[
C(r; -A, -B) \leq |f(z)| \leq C(r; A, B),
\]

where

\[
C(r; A, B) = \begin{cases}
(1 + Br)^{(A-B)/B} & \text{for } B \neq 0, \\
re^{4r} & \text{for } B = 0.
\end{cases}
\]

These bounds are sharp, being attained at the point $z = re^{i\varphi}, 0 \leq \varphi \leq 2\pi$, by

\[
f_*(z) = z \cdot f_0(z; -A, -B)
\]

and

\[
f^*(z) = z \cdot f_0(z; A, B),
\]

respectively, where

\[
f_0(z; A, B) = \begin{cases}
(1 + Be^{-i\varphi}z)^{(A-B)/B} & \text{for } B \neq 0, \\
e^{4e^{-i\varphi}z} & \text{for } B = 0.
\end{cases}
\]

Proof. Since $f(z) \in S^*(A, B)$, we have

\[
f(z) = z \cdot \exp \left(\int_0^z \frac{P(\zeta) - 1}{\zeta} d\zeta \right), \quad P(z) \in \varphi(A, B).
\]

Therefore

\[
|f(z)| = |z| \exp \left(\text{re} \int_0^z \frac{P(\zeta) - 1}{\zeta} d\zeta \right).
\]

Substituting $\zeta = zt$, we obtain

\[
|f(z)| = |z| \exp \left(\text{re} \int_0^1 \frac{P(zt) - 1}{t} dt \right).
\]
Hence

\[|f(z)| \leq |z| \exp \left(\int_0^1 \max_{|z|=rt} \left(\operatorname{re} \frac{P(zt)}{t} - 1 \right) \, dt \right). \]

From Lemma 2 it follows that

\[\max_{|z|=rt} \frac{P(zt) - 1}{t} = \frac{(A - B)r}{1 + Br}; \]

then, after integration, we obtain the upper bounds in (4.1). Similarly, we obtain the bounds on the left-hand side of (4.1), which ends the proof.

Theorem 5. If $f(z) \in S^*(A, B)$, then for $|z| = r$, $0 \leq r < 1$,

\[\tilde{L}(r) \leq |f'(z)| \leq L(r), \]

where

\[L(r) = \begin{cases} D(r), & \text{if } 0 < r \leq r^*, \\ D(r^*) \frac{\exp H(r)}{\exp H(r^*)}, & \text{if } r^* < r < 1, \end{cases} \]

(4.4)

\[\tilde{L}(r) = \begin{cases} \tilde{D}(r), & \text{if } 0 < r \leq r^*, \\ \tilde{D}(r^*) \frac{\exp \tilde{H}(r)}{\exp \tilde{H}(r^*)}, & \text{if } r^* < r < 1, \end{cases} \]

r^* and r^{**} are the roots of the polynomial $g(r; A, B)$ and $g(r; -A, -B)$, respectively (cf. Theorems 2 and 1),

\[D(r) = D(r; A, B) = \begin{cases} (1 + Ar)(1 + Br)^{(d - 2m)n}, & \text{if } B \neq 0, \\ (1 + Ar)^{e^{dr}}, & \text{if } B = 0, \end{cases} \]

\[H(r) = H(r; A, B) = \frac{2}{A - B} \int \frac{1 + B - B(1 + A)r - \sqrt{(1 + A)(1 - Ar^2)(a_1 - a_2 r^2)}}{r(1 - r^2)} \, dr \]

(4) After integration we obtain $H(r) = 2 \frac{1 + B}{A - B} \log r - \frac{1 - AB}{A - B} \log (1 - r^2) + \sum_{k=1}^3 J_k \log \text{const}$, where

\[J_1 = \begin{cases} 0, & \text{for } A = 0 \text{ or } a_2 = 0, \\ -2b_1 \arctan t_1^{-1}, & \text{for } a_2 < 0 \text{ and } A > 0, \\ b_1 \log \frac{1 - t_1}{1 + t_1}, & \text{for } a_2 > 0 \text{ or } a_2 < 0 \text{ and } A < 0, \end{cases} \]
\[a_1 = a_1(A, B) = -A + 2B + 1, \quad a_2 = a_2(A, B) = -A + 2B + B^2 \]

and
\[
\tilde{D}(r) = D(r, -A, -B), \quad \tilde{H}(r) = H(r, -A, -B).
\]

The upper bound \(L(r) \) for \(0 < r \leq r^{**} \) and the lower bound \(\tilde{L}(r) \) for \(0 < r \leq r^* \) are sharp, being attained by functions (4.3) and (4.2), respectively.

Proof. If \(f(z) \in S^*(A, B) \), then because of (1.3) an easy calculation yields
\[
1 + \frac{zf''(z)}{f'(z)} = P(z) + \frac{zP'(z)}{P(z)}
\]
for some \(P(z) \) in \(\varphi(A, B) \). On the other hand, we have
\[
\operatorname{re} \frac{zf''(z)}{f'(z)} = r \frac{\partial}{\partial r} \log |f'(z)|, \quad |z| = r
\]
then, using (3.54), (3.32) and (3.33), we obtain
\[
\frac{\partial}{\partial r} \log |f'(z)| \leq \frac{(A-B)(Ar+2)}{(1+Ar)(1+Br)}
\]
for \(0 < r \leq r^{**} \)
\[
\frac{\partial}{\partial r} \log |f'(z)| \leq 2 \frac{1+B-B(1+A)r^2 - \sqrt{(1+A)(1-Ar^2)(a_1-a_2r^2)}}{(A-B)r(1-r^2)}
\]
for \(r^{**} < r < 1 \).

Integrating both sides of inequality (4.6) from 0 to \(r \), we obtain
\[
|f'(z)| \leq D(r),
\]
where \(D(r) \) is given by (4.4).

\[
J_2 = \begin{cases} 0 & \text{for } a_1 = 0, \\ 2b_2 \arctan t_2^{-1} & \text{for } a_1 < 0, \\ -b_2 \log \left(\frac{1-t_2}{1+t_2}\right) & \text{for } a_1 > 0, \end{cases}
\]
\[
J_3 = \begin{cases} 0 & \text{for } A = 1, \\ b_4 \log \left(\frac{1-t_3}{1+t_3}\right) & \text{for } A \neq 1, \end{cases}
\]

\[
b_1 = \frac{\sqrt{1-A} |A|^{-1/2} |a_2|}{A-D}, \quad b_2 = \frac{\sqrt{1+A} |a_2|}{A-D}, \quad b_3 = \frac{\sqrt{(1-A^2)(1-B^2)}}{A-B},
\]

\[
t_1 = \sqrt{\frac{a_2}{A}} \cdot t \quad \text{for } A \neq 0, \quad t_2 = \sqrt{|a_1|} \cdot t, \quad t_3 = \sqrt{\frac{1-B^2}{1-A^2}} \cdot t \quad \text{for } A \neq 1
\]
and
\[
t = \sqrt{\frac{1-A^2}{a_1-a_2r^2}}.
\]
Let \(r^{**} < r < 1 \). Denoting by \(I_1(r) \) and \(I_2(r) \) the right-hand sides of inequalities (4.6) and (4.7), respectively, we get the inequalities

\[
\log |f'(z)| \leq \int_0^{r^{**}} I_1(r) \, dr + \int_{r^{**}}^r I_2(r) \, dr.
\]

We easily obtain

\[
\int_0^{r^{**}} I_1(r) \, dr = \log D(r^{**})
\]

and

\[
\int_{r^{**}}^r I_2(r) \, dr = H(r) - H(r^{**}),
\]

where \(H(r) \) is given by (4.4).

By (4.8)-(4.11) the first part of the theorem on the upper estimation of \(|f'(z)| \) has been proved. Similarly, the second part of the theorem on the lower estimation of \(|f'(z)| \) can be proved.

The lower bound of \(|f'(z)| \) in the classes \(S^*_a, S^*(M), S^*(\beta) \) and \(S(\beta) \) is sharp in the following intervals of \(r: (0, r_a); (0, 1) \) [1]; \((0, r_1(\beta)]; (0, r_2(\beta)); (0, r_\beta) \], respectively, where \(r_a = r^*(1 - 2\alpha, -1), \, r_1(\beta) = r^*(\beta, -\beta), \, r_2(\beta) = r^*(\beta, 0) \) and the upper bound — in the intervals: \((0, 1) \) [7]; \((0, 1) \) for \(M \geq 1 \) [1] and in \((0, R(M)) \) for \(M < 1 \); \((0, 1) \) for \(\beta \geq \frac{1}{2} \) and in \((0, r_2(\beta)) \) for \(\beta < \frac{1}{2} \); \((0, r_\beta) \), respectively, where \(R(M) = r^{**} \left(1, \frac{1}{M} - 1\right), \, r_2(\beta) = r^{**}(\beta, -\beta), \, r_\beta = r^{**}(\beta, 0) \).

5. The radius of convexity for the family \(S^*(A, B) \). Let \(S \) be the family of functions (1.2) regular and univalent in \(K \) and \(T \) an arbitrary subclass of \(S \). If \(f \) is in \(T \), then r.c. \(\{f\} \), the radius of convexity of \(f \), is

\[
\text{r.c. } \{f\} = \sup \left\{ r: \text{re} \left(1 + \frac{zf''(z)}{f'(z)}\right) > 0, |z| < r \right\}
\]

and r.c. \(T \), the radius of convexity of \(T \), is

\[
\text{r.c. } T = \inf_{f \in T} \text{r.c. } \{f\}.
\]

If \(T \) is compact, then the problem of finding r.c. \(T \) is reduced to finding the greatest value of \(r, 0 < r \leq 1 \), for which

\[
\text{re} \left(1 + \frac{zf''(z)}{f'(z)}\right) \geq 0
\]

for every \(|z| \leq r \) and every function \(f(z) \in T \).
Some extremal problems

Since $S^*(A, B)$ is compact, it follows immediately that r. c. $S^*(A, B)$
equals the smallest root r_0, $0 < r_0 \leq 1$, of the equation $\omega(r) = 0$, where

$$\omega(r) = \min \left\{ \mathfrak{R} \left[1 + \frac{zf''(z)}{f'(z)} \right] : |z| = r < 1, f \in S^*(A, B) \right\}.$$

Let $f(z)$ be an arbitrary function of $S^*(A, B)$. Then, in view of (1.3), (4.5) and because of Theorem 1,

(5.1) \[\omega(r) = \begin{cases} u(r) / u_1(r) & \text{for } 0 < r \leq r^*, \\ v(r) / v_1(r) & \text{for } r^* < r < 1, \end{cases} \]

where

(5.2) \[u(r) = A^2 r^2 - (3A - B)r + 1, \quad u_1(r) = (1 - Ar)(1 - Br) > 0, \]

(5.3) \[v(r) = c_1 r^4 - 2c_2 r^3 + c_3, \]

\[v_1(r) = (A - B)(1 - r^2) \left[2\sqrt{3A} + 2(1 - ABr^2) - (A + B)(1 - r^2) \right] > 0, \]

\[c_1 = 4A^2 - 5A + B, \quad c_2 = 2A^2 - 3A + 2 - B, \quad c_3 = 4 - 5A + B, \]

\mathfrak{A} and \mathfrak{B} are given by (3.34)-(3.35) and r^* is the unique root of the polynomial (3.36) in the interval $(0, 1]$.

Let

(5.4) \[B_1 = B_1(A) = -A^2 + 3A - 1 \quad \text{for } 0 \leq A < 1, \]

(5.5) \[B_2 = B_2(A) = 5A - 4 \quad \text{for } \frac{3}{5} \leq A < 1, \]

(5.6) \[G_1 = \{(A, B): (-1 < A \leq 0, -1 \leq B < A) \cup \}

\[\cup (0 < A < 1, B_1 \leq B < A)\}, \]

(5.7) \[G_2 = \{(A, B): (0 < A \leq \frac{3}{5}, -1 \leq B < B_1) \cup \]

\[\cup (\frac{3}{5} < A < 1, B_2 \leq B < B_1)\}, \]

(5.8) \[G_3 = \{(A, B): \frac{2}{5} < A < 1, -1 \leq B < B_2\}. \]

It can easily be verified that $u(r) > 0$ for $0 < r < 1$ if $(A, B) \in G_1$; $u(r)$ has one root r_1 in the interval $(0, 1)$ if $(A, B) \in G_2 \cup G_3$, $u(r) > 0$ for $0 < r < r_1$; hence $u(r) < 0$ for $r_1 < r < 1$ in this case; $v(r)$ has one root r_2 in the interval $(0, 1)$ if $(A, B) \in G_4 \cup G_2$ and at the same time $v(r) > 0$ for $0 < r < r_2$; thus $v(r) < 0$ for $r_2 < r < 1$; finally $v(r) < 0$ for $0 < r < 1$ when $(A, B) \in G_3$.

Hence, because of (5.1)-(5.3) and the fact that $u(r^*)$ and $v(r^*)$ must have the same sign, we obtain the following

Lemma 8. If: $1^o (A, B) \in G_1$ or $2^o (A, B) \in G_2$ and $r_1 \geq r^*$, then $\omega(r) > 0$ for $0 < r < r_2$, $\omega(r_2) = 0$ and $\omega(r) < 0$ for $r_2 < r < 1$. If: $3^o (A, B) \in G_3$ and $r_1 < r^*$ or $4^o (A, B) \in G_3$, then $\omega(r) > 0$ for $0 < r < r_1$, $\omega(r_1) = 0$ and $\omega(r) < 0$ for $r_1 < r < 1$.

Proof. The first or the second assumption implies immediately the assertion. If the third condition is satisfied, then, because of \(u(r^*) < 0 \), we have \(v(r^*) < 0 \), thus the lemma is true in this case. Finally if \((A, B) \epsilon G_3 \), then \(v(r^*) < 0 \); thus \(u(r^*) < 0 \) and \(r_1 < r^* \), which ends the proof.

Lemma 9. The root \(r_1 \) of the polynomial \(u(r) \) satisfies the condition \(r_1 < r^* \) if and only if

\[
y(A, B) = B^2 + k_1(A)B - k_2(A)B + k_3(A) < 0,
\]

where

\[
k_1(A) = 2A^2 - 11A + 2,
\]

\[
k_2(A) = A^4 + 12A^3 - 41A^2 + 12A + 1,
\]

\[
k_3(A) = 5A^5 + 10A^4 - 39A^3 + 10A^2 + 5A.
\]

Proof. If \(\Phi(s, t) \) defined by (3.6) attains its minimum equal to zero for \(r = r_1 \), then because of (3.6) we get for \(r = r_1 \)

\[
(E_1 + E_4)(c - q) + E_2 + E_5 + \frac{E_3 + E_6}{c - q} = 0.
\]

Thus

\[
E_3 + E_6 + (E_1 + E_4)(c - q)^2 + (E_2 + E_5)(c - q) = 0, \quad r = r_1.
\]

On the other hand, in view of (3.14) - (3.15) and because of the definition of \(r^* \), we obtain for \(r = r_1 \)

\[
E_3 + E_6 - (E_1 + E_4)(c - q)^2 = \frac{g(r)}{(1 - r^2)(1 - Br)^2}.
\]

Equalities (5.11) and (5.12) imply

\[
2(E_3 + E_6) + (E_2 + E_5)(c - q) = \frac{g(r)}{(1 - r^2)(1 - Br)^2}, \quad r = r_1.
\]

Hence, in view of (3.7) and (3.15),

\[
2(1 - A)(1 + Ar_1^2) + [(2AB - A - B)r_1^2 + A + B + 2] \frac{1 - Ar_1}{1 - Br_1} = \frac{(A - B)g(r_1)}{(1 - Br_1)^2}.
\]

Thus

\[
Ar_1^3 + (1 - 2A)r_1^2 - (A - 2)r_1 - 1 = \frac{g(r_1)}{1 - Br_1}.
\]

Since \(u(r_1) = 0 \), we have

\[
A^2r_1^2 + (3A - B)r_1 + 1 = 0.
\]

From (5.13) and (5.14) we obtain

\[
A^2r_1^2 + A(1 - A)^2r_1 - A(4A - B - 2) = A \frac{g(r_1)}{r_1(1 - Br_1)}.
\]
By (5.15) and (5.14) we get
\[(A^3 - 2A^2 + 4A - B)r_1 - A(4A - B - 2) - 1 = A \frac{g(r_1)}{r_1(1 - Br_1)}. \]

The polynomial \(g(r) \) increases in the interval \((0, 1)\) and \(g(0) < 0, \) \(g(r^*) = 0. \) Thus \(r_1 < r^* \) if and only if \(g(r_1) < 0. \) Since the root \(r_1, 0 < r_1 < 1 \) of \(u(r) \) exists if and only if \((A, B) \in G_2 \cup G_3, \) we have \(A > 0. \)

Therefore \(r_1 < r^* \) if
\[(A^3 - 2A^2 + 4A - B)r_1 < 4A^2 - AB - 2A + 1. \]

Putting
\[r_0 = \frac{4A^2 - AB - 2A + 1}{A^3 - 2A^2 + 4A - B}, \]
we easily find that \(0 < r_0 < 1. \) It follows immediately that \(r_1 < r^* \) if and only if \(u(r_0) < 0, \) i.e. when
\[A^2r_0^2 - (3A - B)r_0 + 1 < 0. \]

Hence we obtain after some calculations inequality (5.9).

Let \(0 < A < \frac{3}{2} \). For \(B = -1 \) we obtain
\[y(A, -1) = (1 + A) \cdot \hat{y}(A), \]
where
\[\hat{y}(A) = 5A^4 + 6A^3 - 33A^2 + 4A + 2. \]

Since the derivative \(\hat{y}'(A) \) decreases as \(A \) increases in the interval \((0, \frac{3}{2})\) and \(\hat{y}'(0) > 0, \hat{y}'(\frac{3}{2}) < 0, \hat{y}'(A) \) has a root \(\hat{A} \) in this interval. Hence, in view of (5.17), the polynomial (5.16) has exactly one root \(A_0 \) in the interval \((0, \frac{3}{2}).\)

Lemma 10. For every \(A \) of the interval \(A_0 < A < 1 \) the equation \(y(A, B) = 0 \) with the unknown \(B \) (cf. (5.9)) has exactly one solution \(B = B(A) \) in the interval \((-1, B_1(A)) \) for every \(A \in (A_0, \frac{3}{2}) \) and in the interval \((B_2(A), B_1(A)) \) for every \(A \in [\frac{3}{2}, 1], \) \(B_1(A) \) and \(B_2(A) \) being given by (5.4) and (5.5), respectively.

Proof. For \(A_0 < A < \frac{3}{2} \) we have \(y(A, -1) < 0. \) If \(0 < A < 1, \) then
\[y(A, B_1) = 2(1 - A)^2(A^4 + 2A^3 + 2A + 1) > 0. \]

Thus, for \(A_0 < A < \frac{3}{2} \) the equation \(y(A, B) = 0 \) has at least one solution in the interval \((-1, B_1).\)

Now, differentiating the function \(y(A, B) \) twice w. r. t. \(B, \) we obtain
\[y'(A, B) = 3B^2 + 2k_1(A)B - k_2(A) \]
and
\[y''(A, B) = 2[3B + k_1(A)] \]
(cf. (5.9) and (5.10)).
Since \(y''_{BB}(A, B) \) is negative for \(B < B_1 \), \(y'(A, B) \) decreases in the interval \((-1, B_1)\). Next we have

\[
(5.21) \quad y''_B(A, B_1) = -2[A^3 + (\sqrt{3} - 1)A + 1][A^3 - (\sqrt{3} + 1)A + 1].
\]

It can easily be verified that

\[
(5.22) \quad A^2 + 1 < (1 + \sqrt{3})A \quad \text{for } A_0 < A < 1.
\]

From (5.21) and (5.22) it follows that \(y(A, B) \) increases in the interval \(-1 < B < B_1 \) for \(A_0 < A < \frac{3}{4} \). Hence, the lemma is true in this case.

Let \(\frac{3}{4} \leq A < 1 \). Since

\[y(A, B_2) = 4(A - 1)(A^3 - 3A^2 - A + 7) < 0, \]

by (5.18) the equation \(y(A, B) = 0 \) has at least one solution in the interval \((B_1, B_2)\). Next we have

\[
y'(A, B_2) = -A^4 + 8A^3 - 10A^2 - 24A + 31
\]
and

\[
y''_{BA}(A, B_2) = -4A^3 + 24A^2 - 20A - 24 < 0;
\]
thus, because of \(y'_B(1, B_2) > 0 \), the function \(y(A, B) \) increases in the interval \((B_2, B_1)\), which completes the proof.

Corollary. If \((A, B) \in G_2\), then \(y(A, B) < 0 \) if and only if \(B < B(A) \) and \(y(A, B) > 0 \) for \(B > B(A) \).

Basing ourselves on Lemmas 8–10, we obtain

Theorem 6. Let

\[
D_1 = \{(A, B): A_0 < A \leq 1, -1 < B < B(A)\},
\]

\[
D_2 = \{(A, B): (-1 < A \leq A_0, -1 < B < A) \cup (A_0 < A < 1, B(\leq A) \leq B < A)\},
\]

where \(B(\leq A) \) is the unique solution of the equation \(y(A, B) = 0 \) in the interval \((-1, B_1(\leq A))\) for \(A \in (A_0, \frac{3}{4}) \) and in the interval \((B_2(\leq A), B_1(\leq A))\) for \(A \in [\frac{3}{4}, 1)\), where \(A_0 \) is the unique root of the equation \(y(A, -1) = 0 \) in the interval \((0, \frac{3}{4})\) (cf. (5.9), (5.4), (5.5)).

Then the radius of convexity for the family \(S^*(A, B) \) is

\[
r \cdot c. S^*(A, B) = \begin{cases} r_1, & \text{if } (A, B) \in D_1, \\ r_2, & \text{if } (A, B) \in D_2, \end{cases}
\]

where

\[
r_1 = r_1(A, B) = 2[3A - B + \sqrt{(A - B)(5A - B)}]^{-1},
\]

\[
r_2 = r_2(A, B) = \sqrt[4]{(4 - 5A + B)[2A^2 - 3A + 2 - B + 2(1 - A)\sqrt{A^2 + 4A + 1 - 2B}]}^{-1}.
\]
The equality r. c. \(\{f\} = r_1 \) holds for the functions

\[
(5.27) \quad f^*(z) = \begin{cases} \varepsilon \cdot \exp \left[\frac{A-B}{B} \log(1-B\varepsilon) \right] & \text{if } B \neq 0, \\ \varepsilon \cdot \exp(-A\varepsilon) & \text{if } B = 0 \end{cases}
\]

(cf. Theorem 4) and r. c. \(\{f\} = r_2 \) — for the function

\[
(5.28) \quad f^{**}(z) = \begin{cases} \varepsilon \cdot \exp \left(\frac{2(1+B)\varepsilon \zeta}{d(1-B)^2} \cdot \frac{1-d^2}{d^2} \cdot \log(1-d\varepsilon) \right) & \text{if } B = 0, A = A^*, \\ \varepsilon \cdot \exp \left(A \cdot \frac{d^2}{d^2} \cdot \frac{1-d^2}{d^2} \cdot \log(1-d\varepsilon) \right) & \text{if } B = 0, A \neq A^* \end{cases}
\]

where

\[
\log 1 = 0, \quad \varepsilon = e^{\frac{-i\varphi}{2}}, \quad 0 \leq \varphi \leq 2\pi, \quad A^* = (14 - 5\sqrt{3})11^{-1},
\]

\[
(5.29) \quad d = \frac{Ar_2^4 - 3(1-A)r_2^2 - 1}{(1-A)(1+r_2^2)r_2}, \quad \Delta = (1-B)^2d^2 + 4B,
\]

\[
\sqrt{\Delta} = \begin{cases} \sqrt{|d|} & \text{if } \Delta > 0, \\ i\sqrt{|d|} & \text{if } \Delta < 0 \end{cases}
\]

\[
z_0 = -\frac{(1-B)d\varepsilon}{2B}, \quad z_k = \frac{-(1-B)d + (-1)^k\sqrt{\Delta}}{2B}\varepsilon, \quad k = 1, 2,
\]

\[
W(z) = -B\varepsilon z^2 -(1-B)d\varepsilon z + 1.
\]

Proof. In view of Theorem 1 and Lemma 8

r. c. \(S^*(A, B) = \begin{cases} r_1 & \text{if } (A, B) \in G_2 \text{ or } (A, B) \in G_3, \; r_1 < r^*, \\ r_2 & \text{if } (A, B) \in G_1 \text{ or } (A, B) \in G_2, \; r_1 \geq r^* \end{cases} \]

where \(G_k \) \((k = 1, 2, 3)\) are given by (5.6)-(5.8), \(r_j \) \((j = 1, 2)\) are the roots of polynomials \(u(r) \) and \(v(r) \) (cf. (5.2), (5.3)), i.e. are the numbers (5.25) and (5.26), respectively, and finally \(r^* \) is the root of equation (3.36).

Because of Lemma 9 the condition \(r_1 < r^* \) is satisfied if inequality (5.9) is satisfied, and this is equivalent to \(B < B(A) \) (Lemma 10). Hence, we obtain (5.24). For \(B = B(A) \) we have \(r_1 = r_2 \).
Let \(f^*(z) \) be a function of \(S^*(A, B) \) such that

\[
\frac{zf'^*(z)}{f^*(z)} = P^*(z),
\]

where \(P^*(z) \) is given by (3.37). Then, from (5.30) we find

\[
\frac{f'^*(z)}{f^*(z)} - \frac{1}{z} = -\frac{(A - B)\varepsilon}{1 - Bz}.
\]

The functions of the variable \(z \) which appears on the right-hand side and the left-hand side of equation (5.31) are regular in the disc \(K \); hence the integrals of these functions exist along any regular curve \(F \subset K \) with the origin and the end-point at 0 and \(z \), respectively, where \(z \in K \). Thus we conclude that \(f^*(z) \) is of the form (5.27).

Evidently

\[
\text{re} \left(1 + \frac{zf'^{**}(z)}{f^{**}(z)}\right) \geq 0
\]

for \(|z| \leq r_1 \) with equality if and only if \(z = r_1 \). Thus \(f^*(z) \) is not convex in the disc \(|z| < r \) for \(r > r_1 \); i.e. r.e. \(\{f^*\} = r_1 \).

Next, let \(f^{**}(z) \) be a function of \(S^*(A, B) \) for which

\[
\frac{zf^{***}(z)}{f^{**}(z)} = P^{**}(z),
\]

where \(P^{**}(z) \) is given by (3.38).

Thus

\[
\frac{f^{***}(z)}{f^{**}(z)} - \frac{1}{z} = J(z)
\]

where

\[
J(z) = (A - B)\varepsilon \frac{d - ez}{W(z)}.
\]

We distinguish four cases.

1. \(B = 0, \; d = 0 \). Integrating (5.32) we obtain the first formula in (5.38). Since \(B = 0 \), we have \(X_2(r_2; A, 0) = 0 \). Thus

\[
(4A^2 - 5A)r_2^4 - 2(2A^2 - 3A + 2)r_2^4 + A - 5A = 0
\]

and in view of \(d = 0 \) we have

\[
A^2 + 3(1 - A)r_2^4 - 1 = 0
\]

(cf. (5.20)).

Eliminating \(r_2 \) from (5.34) and (5.35), we obtain \(A = A^* \). It can easily be verified that \((A^*, 0) \in D_2 \).
Some extremal problems

2. \(B = 0, \ d \neq 0 \). We have \(W(z) = 1 - d z \), thus because of \(|d| \leq 1 \)
the function (5.33) is regular in \(K \). Integrating (5.32), we obtain the second
formula in (5.28).

3. \(B \neq 0, \ A = 0 \). In this case \(W(z) = -B \bar{z}^2 (z-z_0)^2 \), where \(B < 0 \)
and \(z_0 \neq 0 \). Next, we obtain \(|z_0| = \sqrt{-B^{-1}} \geq 1 \). Thus
\[
J(z) = -\frac{(A-B)z}{Bz_0^2} \frac{d - \bar{z} z}{\left(1 - \frac{z}{z_0}\right)^2}
\]
is a regular function in \(K \). Integrating (5.32) we obtain the third formula
in (5.28).

4. \(B \neq 0, A \neq 0 \). The polynomial \(W(z) \) can be represented in the form
\[
W(z) = \left(1 - \frac{z}{z_1}\right) \left(1 - \frac{z}{z_2}\right).
\]

We state that \(|z_k| \geq 1 \) for \(k = 1, 2 \). If \(A > 0 \) and \(B > 0 \), then \(e z_1 \leq -1 \).
Supposing the contrary, we would have \(A < 2B - (1-B)d \) and hence
\((1-B)(1+d) < 0 \), which is impossible. Similarly we prove that \(e z_2 \geq 1 \).
As in the case just considered, we find that, for \(A > 0 \) and \(B < 0 \), \(e z_1 \geq 1 \)
and \(e z_2 \leq -1 \). If \(A < 0 \), then \(B < 0 \) and \(|z_k|^2 = -B^{-1} \geq 1 \). Thus \(|z_k| \geq 1 \)
for \(k = 1, 2 \) in every case. Hence, \(J(z) \) is regular in \(K \). Integrating (5.32),
we obtain the fourth formula in (5.27).

Evidently, in each of the four cases considered above, we have
\[
\text{re} \left(1 + \frac{z^{**}}{z^{*}}(z)\right) \geq 0
\]
for \(|z| \leq r_2 \), with equality if and only if \(z = r_2 \bar{z} \). Thus r. c. \(\{f^{**}\} = r_2 \),
and this completes the proof.

Applying Theorem 6 to the case where \(A = 1 - 2a \) and \(B = -1 \),
we obtain the result for the class \(S^* \) given by Zmorovič [9]. The problems
of the radius of convexity for \(S^* \) and \(S^*_1 \) have first been solved by Nevan-
linna [5] and Mac Gregor [3], respectively. If \(A = 1, B = 1/M - 1 \) or
\(A = \beta, B = -\beta \), then we obtain the corresponding theorems on r. c. \(S^*(M) \)[1] and r. c. \(S^{*(\theta)} [6] \), respectively. For the class \(S^*_0 \) we have
\[
\text{r. c. } S^*_0 = \begin{cases}
 r_1, & \text{if } \beta_0 < \beta \leq 1, \\
r_2, & \text{if } 0 < \beta \leq \beta_0,
\end{cases}
\]
where \(r_1 = r_1(\beta, 0), r_2 = r_2(\beta, 0) \) and
\[
\beta_0 = \frac{(3 - V5)(1 + V6)}{2V5}.
\]
References

[9] В. А. Зморович, *О границах выпуклости свяжных функций порядка а в круге \(|z| < 1\) и круговой области \(0 < |z| < 1\)*, Math. sb. 68 (1965), p. 518–526

Reçu par la Rédaction le 28. 6. 1972