1976

FASC. 2

T-INDEPENDENCE IN DISTRIBUTIVE LATTICES

BY

JERZY PŁONKA (WROCŁAW) AND WERNER POGUNTKE (DARMSTADT)

Let $(X; \mathcal{F})$ be a universal algebra. We say that the set $I \subseteq X$ is T-independent if for any non-trivial algebraic operation $f(x_1, \ldots, x_n)$ and any sequence of different elements $a_1, \ldots, a_n \in I$ we have $f(a_1, \ldots, a_n) \neq a_i$ for $i = 1, \ldots, n$ (cf. [1]). By M-independence we mean the usual algebraic independence in the sense of Marczewski [2]; C-independence in an algebra $(X; \mathcal{F})$ is closure independence with respect to the closure system of subalgebras of $(X; \mathcal{F})$.

It is easy to show that

- (i) *M*-independence implies *T*-independence which implies *C*-independence;
- (ii) I is T-independent iff $f(a_1, \ldots, a_n) \notin I$ for any non-trivial algebraic operation $f(x_1, \ldots, x_n)$ and different $a_1, \ldots, a_n \in I$.

In this paper we consider T-independence in distributive lattices and also a more general notion of independence in distributive lattices which contains M-independence and T-independence as special cases.

Marczewski proved (see [3]) that

(iii) the set $I \subseteq X$ is M-independent in a distributive lattice $(X; +, \cdot)$ iff, for any different $a_1, \ldots, a_n \in I$ and any k $(1 \le k \le n-1)$,

$$\prod_{1 \leq i \leq k} a_i \not \subset \sum_{k+1 \leq j \leq n} a_j.$$

THEOREM 1. The set $I \subseteq X$ is T-independent in a distributive lattice $(X; +, \cdot)$ iff, for any different elements $a_1, \ldots, a_n \in I$,

$$a_1 \not < \sum_{1 < i \leqslant n} a_i$$
 and $\prod_{1 < i \leqslant n} a_i \not < a_1$.

Remark. Note that this means that I is T-independent in a distributive lattice $(X; +, \cdot)$ iff it is M-independent in the semilattices (X; +) and $(X; \cdot)$ (cf. Szász [4]).

Proof of Theorem 1. Suppose that

$$a_1 \leqslant \sum_{1 < i \leqslant n} a_i;$$

we have

$$a_1 \cdot \sum_{1 \leq i \leq n} a_i = a_1.$$

But the operation $x_1 \cdot (x_2 + \ldots + x_n)$ is not trivial, so the set I is dependent.

Suppose that the set I is dependent. Then there exist a non-trivial operation $f(x_1, \ldots, x_n)$ and elements $a_1, \ldots, a_n \in I$ such that $f(a_1, \ldots, a_n) = a_1$. Let

$$f(x_1, \ldots, x_n) = p_1(x_1, \ldots, x_n) + \ldots + p_k(x_1, \ldots, x_n)$$

be a normal form representation of f as a sum of products. Now suppose that there is an l $(1 \le l \le k)$ such that x_1 does not appear in p_l ; as we have

$$a_1 = p_1(a_1, \ldots, a_n) + \ldots + p_l(a_2, \ldots, a_n) + \ldots + p_k(a_1, \ldots, a_n),$$

we get

$$a_1 \geqslant p_l(a_2, \ldots, a_n) \geqslant \prod_{1 \leq i \leq n} a_i.$$

Finally, we have to consider the case where x_1 appears in any of the p_j , and it never appears alone, since, otherwise, f would be trivial. Then we can pull out x_1 , and we get

$$a_1 \cdot (q_1(a_2, \ldots, a_n) + \ldots + q_k(a_2, \ldots, a_n)) = a_1$$

and, consequently,

$$a_1 \leqslant \sum_{1 < i \leqslant n} a_i$$
.

This completes the proof of Theorem 1.

We can now give an easy example showing that M-independence does not coincide with T-independence in distributive lattices.

Example. In the power set of $\{1, 2, ..., 8\}$, consider the elements

$$X_1 = \{2, 3, 4, 5\}, \quad X_2 = \{1, 3, 4, 6\}, \quad X_3 = \{1, 2, 4, 7\},$$

$$X_4 = \{1, 2, 3, 8\}.$$

The set $\{X_1, X_2, X_3, X_4\}$ is not M-independent, since

$$X_1 \cap X_2 = \{3, 4\} \subseteq \{1, 2, 3, 4, 7, 8\} = X_3 \cup X_4.$$

But it is T-independent, as can easily be seen by help of Theorem 1. Remark. It is obvious that T-independence does not coincide with C-independence in distributive lattices.

Definition 1. Let $(X; +, \cdot)$ be a distributive lattice, and $k \ge 1$ a positive integer. $I \subseteq X$ is called T_k -independent if for any different

elements $a_1, \ldots, a_k, \ldots, a_n \in I \ (n > k)$ we have

$$\prod_{1\leqslant i\leqslant k}a_i \not \leqslant \sum_{k+1\leqslant j\leqslant n}a_j.$$

Let $K \subseteq N$; $I \subseteq X$ is called T_{K} -independent if it is T_{k} -independent for every $k \in K$.

So a finite set $\{a_1, \ldots, a_n\} \subseteq X$ is T-independent iff it is $T_{\{1,n-1\}}$ -independent.

Definition 2. Let $K \subseteq N$ be an arbitrary non-void set, let $a = \sup K$, and $N_a := \{n \in N \mid n \leq a\}$. For $i \in N_a$ and $k \in K$, write

$$A_{ik} := \{A \subseteq N_a \mid |A| = k, \ i \in A\} \quad \text{ and } \quad A_i := \bigcup_{k \in K} A_{ik}.$$

Then a distributive lattice P_K is defined by

$$P_K := \langle A_i \mid i \epsilon N_a \rangle \leqslant 2^{2^{N_a}}.$$

LEMMA 1. The set $\{A_i \mid i \in N_a\} \subseteq P_K$ is T_K -independent.

If K is finite, it is not T_l -independent for any $l \in N_a - K$: if $l \in N_a - K$, then for any A_{i_1}, \ldots, A_{i_l} there exist A_{j_1}, \ldots, A_{j_m} $(i_r \neq j_s \text{ for any } r, s)$ such that

$$A_{i_1} \cap \ldots \cap A_{i_l} \subseteq A_{j_1} \cup \ldots \cup A_{j_m}.$$

Proof. Consider, for $k \in K$, any system A_{i_1}, \ldots, A_{i_k} ; the set $\{i_1, \ldots, i_k\}$ is an element of $A_{i_1} \cap \ldots \cap A_{i_k}$, but it is not an element of any of the other A_i 's. This proves the first part of the lemma.

Now let us consider A_{i_1}, \ldots, A_{i_l} with $l \in N_a - K$, where K is finite. $A_{i_1} \cap \ldots \cap A_{i_l}$ is not empty, since there is a $k \in K$ with k > l. For each $N \in A_{i_1} \cap \ldots \cap A_{i_l}$, we take an $i_N \in N - \{i_1, \ldots, i_l\}$, so $N \in A_{i_N}$. By this, we get finitely many such sets A_{i_N} the join of which contains $A_{i_1} \cap \ldots \cap A_{i_l}$.

Remark. From Lemma 1 it follows that $P_{\{1,\ldots,n\}}$ is just the free distributive lattice on n generators, since an M-independent set $I \subseteq X$ generates a free algebra in the equational class generated by $(X; \mathcal{F})$.

THEOREM 2. Let $K \subseteq N$ be finite and non-void, and let D be a finite distributive lattice generated by a T_K -independent set. Then there exists a homomorphism from D onto P_K .

The proof of Theorem 2 will be a consequence of Lemmas 2 and 3, where it will be shown that the poset $J(P_K)$ of all join-irreducible elements of P_K can be isomorphically embedded into the poset J(D); it is well known that such an embedding induces a homomorphism from D onto P_K .

COROLLARY 1. Let D be a distributive lattice generated by a T-independent set $\{a_1, \ldots, a_n\}$. Then there exists a homomorphism from D onto $P_{\{1,n-1\}}$.

LEMMA 2. Let $K \subseteq N$ be non-void, and let D be a distributive lattice generated by a set I which is T_K -independent. Then, for any $k \in K$ and $a_1, \ldots, a_k \in I$, $a_1 \cdot \ldots \cdot a_k \in J(D)$.

Proof. Let $p < a_1 \cdot \ldots \cdot a_k$; as I generates D, we have $p = p_1 \cdot \ldots \cdot p_r$, where each of the p_i is a sum of finitely many elements from I. There must be at least one of the p_i in which none of the a_j $(1 \le j \le k)$ occurs as a summand — otherwise, we would have $a_1 \cdot \ldots \cdot a_k \le p_i$ for each $1 \le i \le r$ and, consequently, $a_1 \cdot \ldots \cdot a_k \le p$. So let us assume that none of the a_j appears in p_1 , say

$$p_1 = \sum_{1 \leqslant l \leqslant l} a_l$$
 with $a_l \in I$ and $a_l \neq a_j$ for all $1 \leqslant l \leqslant l$ and $1 \leqslant j \leqslant k$.

It follows then that

$$p \leqslant \sum_{1 \leqslant i \leqslant l} a_i$$
.

This and the T_k -independence of I imply that $a_1 \cdot \ldots \cdot a_k$ cannot be the join of two smaller elements.

COROLLARY 2. Let D be a distributive lattice generated by $\{a_1, \ldots, a_n\}$. Then $\{a_1, \ldots, a_n\}$ is T-independent iff each a_i is doubly irreducible and $\{a_1, \ldots, a_n\}$ is an antichain.

Proof. From T_1 -independence we can conclude the join-irreducibility of the a_i . As a T-independent set is also T-independent in the dual lattice, we know that each of the a_i is also meet-irreducible. The incomparability is immediate. To prove the other direction — as a_i is join-irreducible — we can conclude from $a_i \leq \sum_{j \neq i} a_j$ that $a_i \leq a_j$ for some $j \neq i$, contradicting the incomparability.

LEMMA 3. Let $K \subseteq N$ be finite and non-void; then

$$J(P_K) = \{A_{i_1} \cap \ldots \cap A_{i_k} \mid k \in K, \ i_j \leqslant \alpha\}.$$

Proof. In view of Lemma 2 and distributivity, it is enough to show that, for $l \in N_a - K$ and arbitrary $A_{j_1}, \ldots, A_{j_l}, A_{j_1} \cap \ldots \cap A_{j_l}$ is a sum of elements of the form $A_{i_1} \cap \ldots \cap A_{i_k}$ with $k \in K$. But this follows from

$$\begin{array}{ll} A_{j_1} \cap \ldots \cap A_{j_l} = \left\{ A \subseteq N_a \mid \{j_1, \ldots, j_l\} \subseteq A, \, |A| \in K \right\} \\ = \bigcup_{\substack{\{j_1, \ldots, j_l\} \subseteq N \subseteq N_a \\ \mid N \mid \epsilon K}} \bigcap_{n \in N} A_n. \end{array}$$

Thus Lemma 3 is proved, and so is Theorem 2.

Remark. Theorem 2 says that, given a $K \subseteq N$, there is a "smallest" distributive lattice containing a T_K -independent set. Also, for a given $n \in N$, there is a "smallest" distributive lattice containing an n-element T-independent set (cf. Corollary 1). Finally, we give a simpler description of this lattice which we called $P_{\{1,n-1\}}$:

For $N_{2n} = \{1, 2, ..., 2n\}$, the sublattice of $2^{N_{2n}}$ generated by the elements $X_i = \{1, 2, ..., i-1, i+1, ..., n, n+i\}$, $1 \le i \le n$, is isomorphic to $P_{\{1,n-1\}}$. So, the lattice in the Example is isomorphic to $P_{\{1,3\}}$.

REFERENCES

- [1] K. Golema-Hartman, Idempotent reducts of abelian groups and minimal algebras, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, 21 (1973), p. 809-812.
- [2] E. Marczewski, A general scheme of the notion of independence in mathematics, ibidem 6 (1958), p. 731-736.
- [3] Concerning the independence in lattices, Colloquium Mathematicum 10 (1963), p. 21-23.
- [4] G. Szász, Marczewski independence in lattices and semilattices, ibidem 10 (1963), p. 15-20.

TECHNISCHE HOCHSCHULE FACHBEREICH DER MATHEMATIK DARMSTADT

Reçu par la Rédaction le 15. 12. 1974