ANTIATOMICITY OF THE LATTICE OF BOREL STRUCTURES AND EXTENSIONS OF TWO-VALUED MEASURES

ΒY

BOHDAN ANISZCZYK (WROCŁAW)

- 1. In this paper we show that $L_{\mathscr{A}}$, the lattice of Borel substructures of a Borel structure \mathscr{B} , is antiatomic iff for any two-valued measure on a substructure of \mathscr{B} there is a two-valued measure on \mathscr{B} extending it. This and the second characterization of antiatomicity of $L_{\mathscr{B}}$ in terms of σ -isomorphism and a Lindelöf property provide an answer to the problem raised by K. P. S. Bhaskara Rao and B. V. Rao.
- 2. Preliminaries. A (Borel) structure (B) on a set X is a σ -algebra of subsets of X; a pair (X, \mathcal{B}) is called a Borel space. $L_{\mathcal{B}}$ stands for the lattice of all Borel substructures of \mathcal{B} . The infimum of a family of structures is their intersection and the supremum is the structure generated by their union. \mathcal{B} is the unit element and $\{\emptyset, X\}$ is the null element. $L_{\mathcal{B}}$ is a complete lattice. $L_{\mathcal{B}}$ is always atomic; atoms are of the form $\{0, X, B, X B\}$ where $\{0 \neq B \neq X, A = B\}$ and any $A \in L_{\mathcal{B}}$ not null is a supremum of atoms. Following K. P. S. Bhaskara Rao and B. V. Rao ([1]), an $A \in L_{\mathcal{B}}$, $A \neq \mathcal{B}$, is an antiatom if \mathcal{B} is the only element in $L_{\mathcal{B}}$ greater than A. The idea to consider antiatoms appeared in [3] (where the term "ultrastructure" was used instead of "antiatom"). $L_{\mathcal{B}}$ is called antiatomic if every non-unit element of $L_{\mathcal{B}}$ is an infimum of antiatoms.

THEOREM 1 ([2], Theorem 1). $\mathcal{A} \in L_{\mathcal{B}}$ is an antiatom iff there are two distinct 0-1 measures μ , ν on \mathcal{B} such that

$$\mathscr{A} = \{B \in \mathscr{B} \colon \mu(B) = \nu(B)\}$$

(a measure is a σ -additive real-valued nonnegative function and a 0-1 measure is a measure taking exactly two values 0, 1).

Thus $L_{\mathcal{A}}$ is antiatomic iff for every $\mathcal{A} \in L_{\mathcal{A}}$ and $Z \in \mathcal{B} - \mathcal{A}$ there are two 0-1 measures agreeing on \mathcal{A} but differing on Z. In particular, if \mathcal{B} contains a countably generated Borel structure with uncountably many atoms then $L_{\mathcal{A}}$ is not antiatomic ([1], Proposition 36). As K. P. S. Bhaskara Rao and B. V.

Rao wrote in [2] and repeated in [1], P12, "a neat characterization of \mathcal{B} for which $L_{\mathcal{B}}$ is antiatomic is not known". Whether the two characterizations given below (Corollaries 3 and 4) are neat is the matter of taste but the author finds them interesting.

Two Borel structures \mathscr{A} and \mathscr{B} are called isomorphic if there is a one-to-one function h from \mathscr{A} onto \mathscr{B} which preserves finite unions and complementation, any such function is called an isomorphism ([5], p. 13). Because Borel structure is by definition a σ -field any isomorphism between Borel structures is σ -isomorphism, i.e. also preserves countable sums.

A Borel structure \mathscr{B} on a set X separates x and y, x, $y \in X$, if there is a set $B \in \mathscr{B}$ such that $\{x, y\} \cap B = \{x\}$. A Borel space (X, \mathscr{B}) has the Lindelöf property if for any family $\mathscr{F} \subseteq \mathscr{B}$, $\bigcup \{F \colon F \in \mathscr{F}\} = X$ there is a countable subfamily $\mathscr{F}_1 \subseteq \mathscr{F}$, $\bigcup \{F \colon F \in \mathscr{F}_1\} = X$. A Borel space is super Blackwell if any two substructures separating the same points coincide.

We say that a 0-1 measure μ defined on the structure \mathcal{B} is given by a point if there is $x \in X$ such that $\mu(B) = 1$ if $x \in B$ and $\mu(B) = 0$ if $x \notin B$ for any $B \in \mathcal{B}$.

3. Lindelöf property.

PROPOSITION 1. A Borel space (X, \mathcal{B}) has the Lindelöf property iff any 0-1 measure defined on a substructure of \mathcal{B} is given by a point.

Proof. Suppose there is a substructure \mathscr{A} of \mathscr{B} and a 0-1 measure μ on \mathscr{A} not given by a point. Thus the family $\{A \in \mathscr{A}: \mu(A) = 0\}$ is a covering of X which is closed under countable unions and has no countable subcover. So (X, \mathscr{B}) does not have the Lindelöf property.

On the other hand if (X, \mathcal{B}) does not have the Lindelöf property, then let $\mathscr{F} = \{B_s : s \in S\} \subseteq \mathcal{B}$ be a covering of X without a countable subcover. Let \mathscr{A} be a family of sets elements of which may be covered by a countable subfamily of \mathscr{F} and complements of such sets. \mathscr{A} is a Borel structure. Let μ be a measure on \mathscr{A} defined by: $\mu(A) = 0$ if A is a subset of the union of countably many sets from \mathscr{F} and $\mu(A) = 1$ otherwise. μ is not given by a point. This completes the proof.

COROLLARY 1. A Borel space (X, \mathcal{B}) has the Lindelöf property iff any 0-1 measure defined on a substructure of \mathcal{B} can be extended to a 0-1 measure on \mathcal{B} and any 0-1 measure on \mathcal{B} is given by a point.

THEOREM 2. A Borel space (X, \mathcal{B}) is super Blackwell iff (X, \mathcal{B}) has the Lindelöf property.

Proof. Suppose (X, \mathcal{B}) does not have the Lindelöf property. There is a family $\mathscr{F} \subseteq \mathscr{B}$ which covers X but no countable subfamily of \mathscr{F} does. Let \mathscr{A} be a Borel structure on X generated by \mathscr{F} . As in the proof of Proposition 1 let μ be a 0-1 measure on \mathscr{A} not given by a point. Take some point $x_0 \in X$ and denote by ν a 0-1 measure on \mathscr{A} given by the point x_0 . For any $x \in X$ fix a set $A(x) \in \mathscr{A}$ containing x such that $\mu(A(x)) = 0$. For any two points x, y separated by \mathscr{A} fix a set $A(x, y) \in \mathscr{A}$ separating them, that is

 $\{x, y\} \cap A(x, y) = \{x\}$. Put $\mathscr{C} = \{A \in \mathscr{A} : \mu(A) = \nu(A)\}$. \mathscr{C} is a Borel structure strictly smaller than \mathscr{A} $(A(x_0)$ is not in \mathscr{C}). If two points $x, y \in X$ are separated by \mathscr{A} and, say, x, x_0 are also separated by \mathscr{A} , then the set $A(x) \cap A(x, y) \cap A(x, x_0)$ belongs to \mathscr{C} and separates x, y. We have obtained two different structures in $L_{\mathscr{A}}$ which separate the same points; therefore (X, \mathscr{B}) is not super Blackwell.

Assume now that (X, \mathcal{B}) has the Lindelöf property. Let \mathcal{A} , $\mathscr{C} \in L_{\mathcal{B}}$ separate the same points. Fix an arbitrary set $A \in \mathcal{A}$. For any two points x, y, $x \in A$, $y \in X - A$, choose a set $C(x, y) \in \mathscr{C}$ such that $C(x, y) \cap \{x, y\} = \{x\}$. For each $y \in X - A$ a family $\{C(x, y): x \in A\} \cup \{X - A\}$ covers X. By assumption there is a countable set $\{x_n: n = 1, \ldots\} \subseteq A$ for which the set $C(y) = \bigcup \{C(x_n, y): n = 1, \ldots\}$ belongs to \mathscr{C} , contains A and by our choice does not contain y. A family $\{X - C(y): y \in X - A\} \cup \{A\}$ covers X; by the Lindelöf property there is a countable set $\{y_n: n = 1, \ldots\} \subseteq X - A$ such that $\bigcup \{X - C(y_n): n = 1, \ldots\} \supseteq X - A$. But $X - C(y_n) \subseteq X - A$. Then the above union is equal to X - A, and $A = \bigcap \{C(y_n): n = 1, \ldots\}$ belongs to \mathscr{C} . This shows that $\mathscr{A} \subseteq \mathscr{C}$. By symmetry of assumptions about \mathscr{A} and \mathscr{C} , also $\mathscr{C} \subseteq \mathscr{A}$. We have shown that (X, \mathscr{B}) is super Blackwell.

Theorem 1 and Theorem 2 yield

COROLLARY 2. Let (X, \mathcal{B}) be a Borel space every 0-1 measure on which is given by a point. The following conditions are equivalent:

- (i) La is antiatomic,
- (ii) (X, \mathcal{B}) is super Blackwell,
- (iii) (X, \mathcal{B}) has the Lindelöf property.

4. Antiatomicity and extensions of 0-1 measures. To obtain promised characterizations of antiatomicity we need

Proposition 2. Any Borel structure is σ -isomorphic to a Borel structure every 0-1 measure on which is given by a point.

Proof. Let (X, \mathcal{B}) be a Borel space. Let Z be the set of all 0-1 measures on \mathcal{B} . For any $B \in \mathcal{B}$ let h(B) be the set of all 0-1 measures which take value 1 on \mathcal{B} . It is straightforward to verify that the family $h(\mathcal{B}) = \{h(B): B \in \mathcal{B}\}$ is a Borel structure on Z, and h is a σ -isomorphism from \mathcal{B} onto $h(\mathcal{B})$ (for details see [3], Theorem 8.1, preservation of countable unions relies on the fact that Z consists of countably additive set functions). Using the σ -isomorphism h it is easily seen that on $(Z, h(\mathcal{B}))$ any 0-1 measure is given by a point. So the proposition is proved.

It is obvious that antiatomicity is preserved by σ -isomorphism. The property that any 0-1 measure defined on a substructure can be extended to the whole structure is also preserved by σ -isomorphism. Combining these facts with Proposition 2, Corollary 1 and Corollary 2 we immediately obtain

Corollary 3. $L_{\mathcal{B}}$ is antiatomic iff \mathcal{B} is σ -isomorphic to a Borel structure with the Lindelöf property.

COROLLARY 4. $L_{\mathcal{B}}$ is antiatomic iff any 0-1 measure defined on a substructure of \mathcal{B} can be extended to a 0-1 measure on \mathcal{B} .

PROPOSITION 3. Let (X, \mathcal{B}) be a Borel space. Any 0-1 measure defined on a substructure of \mathcal{B} can be extended to a 0-1 measure on \mathcal{B} iff (a) any countably generated substructure of \mathcal{B} has countably many atoms and (b) any measure defined on a substructure of \mathcal{B} can be extended to a measure on \mathcal{B} .

Proof. If \mathcal{B} has the property (a) then any measure on \mathcal{B} (and obviously on any substructure of \mathcal{B}) is a countable sum of two-valued measures.

If \mathscr{B} has properties (a) and (b) and μ is any 0-1 measure on a substructure of \mathscr{B} then there is a measure ν on \mathscr{B} which extends μ . By the remark at the beginning of this proof $\nu = \nu_1 + \nu_2 + \dots$ where ν_i is a two-valued measure for all i (this sum may be finite). $\tilde{\mu}$ defined by $\tilde{\mu}(B) = \nu_1(B)/\nu_1(X)$ is a 0-1 measure extending μ .

If any 0-1 measure on a substructure can be extended to a 0-1 measure on \mathcal{B} then (e.g., by Corollary 4 and the second remark after Theorem 1) \mathcal{B} has property (a). By the remark at the beginning of the proof, any measure μ on a substructure of \mathcal{B} is a countable sum of two-valued measures all of which can be extended to a measure on \mathcal{B} , so μ also has an extension onto \mathcal{B} . This ends the proof.

Proposition 3 is not true without condition (a). More precisely, D. H. Fremlin has shown (private communication of June 1981) that it is not a theorem of ZFC: whether it is true or false depends on additional axioms (for example Continuum Hypothesis implies that the σ -field of Borel sets on the Sierpiński set satisfies (b) but is not antiatomic). It is not known to the author whether Proposition 3 is true without condition (b). (P 1302)

5. Example. K. P. S. Bhaskara Rao and B. V. Rao have shown that for any set X and the Borel structure of countable subsets of X and their complements, say \mathcal{A} , $L_{\mathcal{A}}$ is antiatomic (it is easy to see this via Corollary 4). We want to give an example of an atomless Borel structure \mathcal{A} with $L_{\mathcal{A}}$ antiatomic. \mathcal{A} is atomless if any nonempty set in \mathcal{A} is a disjoint union of two nonempty sets belonging to \mathcal{A} .

PROPOSITION 4. On any uncountable set I there is an atomless structure separating all points of I which has the Lindelöf property.

Proof. Consider the set $X(I) \subseteq \{0, 1\}^I$ of points whose all but finitely many coordinates are 0. Later on we will identify a point $x \in X(I)$ with a subset of I — the set of coordinates on which x is 1. In this terminology X(I) consists of all finite subsets of I. Because I and X(I) have the same cardinality it is sufficient to construct a Borel structure with desired properties on X(I). Let B(i) be the set of points in X(I) the ith coordinate of which is 1, and $\mathcal{B}(I)$ the Borel structure on X(I) generated by the family $\{B(i): i \in I\}$. $\mathcal{B}(I)$ is the Borel structure we are looking for. It separates all points.

The following property of $\mathcal{B}(I)$ is easily established: for any set $B \in \mathcal{B}(I)$

there exists a countable set $J(B) \subseteq I$ such that if two points $x, y \in X(I)$ have the *i*th coordinates equal for all $i \in J(B)$ then either $\{x, y\} \subseteq B$ or $\{x, y\} \cap B$ = \emptyset (the family of sets with this property is closed under complementation and countable unions, the sets B(i) have this property). This implies that $\mathcal{B}(I)$ is atomless (if $B \in \mathcal{B}(I)$ is nonempty and $i \in I - J(B)$ then $B \cap B(i) \neq \emptyset \neq B - B(i)$).

Let $\mathscr{F} \subseteq \mathscr{B}(I)$ be a covering of X(I). Take $F_0 \in \mathscr{F}$ containing the empty set (i.e. the point with each coordinate equal to 0). All finite subsets of $I - J(F_0)$ are in F_0 . For all remaining (countably many) one-element subsets of I there is a countable family $F_1' \subseteq \mathscr{F}$ covering them. Put $\mathscr{F}_1 = \mathscr{F}_1' \cup \{F_0\}$. All finite subsets of I of the form $K \cup L$, where $K \subseteq \bigcup \{J(F): F \in \mathscr{F}_1\}$, card $(K) \le 1$ and $L \subseteq I - \bigcup \{J(F): F \in \mathscr{F}_1\}$, belong to $\bigcup \{F: F \in \mathscr{F}_1\}$. For all remaining (countably many) two-element subsets of I there is a countable family $\mathscr{F}_2' \subseteq \mathscr{F}$ covering them. Put $\mathscr{F}_2 = \mathscr{F}_2' \cup \mathscr{F}_1$. All finite subsets of I of the form $K \cup L$, where $K \subseteq \bigcup \{J(F): F \in \mathscr{F}_2\}$, card $(K) \le 2$, $L \subseteq I - \bigcup \{J(F): F \in \mathscr{F}_2\}$, are contained in $\bigcup \{F: F \in \mathscr{F}_2\}$. By analogy, step by step, we define an increasing sequence of countable families $\mathscr{F}_n \subseteq \mathscr{F}$, such that all n-element subsets of I belong to $\bigcup \{F: F \in \mathscr{F}_n\}$. $\bigcup \{\mathscr{F}_n: n = 1, \ldots\}$ is a countable family contained in \mathscr{F} and by definition of X(I) covers X(I). Hence $(X(I), \mathscr{B}(I))$ has the Lindelöf property. The proof is complete.

Proposition 4 with the same Borel structure in the proof but without the Lindelöf property is stated in Theorem 4 of [4].

REFERENCES

- [1] K. P. S. Bhaskara Rao and B. V. Rao, *Borel spaces*, Dissertationes Mathematicae 190 (1981), 68 pp.
- [2] Lattice of Borel structures, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, 26 (1978), p. 785-786.
- [3] B. V. Rao, Lattice of Borel structures, Colloquium Mathematicum 23 (1971), p. 213-216.
- [4] On Borel structures, ibidem 21 (1970), p. 199-204.
- [5] R. Sikorski, Boolean algebras, Berlin-Göttingen-Heidelberg 1960.

INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY OF WROCŁAW WROCŁAW, POLAND

> Reçu par la Rédaction le 04. 08. 1981; en version modifiée le 15. 06. 1982