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1. In this paper we show that L,, the lattice of Borel substructures of a
Borel structure 4, is antiatomic iff for any two-valued measure on a
substructure of # there is a two-valued measure on # extending it. This and
the second characterization of antiatomicity of L, in terms of g-isomorphism
and a Lindelof property provide an answer to the problem raised by K. P. S.
Bhaskara Rao and B. V. Rao.

2. Preliminaries. A (Borel) structure (#) on a set X is a o-algebra of
subsets of X; a pair (X, #) is called a Borel space. L, stands for the lattice of
all Borel substructures of #. The infimum of a family of structures is their
intersection and the supremum is the structure generated by their union. & is
the unit element and {@, X is the null element. L, is a complete lattice. L,
is always atomic; atoms are of the form {(), X, B, X—B)} where O) # B # X,
and any /€L, not null is a supremum of atoms. Following K. P. S.
Bhaskara Rao and B. V. Rao ([1]), an ./ e L,, of # &, is an antiatom if & is
the only element in L, greater than .o/. The idea to consider antiatoms
appeared in [3] (where the term “ultrastructure” was used instead of
“antiatom”). Ly, is called antiatomic if every non-unit element of L, is an
infimum of antiatoms.

Theorem 1 ([2], Theorem 1). /€L, is an antiatom iff there are two
distinct 0-1 measures u, v on # such that

o = Be#: u(B)=v(B)}

(a measure is a g-additive real-valued nonnegative function and a 0-1 measure
is a measure taking exactly two values 0, 1).

Thus L, is antiatomic iff for every /e L, and Z e #— o/ there are two
0-1 measures agreeing on ./ but differing on Z. In particular, if # contains
a countably generated Borel structure with uncountably many atoms then L,
is not antiatomic ([1], Proposition 36). As K. P. S. Bhaskara Rao and B. V.
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Rao wrote in [2] and repeated in [1], P12, “a neat characterization of # for
which L, is antiatomic is not known”. Whether the two characterizations
given below (Corollaries 3 and 4) are neat is the matter of taste but the
author finds them interesting.

Two Borel structures o/ and # are called isomorphic if there is a one-
to-one function h from o/ onto # which preserves finite unions and
complementation, any such function is called an isomorphism ([5], p. 13).
Because Borel structure is by definition a o-field any isomorphism between
Borel structures is o-isomorphism, i.e. also preserves countable sums.

A Borel structure # on a set X separates x and y, x, ye X, if there is a
set Be # such that {x, y} "B = {x}. A Borel space (X, #) has the Lindelof
property if for any family # = ®, |J{F: Fe#} = X there is a countable
subfamily #, = #, Y{F: Fe #,} = X. A Borel space is super Blackwell if
any two substructures separating the same points coincide.

We say that a 0-1 measure p defined on the structure & is given by a point if
there is xe X such that u(B) =1 if xe B and u(B) =0 if x¢ B for any Be #.

3. Lindel6f property.

ProrosiTiON 1. A Borel space (X, #) has the Lindeldf property iff any
0-1 measure defined on a substructure of # is given by a point.

Proof. Suppose there is a substructure o of # and a 0-1 measure u on
&/ not given by a point. Thus the family {4e .o/: u(A4) =0} is a covering of
X which is closed under countable unions and has no countable subcover.
So (X, #) does not have the Lindeldf property.

On the other hand if (X, #) does not have the Lindel6f property, then
let F={B,: seS} =% be a covering of X without a countable subcover.
Let o/ be a family of sets elements of which may be covered by a countable
subfamily of # and complements of such sets. o/ is a Borel structure. Let u
be a measure on o defined by: u(4) =0 if A is a subset of the union of
countably many sets from % and u(A4) =1 otherwise. u is not given by a
point. This completes the proof.

CoroLLARY 1. A Borel space (X, #) has the Lindeldf property iff any 0-1
measure defined on a substructure of # can be extended to a 0-1 measure on #
and any 0-1 measure on & is given by a point.

THEOREM 2. A Borel space (X, #) is super Blackwell iff (X, #) has the
Lindelof property.

Proof. Suppose (X, #) does not have the Lindeldf property. There is a
family # < # which covers X but no countable subfamily of # does. Let o
be a Borel structure on X generated by &#. As in the proof of Proposition 1
let x4 be a 0-1 measure on & not given by a point. Take some point xoe X
and denote by v a 0-1 measure on &/ given by the point x,. For any xe X
fix a set A(x)e.o/ containing x such that u(A4(x)) = 0. For any two points x,
y separated by o fix a set A(x, y)es/ separating them, that is
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{x, y}nA(x, y) = {x}. Put ¢ = {Ade o u(A) =v(A)}. é is a Borel structure
strictly smaller than &/ (A(xy) is not in ¥). If two points x, ye X are
separated by ./ and, say, x, x, are also separated by ., then the set
A(x)n A(x, y)n A(x, xo) belongs to ¥ and separates x, y. We have obtained
two different structures in L, which separate the same points; therefore
(X, #) is not super Blackwell.

Assume now that (X, #) has the Lindel6f property. Let of, ¥eL,
separate the same points. Fix an arbitrary set A€ /. For any two points x, y,
xe A, ye X—A, choose a set C(x, y)e ¢ such that C(x, y)n{x, y} = {x}.
For each yeX—A a family {C(x,y): xed}u{X—A4} covers X. By
assumption there is a countable set {x,: n=1,...} £ A for which the set
C(y)=U{C(xy, y): n=1, ...} belongs to ¥, contains A and by our choice
does not contain y. A family {X—C(y): ye X— A4} u {4} covers X; by the
Lindeldf property there is a countable set {y,: n=1,...} € X—A such that
U{X-C@n): n=1,..) 2X—-A. But X-C(y,) = X—A. Then the above
union is equal to X—A4, and 4 =N {C(y,): n=1, ...} belongs to. 4. This
shows that o < ¥. By symmetry of assumptions about o/ and %, also
¢ < of. We have shown that (X, #) is super Blackwell.

Theorem 1 and Theorem 2 yield

CoOROLLARY 2. Let (X, #) be a Borel space every 0-1 measure on which is
given by a point. The following conditions are equivalent:

(i) Ly is antiatomic,

(ii) (X, #) is super Blackwell,

(iii) (X, ) has the Lindeldf property.

4. Antiatomicity and extensions of 0-1 measures. To obtain promised
characterizations of antiatomicity we need

PRrROPOSITION 2. Any Borel structure is c-isomorphic to a Borel structure
every 0-1 measure on which is given by a point.

Proof. Let (X, #) be a Borel space. Let Z be the set of all 0-1
measures on #. For any Be & let h(B) be the set of all 0-1 measures which
take value 1 on 4. It is straightforward to verify that the family h(%)
= [h(B): Be %} is a Borel structure on Z, and h is a o-isomorphism from 2
onto h(%) (for details see [3], Theorem 8.1, preservation of countable unions
relies on the fact that Z consists of countably additive set functions). Using
the o-isomorphism h it is easily seen that on (Z, h(%)) any 0-1 measure is
given by a point. So the proposition is proved.

It is obvious that antiatomicity is preserved by o-isomorphism. The
property that any 0-1 measure defined on a substructure can be extended to
the whole structure is also preserved by o¢-isomorphism. Combining these
facts with Proposition 2, Corollary 1 and Corollary 2 we immediately obtain

COROLLARY 3. Ly is antiatomic iff B is a-isomorphic to a Borel structure
with the Lindelof property.
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COROLLARY 4. Lg is antiatomic iff any 0-1 measure defined on a substruc-
ture of # can be extended to a 0-1 measure on .

ProposITION 3. Let (X, #) be a Borel space. Any 0-1 measure defined on
a substructure of # can be extended to a 0-1 measure on # iff (a) any
countably generated substructure of # has countably many atoms and (b) any
measure defined on a substructure of # can be extended to a measure on A.

Proof. If # has the property (a) then any measure on # (and obviously
on any substructure of %) is a countable sum of two-valued measures.

If # has properties (a) and (b) and u is any 0-1 measure on a
substructure of # then there is a measure v on # which extends u. By the
remark at the beginning of this proof v =v; +v,+... where v, is a two-valued
measure for all i (this sum may be finite). 7 defined by (B) = v, (B)/v,(X)is a
0-1 measure extending u.

If any 0-1 measure on a substructure can be extended to a 0-1 measure
on 4 then (e.g., by Corollary 4 and the second remark after Theorem 1) .4 has
property (a). By the remark at the beginning of the proof, any measure u
on a substructure of # is a countable sum of two-valued measures all of
which can be extended to a measure on 4, so u also has an extension onto
#. This ends the proof.

Proposition 3 is not true without condition (a). More precisely, D. H.
Fremlin has shown (private communication of June 1981) that it is not a
theorem of ZFC: whether it is true or false depends on additional axioms
(for example Continuum Hypothesis implies that the o-field of Borel sets on
the Sierpinski set satisfies (b) but is not antiatomic). It is not known to the
author whether Proposition 3 is true without condition (b). (P 1302)

5. Example. K. P. S. Bhaskara Rao and B. V. Rao have shown that for
any set X and the Borel structure of countable subsets of X and their
complements, say ./, L, is antiatomic (it is easy to see this via Corollary 4).
We want to give an example of an atomless Borel structure .4 with L,
antiatomic. # is atomless if any nonempty set in A is a disjoint union of two
nonempty sets belonging to 4.

PROPOSITION 4. On any uncountable set I there is an atomless structure
separating all points of I which has the Lindelof property.

Proof. Consider the set X () = {0, 1}’ of points whose all but finitely
many coordinates are 0. Later on we will identify a point xe X (I) with a
subset of I — the set of coordinates on which x is 1. In this terminology
X (I) consists of all finite subsets of I. Because I and X (I) have the same
cardinality it is sufficient to construct a Borel structure with desired proper-
ties on X (I). Let B(i) be the set of points in X (/) the ith coordinate of which
is 1, and 4 (I) the Borel structure on X (I) generated by the family {(B(i):
iel}. #(I) is the Borel structure we are looking for. It separates all points.

The following property of 4 () is easily established: for any set Be 2(I)
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there exists a countable set J(B) =1 such that if two points x, ye X (I) have
the ith coordinates equal for all ieJ(B) then either {x, y} =B or {x, y} "B
= @ (the family of sets with this property is closed under complementation
and countable unions, the sets B(i) have this property). This implies that
#() is atomless (if Be#(I) is nonempty and iel—J(B) then
B B(i) # O # B—B(i).

Let # < #(I) be a covering of X (I). Take Foe # containing the empty
set (i.. the point with each coordinate equal to 0). All finite subsets of I —J (F)
are in F,. For all remaining (countably many) one-element subsets of I there
is a countable family F} < # covering them. Put #, = #| U {F,}. All finite
subsets of I of the form K UL, where K =) {J(F): Fe #,}, card(K) <1
and L<1-) |J(F): Fe#,}, belong to |J {F: Fe #,}. For all remaining
(countably many) two-element subsets of I there is a countable family
Fy = F covering them. Put #, = %, UZ,. All finite subsets of I of the
form KuUL, where K c|)!J(F): Fe#,), card(K)<2, LcI-{{J(F):
Fe .7,}, are contained in | {F: Fe #,]. By analogy, step by step, we define
an increasing sequence of countable families .#, < .#, such that all n-element
subsets of I belong to |J{F: Fe#,). U!{#, n=1,...} is a countable
family contained in .# and by definition of X (I) covers X(I). Hence
(X (I, #(I)) has the Lindeldf property. The proof is complete.

Proposition 4 with the same Borel structure in the proof but without the
Lindelof property is stated in Theorem 4 of [4].
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