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SOME REMARKS ON MICHAEL'S QUESTION
CONCERNING CARTESIAN PRODUCTS OF LINDELOF SPACES

BY

K. ALSTER (WARSZAWA)

E. Michael asked whether the class % of all spaces, whose Cartesian
product with every hereditarily Lindelof space is Lindelof, is closed with
respect to countable Cartesian products. In [1] it is proved that there
is a large class € containing scattered Lindel6f spaces such that if X € 4,
then X™ e 2.

A particular case of Michael’s hypothesis is the following very natural
question: Is it true that if M is a separable metric space and X is a Linde-
16f P-space, i.e. every @G,-set is open in X, then the product M x X™ is
Lindel6f? T conjecture that the answer to this question is negative but I can
prove the following positive result:

THEOREM. If M is a separable metric space such that there are a complete,
in the sense of Cech, separable space M’ and an embedding ¢: M—>M' such
that M'\ e(M) does not contain uncountable compact subsets and X, is a Lin-

delof P-space for n =1,2,..., then the Cartesian product M x P X, is
Lmdelof. n=1

Proof. Suppose ¥ = {F,.: s € 8} is a family of closed subsets of

M x P X, which has the countable intersection property, i.e. for every
n=1

countable subset S, of § the intersection () {F,: s € 8} is not empty.
We shall show that the set (1) {F,: 8 € 8} is not empty. Without loss of

generality we can assume that M is a subset of M'. We shall consider two
cases:

(a) There is m € M such that the family
{F,: s e Syu{{m}x P X,}
n=1

has the countable intersection property.
(b) Case (a) does not hold.
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Proof of (a). This case is Noble’s result (see [3], Corollary 4.2).
We shall give its proof for the sake of completeness. Our proof is a little

simpler than the Noble’s one.
Let us assume that for » <<¢ we have defined =, € X, in a way

such that
(*,) the family

{F,: & € S}u{{m} x ,g B,.x P X,: B, €%,

n'=n+1

B, is a base at =z, for n’' < n}

has the countable intersection property.

Then there is #;,, € X, such that z,, ..., 2,,, satisfy (*,,,). Suppose
to the contrary that such a point does not exist. Then for every z in X, ,,
we shall find a neighbourhood U,, a countable subset S, in 8, and B,, € %,
for n» < ¢ such that

00

i
N{Fs: se8}3n{m}x PB,,xU,x P X, =0.
ne=1

ne={+2
The space X,,, is Lindelof, so we can find a countable subcover
{U,j: j=1,2,...} of {U,: z€ X,,,}. Notice that the set

Bn = n Brwj

j=1

is a mneighbourhood of z, for » =1,2,...,¢ because X, is a P-space.
Hence the equality

NIF,: s e Q 8,,} 0 ({m} x,..é B, x,.=E1X”)

— NIF.: segszj]n({m}xnéanx(U{U,j: i=1,2,..))x P X)

ne={42

-y

contradicts (x;).
For n =1, 2, ... it follows from (x,) that the point (m, 2y, ..., 2,, ...)

belongs to () {¥,: s € 8}.
Proof of (b). Let d be a complete metric on M’. From the Lindelof
property of M and the countable intersection property of # it follows that

there is m, € M such that the family #uU{B(m,,1)x P X,} has the
n=1
countable intersection property. Here the symbol B(m,, j) stands for
B(my, j) = {m € M': d(my, m) < j}.
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Put #, = {B(m,,1)} and let us assume that &, is defined for
j=0,1,...,7 in a way such that the following conditions are satisfied:

(1) if j > 0, then
F; = {(B(m,, 1/2"“)); (@419 +e ey wu))i

j
teT,, T, is a finite set, myec M, (2,,..., 7)€ P X,, n(t) > j};

n=1

(2) if j<4—1 and F = (B(my, 1/2""), (z,, ..., ,)) € F,;, then we
can attach to F two elements F(0) and F (1) of #,,, in a way such that

Fk) = (B(ml(k)’ 1/2n(‘(k)))7 (wﬂ’ e ooy By i‘/(t(k)))) for ¥ =0,1,
U {B(m‘(k)? 1/2”(‘("))): k = 0, 1} c B(mt7 1/2”(‘)),
1
ﬂB(mt(k)’1/2n(k)) =0, and %;,,={F(k): Fe&F, k=0,1};

(3) if F = (B(my,1/2"®), (wy, ..., %)) € F;, then the family

i )
FU{B(my, 1/2m) x PIBﬂ X E+2Xn:

B, is an element of the base #(,,) at the point m,,}

has the countable intersection property.

Let F = (B(my,1/2"®), (2, ..., %)) be an element of #,. We
claim that

(4) there are two different elements my), my,, of B(m,, 12"~ M
and y(¢(0)), y(t(1)) € X,,, such that if U; is an arbitrary neighbourhood
of my;,, then the family

i+1 0o
FulU, x P1 B, x |?+2Xn: ‘B, € #(,) for n<i and
n= n=

B,., belongs to the base Q(y (t(j))) at the point y(¢( j))}

has the countable intersection property for j = 0, 1.

Notice that we do not require y(£(0)) # y(t(1)). A

Suppose to the contrary that this is not the case. Then there is
m € B(my, 1/2"))nM such that if m’ e B(my, 1/2")AnM and m' + m,
then for every » € X, , there exist neighbourhoods Vi, and Uzmn of
the points m’ and x, respectively, a countable subset S(x,m’), and
B, m')n € B(%;,) such that

8

i
N {F,: s€8(@, M)}V mmX PlB("'"")" X Ugmy % X,=0.
fl=

n=:t+2

-
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Since the space B(my,1/2"¥)\{m} is Lindeléf and X,, X,,... are
P-spaces, we can assume that for every m' e B(m,, 1/2"®)\{m} we have
8@, m') =8;, Ugmy = U,y and By, = B,, for zeX, , and »

n

=1,2,...,4. Let {Uz,= j=1,2,...} be a countable subcover of
{U,: veX, ,}. If we put

n =B, and 8 =U{8,:i=12,..}

j=1

forn =1,2,...,1, then

NIF,: s € 8o} (B(my, 1/2™) x P B, x ﬁ X,)

n=t+41

= N {F,: s € 8}n(({m} x |:5an X :'P+ IX,.)U(B(mu 1/2"®)\ {m}) x

x néanx(U{U,j:j=1,2,...})>< P x,)

n={+2

[e 2]

=N {F,: seSo}n({m}xéan P X,).

n=t+l1

The last equality and (3) contradict the assumption of case (b).
Hence we have proved that there exist myg,, my,), ¥(t(0)), y(t(1)) satis-

fying (4).
In order to complete the definition of F(j) it is enough to put (n(?))(j)
for j = 0,1 such that

m {B(m,m, 1/2(”(1))(:1')): j=0,1} =
and
The family #,,, is defined according to (2).
If we put
Z = ﬂ{UB(mu 1/2"9): teT)),

then from (1)-(3) we infer that Z is an uncountable compact subset in M’,
and so there is z2€ZnM. From (1)-(3) it follows that

(6) if we have i>j>1, F, = (B(m,,1/2"W), @1y -+ Ty 5)) € F,
= (B(my, y 1/2762), (@4, . ,w,zf)) € F;, and zeFlnF,, then
By = Bpy1y - vy By = By
Using (5) we can find a sequence
F; = (B(m;, 1/2"9), (@, ..., ;) € &,



PRODUCTS OF LINDELOF SPACES 27

such that

oo

z € () B(m,, 1/2"9),

j=1

We claim that (2, (#y, ..., %, ...)) € ({F,: s € 8}. Indeed, if the set

U=v X“EB“ x P,

.

is a neighbourhood of (2, (#y, ..., %;,...)), then there is j > i such that
B(m;, 1/2"") = V. Hence it follows from (3) that UnF # @ for every
Fe#.

Remark 1. One can show, modifying the proof of the Theorem,
that if M, is a separable metric space satisfying the assumption of the

Theorem and X; a Lindelof P-space for i =1,2,..., then P (M, x X,)
is Lindelof. i=1

Remark 2. Notice that M need not have to be a complete space.
Indeed, if F is an uncountable complete, metric space and F' an uncount-
able subspace of E which does not contain uncountable compact sub-
spaces (see [2], Theorem 1, p. 514), then M = E\F satisfies the assumption
of the Theorem and is not complete.

Remark 3. One can notice that if M satisfies the assumption of the
Theorem and H is a closed or open subset of M, then H has the Baire
category property, i.e. H does not admit a partition H = | J{H;:
1 =1,2,...}, where H; is a nowhere dense subset of H. The opposite im-
plication does not hold. One can ask whether the Cartesian product
M x P X, is Lindelof provided that M is a separable metric space such that

n=1

every closed or open subset of M has the Baire category property and X,
i8 @ Lindelof P-space for » = 1,2, ... Assuming the continuum hypothesis

one can show that if 4 is an uncountable subset of M x P X, and the set
n=l

»(4), where p is the projection onto M, has the Baire category property

and is dense in itself, then there is # € M x P X, such that for every
. n=l ’
neighbourhood U of » the set An U is uncountable.
In [1], as we said before, it was proved that if M is a separable metric
space and X, is a Lindelof scattered space for » = 1,2, ..., i.e. X, does
not contain a subset dense in itself, then the Cartesian product

M x P X, is Lindelof. Hence it is natural to ask whether every Lindelof

n=1

P-space X admits a partition X = | J{X,: » = 1,2,...}, where X, is
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Lindel6f and scattered for » = 1,2, ... The same question was asked by
R. Telgarsky in relation with the game theory.
Example. There is a Lindelof P-space X which does not admit a par-
tition
X = Uxm
n=1
where X, is Lindelof scattered for » = 1,2, ...

The space X appeared in [4], where R. Pol proved that it has the
Lindeléf property. The fact that X does not admit a suitable partition
was observed independently by R. Pol and myself.

Proof. Put ¥ = D"1, where D = {0, 1} and w, is the first uncountable
ordinal number. The topology on Y is induced by @,-subsets of D”1 con-
sidered in the Tychonoff topology. The space X will be a subspace of Y.
Let us attach to every limit ordinal number a < w, a sequence (a(n))3_,
converging to a in the order topology. Then

X = {w e D1: #7'(1) is finite}u
U{z, € D*1: a is a limit ordinal number and z;'(1)}
= {a(n): » =1,2,...}.

Notice that # € X is isolated if and only if the set #~!(1) is infinite.
For the sake of completeness we shall give the sketch of the proof
that X is Lindelof. Let 4 be an open cover of X and #, an arbitrary point
of X. Then there exist a, < w, and a countable subfamily #, of U such
that
{weX: o(f) = z(B) for < ar} = U%.

Let us assume that a, < w, and a countable family %, < U are
defined. Then the set 4, = {zx e X: #7'(1) < a,+1} is countable, and so
there are a, < a,,, < w; and a countable family #,, , < U such that

U {wEX: z(B) = y(B) for B < an+l} < U%n-}.l-

yed,
Now it suffices to notice that the family |J #, covers X\ {=z,} if
n=1 (]
a =sup{a,: » =1,2,...} is a limit ordinal number or | J | J%, = X.
n=1

We shall show that X does not admit a partition X = | J X,,, where

n=l

X, is a Lindelof scattered space. Let us assume to the contrary that

X = |J X,,. There is n, such that {a < w,: z, € X, } is stationary (recall
n=1
that 8 < w, is stationary if for every uncountable and closed subset B

of o, the intersection BnS is not empty). Now, let X be the set
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N{X®: g < a} if a is a limit ordinal and let X'? be the set of accumula-
tion points of X\ if @ = g+1. The space X, is scattered and Lindelof,
8o there are §, and z, such that z, € X¥O\X%+) and a neighbourhood U
of 2, in X, such that

(6) the set {a < w,: x, € U} is stationary and for every = # 2z, and
x € U there is a neighbourhood U, of z in U such that {a < w,: 2, € U,}
18 not stationary.

Without loss of generality we can assume that

= {weX,: x(a) = z(a) for a< f},

where B is such that z;'(1) < B. Using the pressing-down lemma one can
find B < B, < w, such that {a < w,: x, € U and #,(B,) = 1} is stationary,
which contradicts (6).

Remark 4. We have proved that every subspace of X of the form

= {weX: 27'(1) is finite}u {w,: a € B},

B being a stationary subset of w,, does not admit a partition |J X,,,

n=1

where X, is scattered and Lindelof. It is easy to notice that the opposite
implication holds; namely, if B is not stationary, then X (B) admits a suit-
able partition.

Remark 5. One can show that if there are a separable metric space
M and a P-space X of weight less than or equal to ¥, such that the Cartesian
product M x X® is not Lindelof, then there is an uncountable subset B
of the Cantor set ¢ without uncountable compact subsets and such that
O\B = | J{4,: a < o,}, where A4, is an analytic set. Let us notice that
Solovay [5] proved that if a measurable number exists, then every com-
plement of an analytic set is countable or contains an uncountable com-
pact subset.
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