VOL. XLVII

1982

FASC. 1

SOME REMARKS ON MICHAEL'S QUESTION CONCERNING CARTESIAN PRODUCTS OF LINDELÖF SPACES

RY

K. ALSTER (WARSZAWA)

E. Michael asked whether the class \mathscr{L} of all spaces, whose Cartesian product with every hereditarily Lindelöf space is Lindelöf, is closed with respect to countable Cartesian products. In [1] it is proved that there is a large class \mathscr{C} containing scattered Lindelöf spaces such that if $X \in \mathscr{C}$, then $X^{\aleph_0} \in \mathscr{L}$.

A particular case of Michael's hypothesis is the following very natural question: Is it true that if M is a separable metric space and X is a Lindelöf P-space, i.e. every G_{δ} -set is open in X, then the product $M \times X^{\aleph_0}$ is Lindelöf? I conjecture that the answer to this question is negative but I can prove the following positive result:

THEOREM. If M is a separable metric space such that there are a complete, in the sense of Čech, separable space M' and an embedding $e: M \rightarrow M'$ such that $M' \setminus e(M)$ does not contain uncountable compact subsets and X_n is a Lindelöf P-space for n = 1, 2, ..., then the Cartesian product $M \times \bigcap_{n=1}^{\infty} X_n$ is Lindelöf.

Proof. Suppose $\mathscr{F} = \{F_s \colon s \in S\}$ is a family of closed subsets of $M \times \bigcap_{n=1}^{\infty} X_n$ which has the countable intersection property, i.e. for every countable subset S_0 of S the intersection $\bigcap \{F_s \colon s \in S_0\}$ is not empty. We shall show that the set $\bigcap \{F_s \colon s \in S\}$ is not empty. Without loss of generality we can assume that M is a subset of M'. We shall consider two cases:

(a) There is $m \in M$ such that the family

$$\{F_s\colon s\in S\}\cup \{\{m\}\times \bigcap_{n=1}^{\infty}X_n\}$$

has the countable intersection property.

(b) Case (a) does not hold.

Proof of (a). This case is Noble's result (see [3], Corollary 4.2). We shall give its proof for the sake of completeness. Our proof is a little simpler than the Noble's one.

Let us assume that for $n \leq i$ we have defined $x_n \in X_n$ in a way such that

 $(*_n)$ the family

$$\{F_s\colon s\in S\} \cup \big\{\{m\} \times \mathop{\hbox{$\stackrel{\frown}{\sim}$}}_{n'\leqslant n} B_{n'} \times \mathop{\hbox{$\stackrel{\frown}{\sim}$}}_{n+1} X_{n'}\colon B_{n'}\in \mathscr{B}_{n'}, \\ \mathscr{B}_{n'} \text{ is a base at $x_{n'}$ for $n'\leqslant n$} \big\}$$

has the countable intersection property.

Then there is $x_{i+1} \in X_{i+1}$ such that x_1, \ldots, x_{i+1} satisfy $(*_{i+1})$. Suppose to the contrary that such a point does not exist. Then for every z in X_{i+1} we shall find a neighbourhood U_z , a countable subset S_z in S, and $B_{nz} \in \mathcal{B}_n$ for $n \leq i$ such that

$$\bigcap \{F_s\colon s\in S_s\}\cap \{m\}\times \bigcap_{n=1}^i B_{ns}\times U_s\times \bigcap_{n=i+2}^\infty X_n=\emptyset.$$

The space X_{i+1} is Lindelöf, so we can find a countable subcover $\{U_{z_j}: j=1,2,\ldots\}$ of $\{U_z: z\in X_{i+1}\}$. Notice that the set

$$B_n = \bigcap_{j=1}^{\infty} B_{nz_j}$$

is a neighbourhood of x_n for n = 1, 2, ..., i because X_n is a P-space. Hence the equality

$$\bigcap \{F_s \colon s \in \bigcup_{j=1}^{\infty} S_{z_j}\} \cap \left(\{m\} \times \bigcap_{n=1}^{i} B_n \times \bigcap_{n=i+1}^{\infty} X_n\right)$$

$$= \bigcap \{F_s \colon s \in \bigcup_{j=1}^{\infty} S_{z_j}\} \cap \left(\{m\} \times \bigcap_{n=1}^{i} B_n \times \left(\bigcup \{U_{z_j} \colon j = 1, 2, \ldots\}\right) \times \bigcap_{n=i+2}^{\infty} X_n\right)$$

$$= \emptyset$$

contradicts (*.).

For n = 1, 2, ... it follows from $(*_n)$ that the point $(m, x_1, ..., x_n, ...)$ belongs to $\bigcap \{F_s : s \in S\}$.

Proof of (b). Let d be a complete metric on M'. From the Lindelöf property of M and the countable intersection property of \mathscr{F} it follows that there is $m_1 \in M$ such that the family $\mathscr{F} \cup \{B(m_1, 1) \times \bigcap_{n=1}^{\infty} X_n\}$ has the countable intersection property. Here the symbol $B(m_1, j)$ stands for

$$B(m_1, j) = \{m \in M': d(m_1, m) \leq j\}.$$

Put $\mathscr{F}_0 = \{B(m_1, 1)\}$ and let us assume that \mathscr{F}_j is defined for j = 0, 1, ..., i in a way such that the following conditions are satisfied:

(1) if
$$j > 0$$
, then

$$\mathscr{F}_{j} = \{(B(m_{i}, 1/2^{n(i)}), (x_{i1}, \ldots, x_{ij})):$$

$$t \in T_j$$
, T_j is a finite set, $m_i \in M$, $(x_{i1}, \ldots, x_{ij}) \in \bigcap_{n=1}^{j} X_n$, $n(t) \geqslant j$;

(2) if $j \leq i-1$ and $F = (B(m_i, 1/2^{n(i)}), (x_{i1}, \ldots, x_{ij})) \in \mathcal{F}_j$, then we can attach to F two elements F(0) and F(1) of \mathcal{F}_{i+1} in a way such that

$$egin{aligned} F(k) &= \left(B(m_{t(k)}, 1/2^{n(t(k))}), \left(x_{t1}, \ldots, x_{tj}, y(t(k)) \right)
ight) & ext{for } k = 0, 1, \ & igcup \{ B(m_{t(k)}, 1/2^{n(t(k))}) \colon k = 0, 1 \} \subset B(m_t, 1/2^{n(t)}), \end{aligned}$$

$$\bigcap_{k=0}^{1} B(m_{i(k)}, 1/2^{n(k)}) = \emptyset, \quad \text{and} \quad \mathscr{F}_{j+1} = \{F(k) \colon F \in \mathscr{F}_{j}, \ k = 0, 1\};$$

(3) if
$$F = (B(m_i, 1/2^{n(i)}), (x_{i1}, ..., x_{ij})) \in \mathscr{F}_j$$
, then the family

$$\mathscr{F} \cup \{B(m_i, 1/2^{n(i)}) \times \bigcap_{n=1}^{j} B_n \times \bigcap_{n=j+2}^{\infty} X_n:$$

 B_n is an element of the base $\mathscr{B}(x_{in})$ at the point x_{in}

has the countable intersection property.

Let $F = (B(m_t, 1/2^{n(t)}), (x_{t1}, \ldots, x_{ti}))$ be an element of \mathcal{F}_i . We claim that

(4) there are two different elements $m_{i(0)}$, $m_{i(1)}$ of $B(m_i, 1/2^{n(i)}) \cap M$ and y(t(0)), $y(t(1)) \in X_{i+1}$ such that if U_j is an arbitrary neighbourhood of $m_{i(j)}$, then the family

$$\mathscr{F} \cup \{U_j \times \bigcap_{n=1}^{i+1} B_n \times \bigcap_{n=i+2}^{\infty} X_n : B_n \in \mathscr{B}(x_{in}) \text{ for } n \leqslant i \text{ and } i$$

 B_{i+1} belongs to the base $\mathscr{B}(y(t(j)))$ at the point y(t(j))

has the countable intersection property for j = 0, 1.

Notice that we do not require $y(t(0)) \neq y(t(1))$.

Suppose to the contrary that this is not the case. Then there is $m \in B(m_i, 1/2^{n(i)}) \cap M$ such that if $m' \in B(m_i, 1/2^{n(i)}) \cap M$ and $m' \neq m$, then for every $x \in X_{i+1}$ there exist neighbourhoods $V_{(x,m')}$ and $U_{(x,m')}$ of the points m' and x, respectively, a countable subset S(x, m'), and $B_{(x,m')n} \in B(x_{in})$ such that

$$\bigcap \left\{F_s\colon s\in S(x,\,m')\right\}\cap V_{(x,m')}\times \bigcap_{n=1}^i B_{(x,m')n}\times U_{(x,m')}\times \bigcap_{n=i+2}^\infty X_n=\varnothing\,.$$

Since the space $B(m_i, 1/2^{n(i)}) \setminus \{m\}$ is Lindelöf and X_1, X_2, \ldots are P-spaces, we can assume that for every $m' \in B(m_i, 1/2^{n(i)}) \setminus \{m\}$ we have $S(x, m') = S_x$, $U_{(x,m')} = U_x$, and $B_{(m',x)n} = B_{xn}$ for $x \in X_{i+1}$ and $n = 1, 2, \ldots, i$. Let $\{U_{z_j}: j = 1, 2, \ldots\}$ be a countable subcover of $\{U_x: x \in X_{i+1}\}$. If we put

$$B_n = \bigcap_{j=1}^{\infty} B_{z_j n}$$
 and $S_0 = \bigcup \{S_{z_j} : j = 1, 2, \ldots \}$

for n = 1, 2, ..., i, then

$$\bigcap \{F_s \colon s \in S_0\} \cap \left(B(m_t, 1/2^{n(t)}) \times \bigcap_{n=1}^t B_n \times \bigcap_{n=t+1}^\infty X_n\right) \\
= \bigcap \{F_s \colon s \in S_0\} \cap \left(\left(\{m\} \times \bigcap_{n=1}^t B_n \times \bigcap_{n=t+1}^\infty X_n\right) \cup \left(B(m_t, 1/2^{n(t)}) \setminus \{m\}\right) \times \\
\times \bigcap_{n=1}^t B_n \times \left(\bigcup \{U_{z_j} \colon j = 1, 2, \ldots\}\right) \times \bigcap_{n=t+1}^\infty X_n\right) \\
= \bigcap \{F_s \colon s \in S_0\} \cap \left(\{m\} \times \bigcap_{n=1}^t B_n \times \bigcap_{n=t+1}^\infty X_n\right).$$

The last equality and (3) contradict the assumption of case (b). Hence we have proved that there exist $m_{i(0)}$, $m_{i(1)}$, y(t(0)), y(t(1)) satisfying (4).

In order to complete the definition of F(j) it is enough to put (n(t))(j) for j = 0, 1 such that

$$\bigcap \{B(m_{t(j)}, 1/2^{(n(t))(j)}): j = 0, 1\} = \emptyset$$

and

$$\bigcup \{B(m_{t(j)}, 1/2^{(n(t))(j)}): j = 0, 1\} \subset B(m_t, 1/2^{n(t)}).$$

The family \mathscr{F}_{i+1} is defined according to (2). If we put

$$Z = \bigcap_{j=1}^{\infty} \{ \bigcup B(m_t, 1/2^{n(t)}) \colon t \in T_j \},$$

then from (1)-(3) we infer that Z is an uncountable compact subset in M', and so there is $z \in Z \cap M$. From (1)-(3) it follows that

 $\begin{array}{ll} (5) \ \ \text{if we have} \ \ i>j\geqslant 1, \ \ F_1=\left(B(m_{t_1},1/2^{n(t_1)}), \ (x_{t_11},\ldots,x_{t_1j})\right)\in \mathscr{F}_j, \\ F_2=\left(B(m_{t_2},1/2^{n(t_2)}), \ (x_{t_21},\ldots,x_{t_2i})\right)\in \mathscr{F}_i, \ \ \text{and} \ \ z\in F_1\cap F_2, \ \ \text{then} \end{array}$

$$x_{t_{1}1} = x_{t_{2}1}, \ldots, x_{t_{1}j} = x_{t_{2}j}.$$

Using (5) we can find a sequence

$$F_i = (B(m_i, 1/2^{n(i)}), (x_1, \ldots, x_i)) \in \mathcal{F}_i$$

such that

$$z \in \bigcap_{j=1}^{\infty} B(m_j, 1/2^{n(j)}).$$

We claim that $(z, (x_1, \ldots, x_j, \ldots)) \in \bigcap \{F_s : s \in S\}$. Indeed, if the set

$$U = V \times \bigcap_{n=1}^{i} B_n \times \bigcap_{n=i+1}^{\infty} X_n$$

is a neighbourhood of $(z, (x_1, ..., x_j, ...))$, then there is j > i such that $B(m_j, 1/2^{n(j)}) \subset V$. Hence it follows from (3) that $U \cap F \neq \emptyset$ for every $F \in \mathscr{F}$.

Remark 1. One can show, modifying the proof of the Theorem, that if M_i is a separable metric space satisfying the assumption of the Theorem and X_i a Lindelöf P-space for i = 1, 2, ..., then $\bigcap_{i=1}^{\infty} (M_i \times X_i)$ is Lindelöf.

Remark 2. Notice that M need not have to be a complete space. Indeed, if E is an uncountable complete, metric space and F an uncountable subspace of E which does not contain uncountable compact subspaces (see [2], Theorem 1, p. 514), then $M = E \setminus F$ satisfies the assumption of the Theorem and is not complete.

Remark 3. One can notice that if M satisfies the assumption of the Theorem and H is a closed or open subset of M, then H has the Baire category property, i.e. H does not admit a partition $H = \bigcup \{H_i: i=1,2,\ldots\}$, where H_i is a nowhere dense subset of H. The opposite implication does not hold. One can ask whether the Cartesian product $M \times \bigcap_{n=1}^{\infty} X_n$ is Lindelöf provided that M is a separable metric space such that every closed or open subset of M has the Baire category property and X_n is a Lindelöf P-space for $n=1,2,\ldots$ Assuming the continuum hypothesis one can show that if A is an uncountable subset of $M \times \bigcap_{n=1}^{\infty} X_n$ and the set P(A), where P is the projection onto M, has the Baire category property and is dense in itself, then there is $x \in M \times \bigcap_{n=1}^{\infty} X_n$ such that for every neighbourhood U of x the set $A \cap U$ is uncountable.

In [1], as we said before, it was proved that if M is a separable metric space and X_n is a Lindelöf scattered space for $n=1,2,\ldots,$ i.e. X_n does not contain a subset dense in itself, then the Cartesian product $M \times \bigwedge_{n=1}^{\infty} X_n$ is Lindelöf. Hence it is natural to ask whether every Lindelöf P-space X admits a partition $X = \bigcup \{X_n \colon n=1,2,\ldots\}$, where X_n is

Lindelöf and scattered for n = 1, 2, ... The same question was asked by R. Telgarsky in relation with the game theory.

Example. There is a Lindelöf P-space X which does not admit a partition

$$X=\bigcup_{n=1}^{\infty}X_n,$$

where X_n is Lindelöf scattered for n = 1, 2, ...

The space X appeared in [4], where R. Pol proved that it has the Lindelöf property. The fact that X does not admit a suitable partition was observed independently by R. Pol and myself.

Proof. Put $Y = D^{\omega_1}$, where $D = \{0, 1\}$ and ω_1 is the first uncountable ordinal number. The topology on Y is induced by G_{δ} -subsets of D^{ω_1} considered in the Tychonoff topology. The space X will be a subspace of Y. Let us attach to every limit ordinal number $a < \omega_1$ a sequence $(a(n))_{n=1}^{\infty}$ converging to a in the order topology. Then

$$X = \{x \in D^{\omega_1} \colon x^{-1}(1) \text{ is finite}\} \cup$$

$$\cup \{x_a \in D^{\omega_1} \colon a \text{ is a limit ordinal number and } x_a^{-1}(1)\}$$

$$= \{a(n) \colon n = 1, 2, \ldots\}.$$

Notice that $x \in X$ is isolated if and only if the set $x^{-1}(1)$ is infinite. For the sake of completeness we shall give the sketch of the proof that X is Lindelöf. Let $\mathscr U$ be an open cover of X and x_0 an arbitrary point of X. Then there exist $\alpha_0 < \omega_1$ and a countable subfamily $\mathscr U_0$ of U such that

$$\{x \in X : x(\beta) = x_0(\beta) \text{ for } \beta \leqslant \alpha_0\} \subset \bigcup \mathscr{U}_0.$$

Let us assume that $a_n < \omega_1$ and a countable family $\mathscr{U}_n \subset U$ are defined. Then the set $A_n = \{x \in X \colon x^{-1}(1) \subset a_n + 1\}$ is countable, and so there are $a_n \leqslant a_{n+1} < \omega_1$ and a countable family $\mathscr{U}_{n+1} \subset U$ such that

$$\bigcup_{y\in A_n} \{x\in X\colon x(\beta)=y(\beta) \text{ for } \beta\leqslant a_{n+1}\}\subset \bigcup \mathscr{U}_{n+1}.$$

Now it suffices to notice that the family $\bigcup_{n=1}^{\infty} \mathscr{U}_n$ covers $X \setminus \{x_a\}$ if $a = \sup\{a_n: n = 1, 2, \ldots\}$ is a limit ordinal number or $\bigcup_{n=1}^{\infty} \bigcup \mathscr{U}_n = X$.

We shall show that X does not admit a partition $X = \bigcup_{n=1}^{\infty} X_n$, where X_n is a Lindelöf scattered space. Let us assume to the contrary that $X = \bigcup_{n=1}^{\infty} X_n$. There is n_0 such that $\{a < \omega_1 \colon x_a \in X_{n_0}\}$ is stationary (recall that $S \subset \omega_1$ is stationary if for every uncountable and closed subset S of S is not empty). Now, let S be the set

 $\bigcap \{X_n^{(\beta)} \colon \beta < a\}$ if a is a limit ordinal and let $X_n^{(a)}$ be the set of accumulation points of $X_n^{(\beta)}$ if $a = \beta + 1$. The space X_{n_0} is scattered and Lindelöf, so there are β_0 and z_0 such that $z_0 \in X_{n_0}^{(\beta_0)} \setminus X_{n_0}^{(\beta_0+1)}$ and a neighbourhood U of z_0 in X_{n_0} such that

(6) the set $\{a < \omega_1 \colon x_a \in U\}$ is stationary and for every $x \neq z_0$ and $x \in U$ there is a neighbourhood U_x of x in U such that $\{a < \omega_1 \colon x_a \in U_x\}$ is not stationary.

Without loss of generality we can assume that

$$U = \{x \in X_{n_0} \colon x(a) = z_0(a) \text{ for } a \leqslant \beta\},$$

where β is such that $z_0^{-1}(1) \subset \beta$. Using the pressing-down lemma one can find $\beta < \beta_1 < \omega_1$ such that $\{\alpha < \omega_1 : x_\alpha \in U \text{ and } x_\alpha(\beta_1) = 1\}$ is stationary, which contradicts (6).

Remark 4. We have proved that every subspace of X of the form

$$X(B) = \{x \in X : x^{-1}(1) \text{ is finite}\} \cup \{x_a : a \in B\},\$$

B being a stationary subset of ω_1 , does not admit a partition $\bigcup_{n=1}^{\infty} X_n$, where X_n is scattered and Lindelöf. It is easy to notice that the opposite implication holds; namely, if B is not stationary, then X(B) admits a suitable partition.

Remark 5. One can show that if there are a separable metric space M and a P-space X of weight less than or equal to \aleph_1 such that the Cartesian product $M \times X^{\aleph_0}$ is not Lindelöf, then there is an uncountable subset B of the Cantor set C without uncountable compact subsets and such that $C \setminus B = \bigcup \{A_a : a < \omega_1\}$, where A_a is an analytic set. Let us notice that Solovay [5] proved that if a measurable number exists, then every complement of an analytic set is countable or contains an uncountable compact subset.

REFERENCES

- [1] K. Alster, A class of spaces whose Cartesian product with every hereditarily Lindelöf space is Lindelöf, Fundamenta Mathematicae (to appear).
- [2] K. Kuratowski, Topology, Vol. I, Academic Press PWN, 1966.
- [3] N. Noble, Products with closed projection. II, Transactions of the American Mathematical Society 160 (1971), p. 169-183.
- [4] R. Pol, A function space C(X) which is weakly Lindelöf but not weakly compactly generated, Studia Mathematica 64 (1979), p. 279-285.
- [5] R. M. Solovay, Cardinality of Σ_3^1 sets, p. 58-73 in: Foundation of mathematics, Berlin 1969.

Reçu par la Rédaction le 20.12.1979