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Abstract. The first part of the paper deals with general properties and related
dilations of conditionally positive definite functions b,y (f, g) on a linear space. Next,
the Levy—Khintchine formula is proved for b,_,(f, g), where @, ¥ vary over a separable
real Hilbert space. We deduce therefore the Yaglom formula for related helix and
describe then the corresponding shift group for Poisson type functions.

The present paper has its origin in the desire to present some new
dilation type phenomena related to conditional positive definiteness.
The point is that we discuss functions b,,(f, g) with z, ¥ varying over
a some set X and f, g are in a linear space &; b, ,(f, g) is bilinear in f, g and
we can assume that for each f the function (z,y) — b.,(f,f) is condi-
tionally positive definite (weak conditional positive definiteness). The
stronger property is defined, namely the strong version, which reads as
follows: for any n,2;,...,4,€X and fy,...,f, €& the inequality

2}: by, 2, (fi) fi) = 0 holds true provided that > f; = 0. The “strong version”
75 7|1

makes it possible to apply the technique ofl dilation theory (we refer here
to [19]-[22] and [33]) and just get theorems which extend in some sense
classical results, i.e. that ones when f, g run over the field of complex
scalars and b, (f, g) = b,,f-J, where b, is a scalar function.

In order to make this paper reasonably self-contained, sketches of
those results of general dilation theory which we need are given with
suitable comments. On the other hand we try to give in a rather complete
way some technical arguments we need, especially those concerning infi-
nitely divisible random variables. These arguments are “almost” surely
routine, but the often incomplete (if not false) way of their presentation
in the literature plus the method of “succesive shifting of references”
makes the life of reader not easy — this is the reason we describe in some
detail the so-called “well-known” (“trivial”) facts. We need them both
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with their proofs, when applying the general theory of initial section to
functions b,_,(f, 9) (f, g € &) with z, y varying over a real separable Hilbert
space X. The final part of the paper deals with some continuity properties
in f, g when & is a metric space. We restrict ourselves to such & for the sake
of simplicity as well to get some nice and compact operator versions of
Levy—-Khintchine formula in case when X is finite dimensional.

1. Notation and definitions. In all what follows & stands for a complex
linear space. The function l: & X & — C is called bilinear form on & if

Uaf+Bg, k) = al(f, h)+Bl(g, k), US,ag+ph) = al(f, g)+plLf, k)
for a,feC and f,g,heé.

The bilinear form 7 can be interpreted in terms of linear operators,
namely ! is bilinear if and only if there is the unique linear operator A4,,
which maps & into the set & of all antilinear functionals on &, such that

Ufy9) = (A:if)(g) for all f, g € &.

Let X be the set with typical elements z, v, 2,..., ete. Suppose
once for all through the whole paper that if for every «, ¥ € X we are given
the bilinear function I, ,(f, g) on &, then we write formally I = {I_ ,(f, 9)}-

DEFINITION 1.0. We say that the function I = {I,,(f, 9)} is weakly
positive definite if for every f € & and for every n = 1, 2, ... and arbitrary

n
@y -.-y @, € C the inequality > lmj,a:k(f7 f)o;a, = 0 holds true for any 2y, ...
voey 0, € X. 3.kl
DEFINITION 1.1. We say that the function I = {I,,(f, g)} is positive
definite (and write then i1 >> 0 orl, (-, ) >> 0) if for every n =1, 2, ...,
for any f,,...,f,€e& and arbitrary «,...,2,€X the inequality

n
%1 Vejuzp, (fio fx) = 0 holds true.
75

Ifl,,(-, ) >>0, then [ is hermitian symmetric, i.e.

(1'0) lm,y(fa g) = ly,z(g7f) for x,y (—.':X; f7 ge £.

Let K be a complex Hilbert space and Z, =« K (s e 8) a family of
subsets of K. We write K = \/ Z, if the linear span of the union (J Z,
is densein K. ses ses

2. Canonical representation. To every positive definite function
I =.{l,,(f, 9)} there corresponds in the canonical fashion a Hilbert space K
and a family of linear maps from & into K, a family indexed by z-es from X.
The corresponding theorem will be referred as the KMKA L.emma, because
its essential part is due to Kolmogorov [11], Moore—Aronszajn — see [1]and
Krein [14]; the operator version of the KMKA Lemma is explicitly
formulated in Koranyi—Sz.-Nagy [12] and Kunze [15] for operator func-
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tions in Hilbert spaces and by Pedrick [28] in a more general setting.
Masani was who in [20] formulated the KMKA Lemma under some general
circumstances (showing its links with results of Kolmogorov and Aron-
szajn) and showed explicitly its connection with the dilation theory.
On the other hand, the “scalar” version of the KMKA Lemma is a “foiklo-
re” in probability theory — see Proposition 2.0 below.

KMKA LEMMA. Suppose that we are given the function 1 = (I, ,(f, 9)}
such that 1, (¢, -) > >0. Then there is a complex Hilbert space K with inner
product (-, .)g and a family of linear maps Y (x) (x € X) defined on & with
values in K such that

(2.0) Ly(f,9) = (Y@ [, YW)9)x for #,yeX; f,geé.
Moreover, K can be chosen minimal, i.e. such that K = \/ X (z)&. If K is
reX

minimal, then it is unique up to unitary equivalence in the following sense:
if K’ is some other complex Hilbert space, X'(x) are linear maps from &
in K',K' =\ X' ()¢ and L, (f,9) = (Y @f, Y () g)x for @,yeX;

zeX

f» g € &, then there is a unitary map U: K — K’ such that UY () = X' (%)
Jor all z e X.

Proof. Let § be the complex linear space of &-valued functions
f () defined on X with pointwise linear operations and such that f(z) % 0
for at most a finite number of x-es. Since I is positive definite, the bilinear
form

19> = D lLff@),3()
z,y

is a semi-immer product on 8. It follows now from the Schwarz inequality,
that the set 8, = {fe8: (f,f> = 0} is a linear subspace of S. Define
now K = completion of the quotient space 8/8, to the Hilbert space.
Then Y (2)f = the equivalence class corresponding to fz(y) = 0, (y)f
does the trick, because

(Y(a")f’ Y(y)g)K = (fx()’ éy('))K = 2 Zu,v(éz(u')f7 51/('”)9) = la:,u(f’ 9
u,veX

and the functions d,(-)f (z € X, f € &) span algebraically 8.

In order to complete the proof we assume that K’ and Y'(z) satisfy
all we said. Then, for any %, @y, ..., @y Y1y ooy Y € X,y fryeees Fny Gry vee
.esy g, € & We have

(Z Y(mj)fj72 Y(yk)gk)x = 2 la:j,zk (f;y gk)
j k ik
=X Y@ Y T g
i k
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which, since K and K’ are minimal, proves that there is the unique unitary
map U: K — K' which sends Y (z)f onto Y'(2)f for zeX, feé. »

The equality K = \/ Y (2)& is called the minimality condition. The
reX

final statement of KMKA Lemma may be stated as follows: the minimality
condition determines K and Y (-) satisfying (2.0) in a unique way up to
unitary equivalence. Formula (2.0) is called therefore the canonical repre-
sentation of 1if K is minimal. If I (f, g) = (B(=, ¥)f, g), where & is a Hil-
bert space and B(z,y) are linear bounded operators in &, then (2.0)
implies that Y () are linear bounded operators and in fact (2.0) reduces
to the formula

B(z,y) = Y(y)*Y(w) (#,y e X)

which is called the canonical factorization of B(-, -).

The KMKA Lemma can be expressed and proved in probabilistic
terms, by using the celebrated Kolmogorov’s theorem- on consistent;
families of measures and the fact, that every positive definite finite matrix
is a covariance matrix of a complex Gaussian variable. However, the use
of the Kolmogorov theorem in its full generality in a such approach is a cer-
tain kind of abuse, simply because it’s weaker version, namely the Fubi-
ni-Jensen theorem on product measures is just enough, plus the scalar
version of KMKA Lemma (& = C"). The probabilistic version of KMKA
Lemma simply says that positive definite complex funection is a covariance
function of a zero mean Gaussian process. Let us recall that the random
complex variable & is zero mean Gaussian if & = 0 or, if its complex
characteristic function g, (w) = M (¢‘Re*¢) (My stands for the mean value
of the random variable #) is of the form

_a jw;2

1 Rz, - 1%
(2.1) pe(w) = 6”7 — f B2 5~ G dg(2),
'n:dc

where 2 = x-1-iy, do(2) = dedy and d >0 — in fact d = M|&* = the
variance of £. The complex zero mean Gaussian process is the family
¢, (e X) of complex random variables over the common probability

space and such one, that for every =, arbitrary z,, ..., z, € X, ayy ..., a, €C
n

the variable & = ) q; z; 15 & zero mean Gaussian variable.
in

We are now ready to formulate the KMKA probabilistic version
following K. Ito (Jap. J. Math. 22 (1952), p. 63-86.) who proved it using
scalar KMKA Lemma and Fubini-Jensens theorem:

ProposiTIoN 2.0. Let (x,y) —>b,, be a complex positive definite
scalar function (z,y € X). Then there is a Gaussian zero mean process &,
such that b,, = M(EE) for ¢,y e X (i.e. b,, is the covariance function

of {&}).



Conditionally positive defivite functions on lnear spaces 191

Notice that the scalar version (& = C') of KMKA Lemma implies
jts general form, for if I, (-, -) >> 0, then the scalar function

(=, f}, {y, 8}) *lz,y(f; g9)

is positive definite. This being established we get that I, ,(f, g) = (u(m, R
u(y, g))K and then check easily that «(x, f) is linear in f. It remains to
define Y (2)f = u(x, f). However, having in view Proposition 2.0 we get
an extra profit, namely that K can be chosen as a subspace of the space
L*(P) where P = (2, #, u) is a suitable probability space. This is a useful
functional model of K which we will exploit in the proof of the Goérniak
extension [7] of Naimark’s [24] theorem on semispectral measures.

PROPOSITION 2.1 (see [7]). Let & be a o-field of subsets of the space L.
Suppose that & is a linear complex space and let the function u(o; f, g)
eC' (cep; f,ge &) satisfy the following conditions:

(i) For every fized f,ge & u(o; f,g) ts a complex measure on %B;

(ii) For every fized c € B u(o; f, g) is bilinear in f, g;

(iii) u(o; f,f) = 0 for every o € # and for every fe &.

Then there is a complex Hilbert space K and a spectral measure E on
B, whose values are orthoprojections in K, and & linear operator B: § - K
such that

u(o; f, 9) = (E(o)Rf, Rg)x  for e #B; f,geé.

The minimalily cbndition K = \/ E(c)R& determines (K,E,R) up to
oc®
unitary isomorphism, i.e. if K' = \/ E'(6)R'(&) where E' is a speciral
oc®

measure on B which values are orthoprojections in K’ and R': & -~ K’
is a linear operator and moreover u(o; f, g) = (E'(s)R'f, R'g)g, for o € B;
fs g € &, then there is a unitary map U: K — K’ such that UR = R’ and
UE(o) = E'(0)U for all o € &.

Proof. Let al,. ., 06,€# and fi,...,f, € & and take a positive
measure (o) = 2 p(o; f;5 f;)- By the polarization formula and the
Schwarz mequahty, Bi(?) = p(*5 Jis o) << p for j,k=1,...,n Since
by (iii) z(o; g, 9) = 0, then taking g = 2 a;f; we have that for o e #

il

p(o; g,9) = Z( fhjkd#)ajﬁk>0

hk ¢
where h;, = du; ,/dup (Randon—Nikodym derivative). Sinee o is arbitrary

. n
and o’s contain a countable dense set, we derive that > h,,(w)qad, >0
4.k ‘
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for almost all w € £ and arbitrary a,, ..., a,. By Schur’s lemma and the
trivial incquality 5’ Xojnnop, a;d, = 0 (g, stands for the indicator function

of the sct o) we gct that
Zﬂ(ajﬂ%; Jirfu) = 2 f hjpdp = 0.
7.k IR o;Noy

It follows that the scalar funection

({o", f},{0"; 9}) = nu(d' nd”; £, 9)
is positive definite.
By Proposition 2.0, u(c’nd”; f,q) = M(&(c’,f)&(c” , q ) where
(o, f) is a zero mean Gaussian process. As notlced before, &(o, f) is linear
in f We define K as the closed span of &(o,f) (c€ % fe &) in L (P),
where P = (2, %, u) is a suitable probability space and define Rf = £(2,f)
and LE(o)Rf = &(o,f) = E(6n 2, f), which proves, as easily seen, the
first part of our assertion. The uniqueness statement has a standard proof
(seec [22], for instance) and we omit it.

3. Regulators of positive definite functions. Let 1 = {I,,(f, 9)} (%, y
€ X; f, ge &) be a positive definite function. Following Krein [14], Getoor
[5], Masani [20] and Sz.-Nagy [33], we give an extract of th~r defini-
tions.

DEFINITION 3.0. Let #: X — X be a map. We say that « is a weak
regulator for 1 >> 0 if the following condition holds true:

. Xor every m =1,2,..., arbitrary xy,...,2,€X, fi,...,f, €&, if
2 Zj.2} (f;’fk) = 0, then

n
2 l“(xj),u(zk)(fj,fk) = 0,

9,kl1

DEFINITION 3.1. Suppose we are given the positive definite funetion
1 ={l,,(f,9)} and the mapping u: X — X. We say that « is a regulator
Jor 1 if there is a finite positive constant a(u) such that

n n
(30) Z Zu(a:j).u(:ck) (f]?fk) < 2 24, 2p fj!
Jokl1 k|1

for any n =1,2,..., arbitrary «,,...,2,€X, f,...,f, €é.
The above definition originates from the boundedness condition
in the Sz.-Nagy dilation theorem over involutory semi-groups — see [33].
We shall prove the following proposition essentially due to Getoor [5]
(first part of assertion) and to Sz.-Nagy [33] and to Masani [20] and Kunze
[15] (sccond part of assertion).

ProposiTioN 3.0. Let u: X — X be a weak regulator of the positive
definite fumction 1 = {I_,(f,g)} with canonical representation 1,,(f, g)
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= (Y(2)f, Y (y) g)K. Then there is the unique linear map 7(uw) of the linear
span M < K of vector Y (x)f (x € X, f € &) into itself and such that 7 (u) Y (z)f
= Y(u(m)) fforxze X and f € & If u is a regular for I with the corresponding
constant a(u), then (u) extends by continuity in the unique way to the linear
bounded operator m(u) in K and ||z(u)|| < a(u).

Proof. The definition of a weak requlator implies that

||JIZ:’ Y (a)fji =0 then HZ‘

which proves the first part of our assertion by defining

%

5) =0

w) 3 ¥ (2)f; = Z Y (u(x;))f;-

il in

If (3.0) holds true then since for y;, ..., ¥, € X

H Yfif = > b Ly i)
7 3.k

we have that

&) Y Y@ <

in

which completes the proof, because M is dense in the minimal space K.

Notice that #(u) corresponding to the weak regular » of some ! need
not be closable. To have an example we take & as an infinite dimensional
Hilbert space and an unbounded linear cperator 4 defined all over &.
Such an 4 can be constructed with the help of a Hamel basis of &. Now
we take X = {0,1,2,...} and 1,,.(f, 9) = (4"f, A™g) and u(n) = n+1;
n,m e X. Since A° f = f for f € &, the equality defining 7 is the canonical
representation of 7 with minimal space equal to &. It is plain that » is
a weak regulator of I and #(u) = A. The closed graph theorem shows
that #(u) is not closable. This is an observation of C. Ryll:Nardzewski
(private: communication) that for & = the space of complex polynomials
in te(—o0, +o0) and- - ‘

¥

+ 00

mn f’ g) f ' tm+nf(t)m0_t2/"' dt’

:Hf\ . ==00

for f, ge & the map, u( n) =041 (f&e take X = {0,1, 2,})1sa weak
requlator for I for which (3. 0) fdl]S \ .
Notice that here K, = - L'(R', e -t dt)

13 — Annales Polonicl Mathematici XLII
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That « is a weak regulator for 1 is a trivial fact. On the other hand,
since for f(t) =1

+00 — n+1
ln+1,n+1(f:f) = f t2(n+1)e—t2/2dt = 1/211 n (2k —1)
—o0 ki
and
bn(f,0) =Ver [ [ (2k—1)
kIl
we have
ln+l n+l(f1 f)
- =2n+1 — oo
Loalfs 1) 100

which shows that (3.0) fails in this case.

The operator (%) appearing in Proposition 3.0 is considered within
the minimal space K. Two simple consequences of Proposition 3.0 should
be noticed:

(3.1) If u is a weak regulator for 1 >> 0 and u(X) = X then R(u)M = M
and consequently 7(u)* is invertible.

(3.2) If u is a regulator of 1 >> 0 and u(X) = X, then 7(u)K = K.

Let £’ be the totality of all weak regulators of I >> 0 and {j the total-
ity of all regulators of 1 >> 0. It is plain that if », v € {¥®, then the com-
position uv = uov e £, Hence £° and L are semigroups, the semigroup
operation being the composition. The identity map ¢ of X belongs to ¢}’
and (7. It is easy to prove that:

(3.3) The map u — 7(u) for u € ” (1 >>0) is a unital representation of
i indo the algebra of linear maps of M into M.

(3.4) The map u — n(w) for w el (1>> 0) i8 a unital representation of
} into L(K) = the algebra of all linear bounded operators in the mini-
mal space K of the canonical representation of 1.

The following proposition follows immediately from the proof of
Proposition 3.0: ,

PROPOSITION 3.1. Ifl = {l,,(f,9)} >>0andu: X - X and 1, ,(f, g)
= byayuw)(fr 9) Jor @,y € X; g,f € &, then u is a regulator for 1 and m(w)
18 an isometry, which is unitary if u(X) = X.

COROLLARY 3.0. Letl >> 0 and denote by G, the totality of all one-to-one
maps u of X onto X such that u leaves linvariant, i.e. Ly oy (fy 9) =1, (f, 9)
for z,ye X; f,g € & Then G, becomes a group with group operation equal
to composition and the inverse of u € Gy equal to u™'; e is the unit of G,. Prop-
osition 3.1 implies that the map u — =(u) for u € G, is a unitary representa-
tion of @, into L(K), where K s the corresponding to I minimal space.
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This is essentially a generalization of Krein’s [14] result and in faet
takes place for any group of actions over X leaving l invariant. If X is
a group and I, ,(f, 9) = l,-1.(f, 9), then X is contained “naturally” in @,
and the story reduces to Naimark’s theorem [24], [22].

4. Conditional positive definiteness. This section deals with some
extension of definition of scalar valued conditionally positive definite
functions. Our partial scalar model here are definitions and theorems
inclosed in the papers of Guichardet [8] and of Parthasarathy—Schmidt
[27]. It should be mentioned that conditional positive definitness appears
at the very begining in Schonberg’s paper [32] and Krein [13], in con-
nection with some concrete problems — see also Cuppens [3]. The crucial
point of our considerations is that we deal with functions of the form b

= {b,4(f, g)} where f, g are in a linear space and b,,(f, g) is bilinear in
f, g- The classical case is just when & = C' or & = R'.

The central role is played by the structural function of b, ,( f, 9. Thls
function seems to be the proper concept in the study of conditionally
positive definite functions. It appears naturally in the theory of second
order stochastic processes with stationary increments. Our classical
models here are Yaglom’s papers [35], [36] and that ones of Masani [18],
[19] — see enclosed references. The general theory is illustrated in our
paper by discussing stationary functions of the form b,_,(f, g) withz,y € X,
where X is a real separable Hilbert space, what is essentially related to
Levy’s-Khintchine formula and helixes and some special unitary repre-
sentations of the additive group of X. We should however point out that
our general results do not require any kind of hermitian symmetry of
functions in consideration and may be applied for instance to functions
on semi-groups.

In all what follows & is a linear complex space and X stands for some
abstract fixed set. Recall that the complex valued function b, , (z,y € X)
is called conditionally positive definite if for every n =1,2,... and any

a:l,. »r,€X and ajl,...,aneC such that ) @; = 0, the inequality
in
2 bzy2,, 48 > 0 holds true.

Juk
It is proved in [27] that the following condition holds true:

(4.0) If b, (x,y € X) is a scalar function which is hermitian symmetric, i.e.
b,, = Ez, then the following conditions are equivalent:
(i) b,, 8 conditionally positive definite.
(ii) For every fized t > 0 the function s, = e™zv is positive definite.

Suppose once for all in what follows that b = {b,,(f, g)} is a family
of bilinear forms in f, g e &. The following definition is now in order.
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DerFmNITION 4.0. We say that b = {b,,(f, 9)} is weakly conditionally
positive definite if for every fixed f € & the scalar function (z, y) = b, ,(f, )
is conditionally positive definite.

DEFINITION 4.1.'We say that the function b = {b, ,(f, g)} is conditional-
ly positive definite if for every n=1,2,3,..., a,rbitrary Lyy ooy, €X

and f,, ..., f, € & such that Z‘ f; = 0, the inequality Z by, (Ji i) =
holds true. n

It is plain that if b is conditionally positive definite then b is weakly
conditionally positive definite.

ExampLE 4.0. Let & be a complex Hilbert space and let B(z,y)
(z, y € X) be a family of linear bounded operators in &. If for every v > 0
the function ¢ (f, g) = (¢"@Yf, g) is positive definite, then the function
b, (f, 9) = (B(z, 9)f, g) is conditionally positive definite. Indeed, if

jzu: fj =0, >0 and ¢(7) u j%{‘l (6zB(:cj.zk)fJ_,fk), then ¢(r)>0 = ¢(0)
which implies that "

Y . 9(7) —9(0)
D (Blay, @)y, £i) = lim Z2= >0
« 04 T
7.kl
We have next the following proposition.

PROPOSITION 4.0. Suppose we are given the function b = {b,,(f, 9)}.
Then the following conditions are equivalent:

(4.1) b is conditionally positive definite.
(4.2) For every x,e X the function

Y (F19) = boy(fy 9) =Yy (F5 9) —bayy (F1 9) by (5 9)

18 positive definite.

Proof. Suppose that (4.1) holds true. We take z,,...,2, € X and
fiy «+oy Jn € & and define f, = —Zn,’fj and fix an z, € X. Since (4.1) holds

il
true by assumption, we get that

Z b :t:k(fj9fk)

. 7, kj0
Now

Il

22 sz--’t‘k fJ’fk) 2 bzo,:ck fo;fk)'l' S‘Z bxj,a;k(Lka)

710 -kl 11 k0

o

n

=2%4—2mﬂ+§&mmm+%%M@m]

ko N
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= —bzo,zo( %Tfh

= Z b%'zo(f;’fk)— 22 bzo.a:k(fﬁfk)_

[

5kl ki1 gl

n

il x1 in kp

We just proved that (4.

true. Suppose x4, 2, ..
to show that jlo

3

’

¢ =
3kl

Our assumption implies that

'M:

[

cgf,a:k (f;y fk)

&

3kl

P

(sz,zk(fq’fk “'0 xk(fjifk)

=
—

7okl
Since

L

2 bzo,xo(f;'7fk) = bzo,zo( -

4.kl R
we conclude that

o= 3.

Ikl

On the other hand,

Z; Ty fﬂfk)

gL

=

Jn kKl

n

bxj,:!:o (f} ? fk)

I

-

M

— by gy (fi )+
2

(to mk(fj7fk)_

_ka)']_z ba:o.zk(—Zfi’fk)_l'Zb@j.zo(fﬁfo)'l'
kIl kN in m

+ 27 ) by (Fys Fi)
JIr k|1

be,mo(f,,kaZZ By T i) = 2«:@ i Fi2 ) =

1) implies (4 2). Suppose now that (4.2) holds
s Ty eXande, = 0, i.e. fo = —Zj; We have

sz.:tk(.i‘i’fk) > 0.

b:to,.'to (j:-n fk)) =0

n

fk) = bwo,?o(f05fo)7

k|1

sz.a:o (j;’ fk)] + bxo,zo (fcn fo) .

D b (0 F) = D) bayay(fos fi)s

= 2 sz.co(fj’ Jo)-



198 W. Mlak

It follows that

¢ = ) D by (i fi)+ ) boyn, (o i) +

TR kil

3 by (£ ) gy (For )
il

3

M:

by (s Si) By (Fos S|+ D by g (Fis o)

2|
in jlo
=2 [ ;‘ bay o Fis J] + ;l‘ bz zyfis Jo)
- %’[%’ sz.zk(fj,jk)] =¢ >0 Dbecause ¢c=>0. m

Suppose that the function b = {b,,(f, 9)} is conditionally positive
definite. We take , € X and conclude that the function ¢3¢, (f, g) is positive

definite. Let ¢, (f, 9) = (X, (@)f, qu(y g)ﬂqDo be the canonical repre-
sentatlon of ¢39,. Then K, is mlnlmal ie. K, = VY, (2)&. We say then
that ¢o,, Kzo’ Yxo( ) are associated Wlth Zg- v X

ProposiTION 4.1. Let b = {b,,(f,9)} be a conditionally positive
definile function. Suppose 3%, K., Y, are associated with x,. Then

K, = y\e/ x( Y., (@) —Y,, () & Moreover, if czfvy,, K, , X, are associated with

@y, then there exists the umique unitary map V, K s — Kz such that

Vzo.z{,(yzo (w) — yzo (i’/))f = (Y:c[', (z) — Ya:‘;(’!/))f
Jor all z,ye X and fe &.

Proof. Notice that ¢  (f,9) = (¥ (z)f, on(wo)g)Kzo = 0 which
shows that Y (x,) = 0. It follows that

Kzo < . II\E/X( Yzo(w) - Ya:o (y)) g.
Notice now that for z,y,z',y'e X and f,ge &
(4.3)  ((Yag(@) = Yo @), (Yo, (@) = Xy (4)) ), = 4

% (f, 9) —O:f’y'(f, 7 —Off,"z'(f, 9 +c$?y'(f7 q)
= by (fs 9) — by Sy 9) =Yy (fy 9) + 0, (F5 ).

Since the last term of the above equality does not depend on x,, we con-

clude that
4 = ((Y"’a( )— Ya: ?!))f: (Yzo — Yz (y '))g)xx
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which, since K@) = V (Y’o(”o)( ) = Y2 (¥)) €, proves the rest of our
assertion. m ’

Remark 4.0. It is plain that the unitary maps V,, (u,v e X)
of the above proposition satisfy the hemigroup equation, ie. V,,V,,
=V,, for u,v,z2e X.

Following the terminology of the theory of stochastic processes
we introduce the following definition:

DEFINITION 4.2. Let b = {b,,(f, 9)} be an arbitrary family of bilinear
forms in f, g € &. The function

d(z,‘ll);(a:',y’) (f’ g) = ba:,a:‘(f’ g) — bz,y’(f! g) - bu,:c’(f’ g) + by.y'(f’ g)

s called the structural function of b.

The structural function d of b is a function defined on (X x X) x (X x
X X), whose values are bilinear forms on &. If b is conditionally positive
dcfinite then, by using Proposition 4.1

(4'4) d(z,y);(z’,y’) (f’ g) = (Zzo(w, y)f’ Z:to (w'i y’)g)Kro
where  Z,,(u, 0)f = (T, () — ¥, (0)}f
which, since K, = V Z, (»,y) &, proves that d is positive definite and (4.4)

z,yed
is the canonical representation of d. Moreover, when varying z, over

X we get a family of such representations via the functions ¢z%, and the
operators Vg o establish the suitable unitary equivalence of representa-
tions.

PROPOSITION 4.2. Let b = {b, ,(f, 9)} be a family of bilinear forms of
fs g € 8. b1is conditionally positive defimite if and only if the structural function
d of b is positive definite.

Proof. All we need to prove is that if d >> 0, then b is conditionally
positive definite. If d >> 0 then for any =, z;,,y,e X (j=1,...,n)
and fy, ..., f, € & the inequality

E n
Z d(mj.u,-):(zk,vk)(f} y fi) = 0
3.kl
holds true. Let us take %, = ¥5,...,¥, = Y,. Since d(, o) (e 7o) fy 9
= og (1 ) and y, is arbitrary, Proposition 4.0 implies that b is condi-
tlonally positive definite. m

Suppose now that b = {b,,(f, 9)} is a function such that for some
&, € X the function

ar

Gi?y(f! g) = b:c,y(f) 9)— zoy(f7 - zmo(f7 +ba:0.a:0(f7 g)
is positive definite, and &% (f, 9) = (X°@)f, X°(%) g)K is its canonical
representation. Using formula (4 3) we find out that the structural function
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d of b is of the following form:

Ay fr ) = ((Yo(fv) - Y°(y))f, (Yo(w') -Y° (y'))g)x-
Consequently, d is then positive definite. Having in view Propositions 4.0
and 4.2 we arrive to the following theorem:

THEOREM 4.0. Let b = {b, ,(f, 9)} be a family of bilinear forms. Then
the following conditions are equivalent:
(1) b 18 conditionally positive definite.
(it) For every x, € X the function

c:?y(f’ g) = b:z,y(f’ q) _b::o,'y(f’ 9) _bx,:o(f7 g)+bx0,xo(f’ 9)
18 positive definite.

(iii) The structural function d of b is positive definite.

(iv) The function c¢°, defined as in (ii) is positive definite for some
Ty e X.

Theorem 4.0 as well all we said before and will say later on, points
out the crucial role of structural function in a rather general circumstances,
which seems to be overlooked in the general theory.

If Y(x): & - K are linear maps for # € X then the function

Qe (Fr9) = (T (@) =T @)f, (Y (@)=Y (¥))9)x

is the structural function of the function b,,(f,g) Z (Y (@)f, Y(¥) 9)x
and b_,(+, *) is positive definite and vice versa, if b_,(:, -) >> 0 has the
canonical representation b,,(f, g) = (Y(_w)f, _Y(y)g)K then d as defined
abovevia Y (-)is the structural function of b. Our goal however is that strue-
tural functions are positive definite for functions which are conditionally
positive definite, hence for a class of functions essentially larger than the
class of positive definite functions.

We are now in position to apply the general technique of using regula-
tors to structural functions.

DEFINITION 4.3. Let b = {b,,(f, 9)} be a conditionally positive
function and dg ) 4 (f, g) its structural function. The mapping u:
X — X is called a weak regulator for b if the mapping #: X X X - X x X
defined as u(z,y) = {u(z), u(y)} for z,y € X is a weak regulator for d.

Proposition 3.0 and Proposition 4.1 (with corresponding notation)
imply the following: '

PROPOSITION 4.3. Let u: X — X be a weak requlator of the conditionally
positive definite function b = {b,,(f, 9)} and let 75, K, , ].7",,,.D be associated
with z,. Then there is the unique linear map 7, (u) of the manifold M, < K,,
= V (Y, (@) —Y,,(¥) & spanned by vectors (X, (x)— Y, (y))f such that

z,yeX

2 (W)Yo (@) = X (0))f = (Yo (0 (@) = o (u(@))f for z,yeX, fees.
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The map on,,,a establishes the unitary equivalence of 7, (u) and ’-'33 (u)
Jor any x,, z; € X.

Remark 4.1. When keeping z, fixed we conclude that the map
% —> 7, (u), which generalizes the idea of cocycle of first order ([27], p. 11)
is a unital representation of the semigroup of weak regulators (the semi-
group operation being the composition of maps) into the algebra of linear
maps of M, into itself.

The final part of Proposition 3.0 implies the following theorem:

THEOREM 4.1. Let the structural function d of the conditionally positive
definite function b satisfy the following condition for the mapping u: X — X:

n n
(4.5) j ; Ve i )(utzguig) (Fir Je) < a(u)? 2 Ay uppitapand (Jis Jie)

Sl dokil
Jor any n, arbitrary z;,y;€e X (j =1,...,n) and f,, ..., f, € & with some
Jinite positive constant a(u) independent of n, x-es, y-es and f-es. Then u is
a weak regulator for b and, using notation of Proposition 4.3 for every x, € X
the mapping 7z, (u) extends in the unique way to the linear bounded operator
Tize (1) o0 K such that Iz, ()| < @(u). For any @, x, the operators g, (%)
and 7z, (u) are umitarily equivalent via the unitary isomorphism V”w”& .
The above theorem is a gencralization of a theorem of von Neumann—
Schonberg [25] — see also Masani [18], who considered the helixes, which
correspond within our general frames to the case when & = C', X is a group
equal to R™ and «(x) = u+2 as well in (4.5) we have the equality with
a(u) = 1 — the corresponding =z, (%) is then a unitary operator. Similar
situat_ion is studied generally in more detail in the next section. =, (u)

can be treated as a first order cocycle ([8], [27]).

5. Invariant structural functions. Let b = {b,,(f, g)} (arbitrary)
be given and let d be the structural function of . We say that for u:
X - X, d is u-invariant if

d(u(x),u(u));(u(x’).u(u’)) (f, 9 = d(z.y):(w'.u')(f )

for all z,y,2",y € X and f,geé.

The set G, of all one-to-one maps  of X onto for which d is u-invariant
is a group, the group operation being composition of the maps, = = in-
verse map of # and ¢ = the identity map of X is the unit of G;.

Using freely the notation of the previous section we formulate the
following theorem:

THEOREM 5.0. Let b = {b,,(f, 9)} be conditionally positive definile
and d the structural function of b. Let us take c;9, K, , Y, (-) associated to
®o. Then the mapping Gy: w —m, (u) is a unitary representation of Gys

”Io(')’ 7z, are unitary equivalent via Vg o .
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Proof. Since for 4 € G; we have in (4.5) the equality with a(u) = 1
and %(X) = X, then =, (%) is an isometry and since obviously Tz (u)Mzo
= M, , m, (%) is in fact unitary. The rest of the assertion follows from
(3.4) when applied to d in place of I, X being replaced by X xX. m

Remark 5.0. The above proof can be reduced simply to using
Proposition 3.1 to I = d with X replaced by X x X.

Remark 5.1. The above theorem can be treated as the generaliz-
ation of von Neumann-Schonberg theorem [25], the structural function
d being corresponding to the “generalized” helix (“screw line”) Y, () and
{m;, ()} the shift unitary group. In particular, if X is a group 1tself. with
multlphcatlvely written group operation, then X < G; by identifying
% € X with the map u () = ux, and {=, (u)} restricted to » € X is a unitary
representation of X.

Remark 5.2. The set of maps #: X — X is a unital semigroup with
semigroup operation being the composition. Let GF be the subsemigroup
of this semigroup of all v: X — X which leave d invariant. Then the map
% — 7, (u) is a semigroup isometric representation of G .

Following Parthasarathy—Schmidt [27] we introduce the following
definition:

DEFINITION 5.0. Let b = {b, ,(f, g)} be given and the map u: X — X.
We say that b is wu-affine invariant if there are bilinear in f, g forms
B.(z; f,9) (z e X) such that

bu(:),u(y)(f’ g) = ba:,v(f’ g)+ﬂu(m; f’ g)+48u(y; f7 g)

forallz,y e X andf, g € €. If B, = 0 we say that b is u-invariant.
Notice that if b is u-affine invariant then the structural funetion
d of b is u-invariant. Indeed,

d(u(x).ww))(u(z’).u(u')) f y9) = bu(::) u(z)(f ' g
—bu@)uw) (Fr 9) — bugy,uey (Fy 9) + bu(u),u(y') (f, 9
= by (f, 9) +18u(w) Frg+B.(a; f,9)— bey (fs g)—
—Bu(@; £, 9)—Bu(Y'5 £, 9) —by(f, 9) —Bu(Y; > 9) —Bule’; 5 9)+
+by,y’(f7 ND+B.y; [, +B.'5 f,9) = d(z,'y);(z'.y‘)(fy g)'

Using previous notation we arrive via Proposition 4.3 to the following
theorem which generalizes Theorem 3.4 [27]:

THEOREM 5.1. Letb = {b,, u( f y 9)} be an u-affine invariant conditionally
positive definite function and let ¢3! ,,, Kx , Y, be associated to z, € X. Then
the map 7y, (%) 18 an isometry. If u(X) = X them 7., (4) 18 unitary.

Remark 5.3. We know that nzo('u) Y, (@)f = (¥(u(2)) — T{u(za))f
for # € X, f € £. Hence =, (u) can be called an zsometmc (unitary resp. if
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u(X) = X) operator valued first order cocycle related to b. The choice of
@, is in fact inessential having in view the Proposition 4.1. Taking 8, = 0
we get Theorem 5.0 for suitable # as well the statement of Remark 5.2.
The special case of Theorem 5.0 should be now mentioned. It is in fact
a reformulation of a special case of Remark 5.1. Suppose namely that
X is a multiplicatively written group with unit ¢ and consider the functions
b.(f, g) indexed by z € X and such that b_(f, g) is a bilinear forminf, g e &.
We say that b (f, g) is conditionally positive definite on X if the function
5m( ) z b,-1.(f, g) is conditionally positive definite. Now, to every
%4 € X we have the mapping #: X — X defined on X, such that 4 (X) =
and since by-1,(f, §) = bpy)-1ug)(f, 9) forz,y e X and f, ge & the struc-
tural function d of b is u-invariant. Now, combining Theorem 5.0 with
Remark 5.1 we arrive to the following theorem:

THEOREM 5.2. Let X be a multiplicative group with unit ¢ and let the
Junction b = {b,(f, g)} be a conditionally positive definite function on X.
Suppose that b,(f, g) = 0 for f, g € & and let

c;*%(f; g) = by*lz(f: g)—b.(f, 9) _by—l(fy 9, K., Y.()

be associated to e. The map X: u — m, (u) 1s a unitary representation of X
into L(K,) and the formula =n,(u) Y, (z) = Y, (ux)— Y, (x) defines a unitary
valued operator first order cocycle.

Remark 5.4. Suppose the assumptions of Theorem 5.2 hold true
and additionally the structural function of b is of the form

(5'0) d(z,y);(u,v)(f’ g) = z(y_lw? 'v—lu; f’ g) .
Using notation of Theorem 5.2 we have that
o> 9) = (Yo (@) — X @))f, (Lo(w) — X, (0) 9)x, -

Notice that m,(u)(¥4(®) — X, ())h = (¥, (ua)— X (uy))h for u,s,yeX
and & e & By (5.0)
a = ||(¥, (o) — ¥, (up)f —(¥e(2) — T(@)f|lk,
= d(uz,uy);(u:c,uy)(f’ f) + d(z.y);(a:,y)(f’ f) _ZRed(uz,uy);(a:,y) (f’ f)
= 22(y '@,y x; f,f) —2Rez(y 'z, y" 'x; £, f).

But d is hermitian symmetric as a positive definite function, that is,

d(:c,y);(u,v)(f’ g) = d(u,v);(z,v)(.‘]’f) (Z,y,u,ve X§ f’ g € 8).
It follows from (5.0) that

2y, y s f,f) = 2(y7wy y T s £y )



204 W. Mlak

which proves that @ = 0. Since K, is spanned by (Y6 (@) — Ye(y)) &, we can
conclude that =, (u) = IK3(= the identity operator in K,), i.e. z,(-) is
trivial if d is of the form as in (5.0).

Suppose now that the function b satisfying Theorem 5.2 arises from
operator valued function, namely that & is a complex Hilbert space,

b.(f,9) = (B(@)f, g), where B(z) € L(&) for # in the group X. Then the
canonical factorization for related ¢, function yields that ¥, (#) are linear
bounded operators from & into K, and

Y. (9)" Y (x) = Bly™'a) —B(x) —B(y™").

To the structural function there corresponds the operator function

D(x,y; o', 9') = (Y (') — Y, (y") (Y (2) — T (%))

and for #,v e X we have

D(ux, uy; va', vy') = (Y (@) — Y (") 7, (v u) ¥, (2) — Y, (9))

which implies “orthodox” dilation type relations:

D(uz, u; v2'yv) = ¥, (') =, (v u) ¥, (a),
D(u, uy; v,09') = Y (y") m (v 0) T, (y),

simply because Y, (e) = 0.

Now we will consider the case where X is a topological group with
unit eand b, (f, g) is conditionally positive definite, i.e. Em( fr9) =b,-1.(f,9)
is conditionally positive definite. It is usefull to define for a group X
the class CP,(X) as the class of scalar valued functions b, (z € X) such that
the following conditions hold true:

(1) (@, y) = b,~1, is conditionally positive definite;

(i1) b, = b,—1 (hermitian symmetry);

(iii) b, = 0 (normalization property).

If b, € CP,(X) is continuous on X, then we say that b, € CP(X)

We will prove a slight extension of a lemma given in [17].

LeEMMA 5.0. Let X be a multiplicative group with unit ¢ and b, (x € X)
a function of class CPy(X). Then

lb,~1,— b, —b,-1]* < 4Reb,-Reb,

for z,y e X.
Proof. The function
(,9) — by—lz_bz—"by‘l

is positive definite because b, is of class CP,(X). Indeed, by (i) and (iii)
this follows from Proposition 4.0 by taking z, = e.
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It follows then that
2

Z (bzl;lzj - sz - bz,':l) ajﬁk =0
7.kl

for x,, , € X and a,, a, € C. We take z, = o, 2, = y and a; = s, real and
a, = 8,6 with real s, and 0 < 6 < 2=. It follows now that

(b —b)si+(—by —Ey)8§62i6+2Re [(b;-1, —D, ~b,)8,8,677]1 > 0,
that is,
2Re[(b,-1,—b, —b,)8,5,6 ] —2Reb, s} —2Reb, s} > 0.
For suitable 6

b,-1,—b, —b,—1 = |b,-1,—b,—b,1]6”

which by the previous inequality implies
u (81, 83) = |b,—1, —b, —b,—1|’s;8, —2Reb,s] —2Reb,s; > 0.

Since s, and s, are arbitrary reals the determinant related to the quadratic
form %(s,, s;) is non-negative which proves the claim.

The following lemma is now in order:

LEMMA 5.1. Suppose that X is a topological group with unit ¢ and b,
s of class CPy(X). Then, if b, is continuous at & = e, then b, is continuous
all over the group X, i.e. b, 18 of class CP(X).

Proof. b, —b,| < b, |+2VReb, -Reb, -0 if v, ~e. m

The above two lemmas enable us to complete the Theorem 5.2 (with
enclosed overthere notation) as follows:

THEOREM 5.3. Let X be a topological group with unit e and let b = {b,(f, g)}
satisfy the assumptions of Theorem 5.2. Suppose that b,(f,f) =0 and
af,f) = b,—1(f, f) for x € X, f € & Suppose that the function x — b (f, f)
is continuous at ¥ = e for every fe & Then the function & — Y (z)f is
continuous on X for every f e & and =, () is strongly continuous unitary
representation of X. ' _

Proof. Our assumptions imply that for every f the function
x—>b,(f,f) is of class CPy(X). Lemma 5.1 yields that this function is
continuous at every point of X. Hence for z, e X, zr € X

X, (wo)f — X (2)fllyc, = —2Rect-1, (f,f) 0.

if ¢ — x,; ¢, K,, ¥, are associated at ¢ to b. Next, (w,(u) ¥, (), Y,(¥)9)x,
= ((Ye(uw) — Y, (u))f, Ye(y)g)xe. Kecping z fixed we conclude' by conti-
nuity of ¥,(z)f that the map « — (,(%)ky, hy) is continuous in % for hy, hy
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which vary over a set which spans K, . Since ||z, (%) < 1 and #z(-) is a unitary
representation, we conclude therefore that =,(-) is weakly, and conse-
quently, a strongly continuous unitary representation of X.

6. Functions on the additive group of a Hilbert space. In this section
we present a concrete model for applications of general theory developed
in the previous sections. We deal with functions b_(f, g) where 2 € X and
X is a real separable Hilbert space. This leads us to dilation type Levy’s
Khintchine formula for suitable conditionally positive definite functions.

To begin with let us assume that X is a real separable Hilbert space
with inner product {z, ¥) and norm |z|, for , y € X.

The bounded linear operator B in X is called an S-operator if B = B,
i.e. B is symmetric and non-negative —B > 0, i.e. (Bx,z)> >0 for 2 ¢ X
and has a finite trace, i.e. the series > (Be,, ¢,> is convergent for some

n

orthonormal basis {¢,} of X, and consequently converges to the same
sum for every orthonormal basis — we refer here to [16], [26].

Let Sx be the totality of all S-operators in X. The totality of sets
of the form Qg = {r e X; {Bw,z) <1} where B € Sy defines a system
of neighbourhoods of zero. Translations of sets @z by elements of X define
a topology on X called the S-topology and X with this topology becomes
a linear topological space — see [26]; in particular:

(6.0) X with S-topology is an additive topological group.

Tt is plain that if a complex function z(z) on X is continuous in the S-top-
ology at the poit 2, then z(z) is continuous at z, in norm topology of X, i.e.
if |z, —z| — 0, then z(x,) — 2(x,). If dimX = oo then the norm |:| is not
S-continuous. If dimX < 4 oo, then S-topology is equivalent with the
norm topology.

Since now X is considered as an additive topological group with
S-topology. The function b = {b,(f, 9)} (# € X; f, g € &) is called of class
CP(X; &), if for every f € & the scalar function b, (f, f) is of class CP(X),
i.e. bo(f,f) = 0, (w,y) = b,_,(f,f) is conditionally positive definite, i.e.
b is weakly conditionally positive definite, b,(f,f) = b_,{f,f) for x e X
and b,(f, f) is S-continuous at # = 0, and consequently, by Lemma 5.1, is
continuous all over the space X. Our purpose is to give the description of
functions of class CP(X; &). It reduces to classical formulae if & = C,
however there appear some new effects in case where dim & > 1.

If b, is of class CP(X), where X is treated as an additive group with
S-topology, then by (4.0) for every v > 0:

(i) The function @,(x) = €2 is positive definite on X (i.e. (z,¥)
— @, (¢ —y) is positive definite),

(ii) @.(0) =1,
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(iil) ¢.(-) 28 continuous in the S-lopology of X,
and consequently,

(iv) @.(-) is continuous in norm topology of X.

It follows then by (i)-(iii) from the Minlos—Sazonov theorem — see
[16], [6], [26] — that ¢,(-) is a Fourier transform of the unique probability
measure u_ on the o-field B(X) of Borel subsets of X, that is

etz = @ (x) = fe"@'wd‘u,(y) for xe X,
X

When taking t = 1/n, n = 1,2, ... we conclude that u, is a probability
measure of an infinitely divisible random variable. It follows then from
the Varadhan extension of Levy’s—Khintchine formula to Hilbert spaces.
(see [6], [16], [26] and [34]) that

i<a,z)—{Bz, k(z,v)d g
(6.1) oz — < z>—< :rx>+2£ (z.v) n(u)’ ze X, ‘

where a € X, B is an S-operator, g is a finite positive measure on B(X),
vanishing on the singleton {0} and

; '<fc,y>)1+|yl2
h(z,y) = [6er —1 -2
(@ 9) ( 1+l P
for y # 0. Notice now that
P —1—iz, y)

hiz,y) = (¥ —1)+
(@, y) = ( ) e

for y = 0, which by the general inequality
(6.2) 6" —1 —is| < 82/2 (s real)

proves that for every fixed z the function k(x, ¥) is bounded as the function
of y 5 0. Indeed, (6.2) implies that

(6.3) Rz, )| <2+ x)2/2 for zeX, y #0.

Hence, if z, -« in norm, then obviously k(z,,y) — k,(x, y) for y # 0
and by
Sup (%, )| < +o0;

y#0,n
which by dominated convergence, since u,({0}) = 0, proves that
Jh(@,,y)dpu(y) — [h(x, y)du(y). Since y € X and B is continuous, we con-
x x

clude that the exponent on the right-hand side of (6.1) is continuous in norm.
Since b, does the same and both are zero at # = 0 and X is a connected
space, we conclude that

(6.4). b, =ila,s)—(Bx,a)+ [ h(z,y)du(y) for veX;
X
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where a € X, B is an S-operator and yx a positive finite measure on B(X)
vanishing at the point ¥y = 0. All we said means that every function of
class CP(X) is of form (6.4). This is in fact equivalent to Varadhan exten-
sion of classical Levy—Khintchine result. Since this result was already
proved, we found it convenient although a little bit artificial, to use it
for getting (6.4) just for the sake of brevity. The uniqueness properties of
parameters a, B, u appearing in (6.4) are included in the lemma below,
which is erucial for eur purposes. The idea of the proof of this lemma is
essentially due to Gichman—Skorohod [6]; see also [16].

LEMMA 6.0. Let X be a real separable Hilbert space. Suppose that
we are given the functions Uqy Uyt X — C such that

(6.8)  wlt(w+y) = tu(w)+tu;(y) for teR, z,yeX,i=1,2,
and functions vy, v,: X X X — C such that
(6.6) wv;(x,y) is real linear in x and y, i.e.
”i(t(m'[“z); ?/) = W,(z, y)+w;(2,9),
”i(m’ t(y‘l‘z)) = ;(z, y) +W;(z, 2)
Jor z,yeX,teR and t =1, 2.

Let u,, py be two complex measures on B(X) such that

(6.7) 1 ({0}) = 0 = u,({0}).
Then, if
Koy 1 _ i<may>) 1+ 1y|?
(68)  (2)+0(w, 2)+ xf (e ) S da)
= A o> 1 i<way>) 1+|y]2 d
“2($)+”2(5’71‘”)+xf (3 1 1+ e #a(Yy)

for all x € X, then u,(2) = uy(x), v,(®, 2) = v,(x,x) for all ze€ X and u,
= ‘[2
Proof. Let us write for e X, y eX

>\ 1+ [y[?
hix — 6{(;,,”)_1_7:(50,?/)) _
@9 ( T+ el we
h(x,0) =0 for all z.

Since yl, s vanish on the smgleton {O}, we rret from (6 5)—(6 8) that for
every real ¢ and z€ X

tuy (@) + 20, (2, @)+ fh(tw,y)dm )

if y#£0,

= tiy(@) +1*0,(2, @)+ [ B0, y)dus(y)
X
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and consequently for i >0, re X

U, () h(lx,y)
©9) 22 tn@a+ [ZE dnw)
b.4
Us (2 h(tz, y)
=20 e, m+ [ du).
X
Inequality (6.2) yields that forx e X, ¥y # 0
lh(tz, y)I _ 2 ¢!V —1 —it{z, y) 2 | lef
- < — < — —_—
t2 t2 t2 l?/12 t2 + 2
Since
G 1 i, )
FWE T gl el wel, v #0),

we conclude therefore by dominated convergence theorem that, since
41, p, vanish on {0},

. h (i . h(tw
lim f : tz’ y) du(y) = 0 = lim f ( t; s Ual¥)

{00

which by (6.9) shows that »,(z, 2) = v,(x, z) for z € X.

Let 2,(x) be the left-hand side of (6.8) and z,(«) the right-hand one.
Suppose {¢,} is an orthonormal basis of X. We have for real ¢ that for
zeX, p=1,2

2y (@ +1e,) = u, (@) 4w, (6) + v, (2, @) +1v, (6, ) +10,(2, &) +

<@V giler > __ 1 _ (=, y? AT ?!>) 1+ ly? duy (9)
1+ 1+ ] WP

~]—t2'0p(ek, ) + f(
X

and
%y (2 —1ey)
= Uy, (¥) —tup (6;) + 0, (2, 2) —t0, (0, €,) — 10, (e, %) +t2’0p(9k7 €) +
. . 2
-+ f(6i<w.v>6~it<ek,u> —1— 1{x, Y it ey, ZI>) 14|yl du, () -
b's

14y 14wk ]
We derive from the above equalities that for » € X, real 1 and any e,

32, (w+16) +2,(z —t6,)] = () + 0, (@, @)+ v, (6, €) +

o L ida, ) 14lyP
""xf(e "reosicy, e —1 1+|y12) lye®

dp, (y) -

14 — Annales Polonici Mathematicl XILII
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Consequently

2, (0) — ¥z, (z+te,) + 2, (x —16y))
2
- f ¢V (1 —cost{y, ) 1+ 1y
x

_WT dtu:p(y) '_tg vp(6k7 eIc) .

Since z,(z) = z,(z) for all z e X and v, (e, ¢;) = v,(e, €,), we conclude
that for x €e X, t € R and cvery e,

) 14|y
610) [P (1 —cost(y, o) — - dis(w)
5 Y
,- 14yl
= [ dena—costcy, o) T dy ().
. 9]

We take now ¢, > 0 such that D¢, << 4+ oo and just conclude that the
’ k

series >'¢,(1 —cosi<y, ¢;>) converges uniformly in ¢ and y. It follows then
k
from (6.10) that

. 14 |y
eiTv? ¢, (1 —cost e d
xf k§ 1 —eost<y, 6)) =7 dpa(y)

) ; 14+ |y|?
= f PASE Z ¢, (1 —costdy, ¢)) —-ﬂ- d,uz(y),

2
X k g

which, by integrating with respect to ¢ over the mterval [—a,a] (a>0)
gives by Fubini theorem that for x e X

(6.11) [ &=V s(y)ap(y) = [ &P s(y)dualy),
X X
where
) sina{y, ¢, sin0 s
s(y) = ¢ ( ) we put = 1 by definition
D alt- g ) (vep y )

%
— f“[z ¢.(1 —costy, ek>)]dt-

If y # 0, then for some ¢, (¥, ¢,> % 0. Since 1 —(sin%)/u > 0 for all
% 7 0, we conclude that s(y) > 0 if y 5 0. Since the Fourier transform
over X determines the measure in the unique way (see [16], 7.6.3) and
i1, 4, Vanish on the singleton {0}, the measures s(y)du,, $(y)du, are equal
by (6.11), which, since y # 0 implies s(y) > 0, proves that u; = u,.
We proved already that v, = v,. It follows now that 4, = u, which com-
pletes the proof of the lemma. m
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4

For the sake of brevity the function v(#, y) = > a,{B,=, y)>, where
in

a; € C and B, are S-operators will be called a nuclear bilinear form. It is
plam that » is symmetric, i.e. o(z, ¥) = v(y, 2).

For the complex linear space & and the Hilbert real space X the
scalar function u(z; f, g) bilinear in f, g, and real linear in X will be
called an elementary form.

We are ready to prove our basic theorem, namely

THEOREM 6.0. Let X be a real separable Hilbert space and b, = {b_(f, 9)}
(f, g € &) the function of class CP(X; &). Then there are the unique nuclear
Jorms vy, the unique elementary forms u,, and the unique family pu,,
(f, g € &) of measures on B(X), all vanishing on {0}, such that for x ¢ X

(6.12)  b.(f, 9) = v, (@) + vy, (2, 2)+

) 1+ yP
+ 0{(1'»”) _1 . 1 <$’ y> )
Xf ( 1+l Iy

dl-‘f.a (%),

and ug,(x), v;,(2, x) are bilinear in f, ge &, u;,(0) is bilinear in f,ge &
for every o € B(X) and pp; (0) = 0 for f € &, o0 € B(X).

Proof. The uniqueness statements follow from Lemma 6.0 and the
fact that b,(f, g) is bilinear in f, g € &. The proof of existence part of asser-
tion runs as follows: the already proved uniqueness implies that a, B and
4 in (6.4) are unique for b, of class CP(X). Hence for every f e & we have
the unique representation

b(f,f) = ilalf), s> —<B(f)z, 2>+ [ hiz, y)du(y),
X

where a(f) e X, B(f) is an S-operator, h(xz, y) is defined as in the proof
of Lemma 6.0 and g, is a finite positive measure vanishing on {0}.
We define for 2,y e X, f,ge &

Uy (®) = [a(f+g), 2> —<{a(f—9), 2) +ila(f+1ig), x> —
—ila(f—1if), £],
Vo(#,Y) = —2[(B(f+9)z, > —(B(f—9)@, y)+i{B(f+ig)z, y>—
—i(B(f—ig)®, ¥)]
o = $Brg — gty ig — s _45]-

The polarization formula for b,(f, g) yields that (6.12) holds true. Using
now Lemma 6.0 and having in view that b_(f, g) is bilinear in f, g, we see
that u,,, v, y,, are bilinear in f, g, and u, = u,, — hence u;(0) >0
for ¢ € B(X). It is plain that u;, are elementary forms and v;, nuclear
ones, which completes the proof. m
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COROLLARY 6.0. The forms v,,(x,y) are symmelric, t.e. v ,(@,y)
= v;,(y, ) and consequently are determined in the umique way by related
quadratic forms v, (®) = v ,(@,x). Moreover, u;,(x), v, ,(x,y) are norm
continuous in x and ¥y.

Following the classical terminology we write v, (z,y) = —3G(f, g;
x, y) and call G the Gaussian part of b. We write

P(f,g; @) = [ hiz, y)dp,(y)
X

and call P(—) the Poisson part of b. The elementary part u;,(x) is condi-
n

tionally positive definite on the group X. Indeed, if /) f; = 0 (f; € &),

then for z,,...,7,€e X ii
n n n
2
Z Up g, (B — @) = 2, U3 1 g, () — Z, w3 g5 (@) =0.
ik < didpe [
5kl k(1 il il kil

Notice now that in our theorem we assumed merely that b is of class
CP(X; &) which among others means that the function b = {b (f, g)}
is weakly conditionally positive definite, i.e. for every fe & the scalar
function («,y) —b,_,(f,f) is conditionally positive definite. Our next
basic result says that for Poisson type functions this weak conditional
positive definiteness implies the conditional positive definiteness.

THEOREM 6.1. The Poisson part of the function b = {b.(f, 9)} of class
CP(X; &) is conditionally positive definite.

Proof. We will apply some essentially dilation type arguments.
Recall first that the measures u,, of Theorem 6.0 are bilinear in f,g and
Us1(0) = 0 for o € B(X). It follows then from Proposition 2.1 that there
are a complex Hilbert space K, a linear map R: & — K and the spectral
measure E(s) in K (o€ B(X)) such that u,(c) = (E(s)Rf, Rg)g- It
follows that

P(f,g; v) = [ h(z,y)d(E,Rf, Rg)g.
X

Notice that if K is minimal, and in all what follows we assume that this
is the case, then E({0}) = 0, because u,, vanish on {0}.

This is an elementary exercise to check that for every fixed y e X
the funection

(@, 2) > h(z—2z,9)

is conditionally positive definite and hermitian symmetric, i.e. & (z —2, ¥)
= h(z—x,y). It follows that the function

(6.13) C(, 2) > M)
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is positive definite for every » > 0, y being fixed. Having in view Example
4.0, it is enough for our purpose to prove that the operator function

O (@—y) = [ wIdE,
X
(spectral integral) is positive definite, i.e. for %', k" e K (95:(')7":7‘")1:

>> 0 for every z > 0. Indeed, suppose just that %,, ..., s, € K and x,, ...
eery &, € X. Then

n n [ th(zj—2p.¥)
Z (df’:(wj—wk)hj, hk)K = 2 (e d(Eyhj; hi)g s
E JrkIL
éth(z—y,z)
because D, (x—y) = ¢ dE, by von Neumann—Stone operational

calculus.

Since we have only a finite number of z-es, for every ¢ > 0 there is
a partition {o,,} of X, 0, € B(X) such that for thefixedz>0and j,k =1,...
)

H f eth(zj—zk.y)dEy — 2 erh(Ij‘zk’llm)_E(O'm)HK <e
x m

where v, € 0, and ||| stands for the operator norm in K. It follows that
it suffices to show that

a = 2 Z eVl B (6,,) ;5 hy)g > 0.

Jik m
Sinece

@ = 2 6m where 6m = 2 eth(zj_xk’ym)(E(cm)hj’ E(Unt)hk)K’
m Ikil

all we need to prove is that d,, > 0 for all m. Now, since the matrix
{eMm=op¥m)), . . is positive definite (because the function of (6.13)
is positive definite for every y) and the matrix {(E(c,)h;, E(c,)h,))
is also positive definite, the Schur’s lemma yields that 4,, > 0. m

The Gaussian part of a funection of class CP(X; &) need not be definite
if dimX > 2. The example below is just the suitable reinterpretation
of an example due to Choi — see [21], Example 6.0. Let & be the algebra
of all complex 2 x 2 matrices with usual algebraic operations. We take
X = R’. f* stands for the hermitian adjoint of fe & and ¢ = {8}, 4m1s-
For g € & we define s(g) = trace of g and define

o(f) = s(fle—f.

For x e R? and f,g € & we write

b(f, 9) 2 —(p(g"f), )  ((-, ") —the inner product in C?).
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o(f*f) = s(f*f)e—f*f is a positive definite symmetric matrix.
n
Assuming 3} a; = 0 (a; € C) and fixing f € &, we have
it

a = 2’ g (fy ) i@ = — Z(qa P9 @ —2), (5, — ) a;a

kil 7.kl

[0 Ny, ) afa— 3" S [lp(F e )l ey +

ngn ik

(‘P ff)mj: mk)ajak"‘ Z(‘P(f*f)mm “"j)ajdk

5.kl

||
[\’_]a

&

-

&
HMa

jl I

n n
which since )Y a; = 3 a, = 0 implies that
in kL

= ('P(f'f)Z a4, 2 akwk)+(<p(f"'f) de%, Zdia’f) >0
in kil T i

Obviously, b,(f,f) =0 and b.(f,f) = _(‘P(f*f)wfw) = —(‘P(f*f)my w)
= b_,(f,f) = —(B(f)z, x>g2, because the matrix ¢(f*f) is hermitian
symmetric. Plainly, b.(f, f) is continuous in #. Hence b,(f, g) is of class
CP(R?; &) and reduces to its Gaussian part.

Our claim is that b is not conditionally positive definite. Suppose in
contrary that b.(f,g) is conditionally positive definite. This implies,
by Proposition 4.0 by taking z, = 0, that the function

cz,y(.f’ g) = bx—u(f’ g) '_bz(f7 g) _by(f1 g) (b—y(f7 g) = bu(f! g))

is positive definite. Hence if f,,...,f, € & and z,,..., 2, € R* we must
have

= D (Boymp (Fys Ji) =y (Fys i) = by (£ £) = 0,

F.kll
i.e.
4
= 2[(¢(fﬂ) wj)'}‘(?’(f;fj)mk’ -’l’k) —(¢(ﬁﬁ)(wj—mk), (mj—wk))]
Ak
= 2 lloif)e, @) +o(fif)an o)l > 0
We take

a=loo) n=(oo} £=(3) #-()
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and », = (1, 0), z, = (0, 1), 3 = (0, 1), , = (1, 0). It is easy to check
that s(fif;) = 6, and

4 4 4
SleUia a) = X s(fifa, o) —|| X fal =48 = —4,
J.k|1 7.kl i1 '

4
because D' f;#z; = (2,2). On the other hand, by direct computation
4 [l
> (fu®;, f;#) = 4 which implies that

ikl

4 4
2(‘}’(fzfj)wk1$j) = 2 01 (Ty ;) —4 = 0.
fkn 3kl
Consequently, summing up we get that in this case b = —4. This is the
desired contradiction with the assumption that b,(f, g) is conditionally
positive definite and just completes the proof of our claim.

The following theorem appears now as natural:

THEOREM 6.2. The function b of class CP(X; &) 48 conditionally
positive definite if and only if the Gaussian part of b is conditionally positive
definite.

Proof. If the Gaussian part of b is conditionally positive definite,
then, since the elementary part of b as well the Poisson part of b (by The-
orem 6.1) share this property and then consequently b is conditionally
positive definite.

Suppose that b is conditionally positive definite and let

by(f, 9) = wl(f, 9), @) —3G(f, 9; =, 2) +P(f, g; )

be its canonical Levy’s—Khintchine representation of Theorem 6.0. For
real ¢ > 0 we have

b (f, 9) = itu(f, g; 2) -38G(f, g5 =, ) +P(f, g; tx)
which implies that

bi(fy 9)  wulf,g;2)
£ t

P(f,g; t2)

— 3G(f,9; =, o)+ 2

Since the first and the last part of the above equality tend to zero if { - oo
(see the proof of Lemma 6.0), —31G(f, g; », ) as a limit of conditionally
positive definite functions b%.(f, g9) = b,.(f, g)/t* for t — oo is conditionally
positive definite. m

The above theorem is interesting only if dim X > 2, because of the
following:

THEOREM 6.3. Ewery function of class CP(R'; &) (& arbitrary) is condi-
tionally positive definite.
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Proof. Having in view Theorem 6.2, it is sufficient to prove that
Gaussian function b,(f,g), = € R', i8 conditionally positive definite.
Suppose just that b is Gaussian. Then b,(f, 9) = —3}G(f, 9; @, x), where

”
G(f, g; =, y) is bilinear in f, g and real bilinear in z, y. Assume that ) 1
= 0. Then i

n

2 b, o (finfi) = — D @ fis 1, 1) (2 — )

Jkl1 7.k
n n
= G(Z‘”jf}aZ“"kfk? 1, 1) =0,
n k(1

because —b (k,h) = G(h,h; ©,x) = (B(h)x, z)pr = B(h)|z|* for h e &;
in this case where B(h) > 0 (see the proof of Theorem 6.0).

The canonical decomposition (6.12) of function &,(f, g) of the above
theorem can we rewritten in the form

+00
; ; iy \1+y?
©14) b,(f,9) = iu(f, 9at £ (e’“’—l— T +y2) v o)
where the value of the function
, vy \ 1+9°
h — izy _ 1 _
(z, ¥) (6 1 1+yz) " (y #0)
at ¥y = 0 is understood as
ar .. z?
h(z, 0) = hn;h(a” Y) = — "2_' and ,“f,a({o}) = G(f, 9.
y—

y#0

So, k(z,y) defined for x,y # 0 extends to a function continuous for
all #,y e R'; u(-, ) and u;, are unique in formula (6.14) — pu;, is not
necessarily vanishing at {0} and we get a compact formula, in which the
Gaussian part can be incorporated into the Poisson one. This together
with the proof of Theorem 6.1 explains in some way why Theorem 6.3
is true.

Remark 6.0. Example 6.0 shows that in general, except for instance
if X = R! the “weak” form (class CP(X; &)) of conditional positive
definiteness need not imply the strong form, namely the conditional posi-
tive definiteness, although the group parameter z varies over the com-
mutative group X. This fact is in a strong contrast to the property that
“weak” positive definiteness on commutative group X implies the positive
definiteness. More precisely, if for every f € & the scalar function X x X:(z, y)
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= 1._,(f,f) (I.(f, g) bilinear in f, g) is positive definite, then the function
U = {l,_,(f, 9)} is positive definite. For discussion of this matter in terms
of operators, which makes no essential restriction see [22].

There is a simple way of producing of Gaussian “type” conditionally
positive definite functions, originating from construction of tensor produets
of Hilbert spaces. Suppose namely that (-, -) is a semi-inner product on
the complex linear space & and [+, -] a semi-inner product on the real
space X. This is the trivial consequence of Schur’s lemma then in this
case the funection

(6.13) (®,y) > —G(f,9; v—y,2—y) = —(f,9[v—y,2x—y]

is conditionally positive definite. If X is a real separable Hilbert space
and [z,y] = (Bx,y)> where B is an S-operator, then our function is
S-continuous and consequently is a conditionally positive definite funetion
of class CP(X; ¢&).

7. Structural functions of CP(X; ¢#) functions. This section deals
with some analytic formulae for structural functions; X as beforeis a sep-
arable real Hilbert space and & a linear complex space. Later on we study
the spectral picture of related unitary representations of X along the gen-
eral theory of Section 5. The basic result is the Yaglom formula [35] — see
formula (7.7) below. Our rather general arguments and statements are
direct and we do not appeal to [35], where the generalized Ito-Gelfand
processes are considered, which gives the rise to “shifting” of references.

We work with the Fourier transform

1

(Fo)(#) = (@) = e

[ =P oway

Rn

for ¢ in the Schwartz space S(R") of rapidly vanishing at infinity C*
functions on R". We refer in the matter to Simon—Reed [29] and Rudin
[30]. The basic property we need is that #S(R") = S(R"). Our uniqueness
and existence statements concern among others the involved essentially
complex measures, which for spectral theory for X = R' are needless.
Complex measures is understood here as in Rudin [31] and we follow this
reference in all what follows.
To begin with we will prove the following:

LeMMA 7.0. Let 2,(z,y) (p =1,2) z,y € X be complex valued, real
bilinear forms and u, (p = 1, 2) complex measures, vanishing on {0}. Then, if
1+ sl

ls|*

f(@—y, 0 )t [ (00 =0 (o i) ap (s)
X
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1+ [sI?
|s|?

= a@—y, 0’ —y)+ [ (50 GO0 (g i) daa(s)
X
Joral z,y,2",y' € X, then 2,(z,y) = 2,(x, y) for z,y € X.
Proof. Notice first that since |¢™—1|< |u| for every real %, then
if 0 < |s| < 1 then for real ¢ gives us that, since [(u, v>| < |u||v],

1+ Isf? 1+ s
l8l* ls)*

Iei(lz,a) -1 le-f(tz'ps) —1] < 2 @] lm'l ls|2 < 2t [z] 2’| .

If |s| > 1, then

. 1+ |s|? — —tz’ 1 ? ~
I61(tz.s>_1|‘/__l:||2_l_ < 2;/2 , le {z’,8) —1j l/ =+ |8 < 2'/2 .

|s[?

Consequently, for s # 0
1+ [s®

rita, ', 5) = (642 —1) (6= ~1)| — g

< 28 o] |#"| + 8

which, since u,({0}) = 0 = u,({0}), proves that integrals appearing
above make sense. The last inequality yields for ¢ >1¢, > 0

r(tx, to', 8 8
{7.0) ._(_’2_’_) < 2wl |2+ —
t 2
for s # 0. On the other hand, for fixed 8 # 0 and fixed z, " and t > ¢, > 0
1 41 2
{(71) 7 r(lz, tz', 8) QF—% for s # 0.

Since py = u, —u, vanishes on the singleton {0} and

1)(6¢=) 14 |sP
tz |sl2

iz, 8> __
2z, 2') —2y(w, 2") = f @ dp(3),
X

{7.0) and (7.1) imply by dominated convergence that the right-hand of the
last equality tends to zero if ¢ — - oo, which proves the claim.

The following lemma is now in order:

LEMMA 7.1. Suppose that X = R" and let u be a complex measure
on B(R"), i.6. du = hd|u| where h is a Borel measurable function and |h(x)|

= 1 for all x € X and |u), the total variation of u i8 a finite positive measure.
We assume that x({0}) = 0, i.e. |u|({0}) = 0. Then, if

1+1s?
s]?

(7.2) f (6588 —1) (K™ 1) du(s) = 0
Rn

for u,veR" then u = 0.
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Proof. Using the inequality [¢" —1|< |r| for real » we get that,
since |(u, $)| < |u]|s],

_ 1+ |s|?
|8z(u,a>_lll/ _ll;llzl < 2|u| if 0< 811

and

. 1+ |s? —
le‘<"'”—1|l/ T;I'f' <2V2 i |s|>1.

It follows that

(73) 1(01'(14.3) —1) l/ 1+ ]3|2
|

|8?

<2(lu|+V2) for s #0,

and consequently for ¢ € S(R"), for fixed v € R*

[ [ e —gyees 1y 22

R R

dlpldu < + o0

simply because fltp(u)(lul—}— ]/§_)ldu< + oo, It now follows from (7.2)
RN

and Fubini’s theorem that for » e R®

- ' 2
0 = f f plu) (oo —1)(on _1) THEC g 00,
.

ls}® |
= f - f?’(u)(ei<u,s>._1)du.(gi<u..>_1)1.l|.8_l|:|27dﬂ’
n “gn -
- f(&’(s) —t}(O))(ei(v,s)_l) 1-;][28'2 d‘ua.
R™

We take a ¢ such that ¢(z) & y(z) where y is C* and with compact support.
Such yp exists, because FS(R") = S(R"). We can choose such y which
vanishes around zero and conclude then by the last equality that for » ¢ R®

1458 1+ s
i(v,8> —~ ' —
f p(8)6"? o hd R{ $(6) — o bl

The left-hand side is the value of the Fourier transform of the measure

14 s?
dv = 'I’('S')le—'
equal to the value of F» at v = 0. It follows that » is concetrated on the

h(s)d|u,l at the point v and the right-hand side si
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singleton {0} — but evidently »({0}) = 0. This means that » = 0. Let
o be an open ball, 0 € @ and y such that it is equal to 1 on ¢ and vanishes
in a neighbourhood of zero; such a function can be obtained — see Rudin
[30], 1.46.

: 1-+sf oo :

Since |k(s)] = 1, Th(s) # 0 for s € 0, which implies, since
v(o) = 0, that [u|(c) = 0. The ball o was arbitrary, @ 3 0 and |u] is a regular
measure. Since |u|({0}) = 0, we conclude that y = 0. m

In order to get an infinite-dimensional analogon of Lemma 7.1 we
recall some known properties of cylindrical measures — in all what fcllows
we apply notation of [16].

If X is a real separable Hilbert space and Z a finite-dimensional sub-
space of X then P, stands for the orthogonal projection operator of X
onto Z. The cylinder set with base ¢ € B(Z) is the subset of X of the form
{z € X; P,z e ¢}. Let BZ be the set of all cylinder sets with bases in B(Z)
and define B® = | J B?, where Z runs over the totality of all finite-dimen-

ZzZ
sional subspaces of X. Then — see [16], Proposition 7.6.1:

(7.4) The smallest o-field, i.e. that one generated by B°, is equal to B(X).
It follows from (7.4) that

(7.5) If p,, po are two complex measures on B(X) and p,(a) = u,(a) for
a € B’ then p, = ps,.

For finite-dimensional subspace Z < X and measure g on B(X) we
define the projection u; of u on Z by the formula p;(c) = u(Pz'(0)) for
o e B(Z).

LeMMA 7.2. Let X be a real separable Hilbert space and u a complex
measure on B(X). If u({0}) = 0 and

1 2

|8|2 8

(7.6) f (6w 1) (e —1)
b4
for u,ve X then u = 0.

Proof. For u#,v € Z = a finite-dimensional subspace of X, we get
from (7.6) by transformation law (see Halmos [9], § 39, Th. 3) that

14 1s?
|s|?

[ oo~y —1) dpz(s) = 0
zZ

which by Lemma 7.1 implies that u, = 0. It follows that u(c) = 0 for
o € B® which by (7.5) proves claim. m
Our basic theorem now is the following one:
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THEOREM 7.0. Let X be a real separable Hilbert space, & a complex

linear space and b,(f, g) a function of class CP (X ; &) with Levy’s—Khintchine
representation (6.12)

b.(f,9) = wwy o (2) —3G(f, 95 ©, z)+ f h(z, y)dy,,.
x
Then the structural function d of b has the unique representation
(7.7) d(z.y):(z',y')(f7 9 =6G(f,9; x—y,a'—y')+

+ f (e“”’” _ eiw,a)) (ei<x',s> _ 6%'(1!',3))
X

14 (8]

lsi®

d’l‘f.a

Jor z,y, 2",y eX and f,g € &.

Proof. That d has the representation as in (7.7) follows from Theorem
6.0. The uniqueness follows immediately from Lemma 7.0 and Lemma 7.2
by taking y =y’ = 0.

Formula (7.7) will be called the Yaglom formula for structural function
d of b. A few comments are now in order. First, by taking X = R', having
in view Theorem 6.3 and the result of Masani [19], who proved in fact
that every helix in R™ is a structural function of a conditionally positive
definite scalar valued function of class CP(R"; C'), we get (y) of Theorem
3.2 of [18] for » = 1. Next (7.7) applies to any b of class CP(X ; &) which
one, as shows Example 6.0, is essentially broader than the class of eondi-
tionally positive definite functions of class CP(X; &). Finally, formula
(7.7) holds for infinite-dimensional X and arbitrary &; the classical case
in [18], [35] is just when & = C', X = R".

Suppose now that our b = {b,(f, g)} of class CP(X; &) is conditionally
positive definite, which simply means by Theorem 6.2 that the Gaussian
part — 3G is conditionally positive definite. We are then able to apply
the general theory of Section 5 which corresponds to “time domain ana-
lysis”. It follows then that for ¢™, K, ¥, which are associated with
x, = 0 there is an S-continuous unitary representation m,(s) = U, of
X into L(K,). By Remark 5.4 we get:

(7.8) If b = {b,,(f, 9)} of class CP(X; &) is conditionally positive definile
(this happens when X = R!) then U, is a trivial representation, if
b reduces to its Gaussian part.

Having in view Theorem 6.1, it becomes natural to examine now the
structural function of a funetion of class CP(X; &) reducing to its Poisson
part. This will be the subject in investigations we have to go through now
in a spirit of “spectral domain analysis”. Notice by the way, that the
elementary part of functions of class CP(X; &) have identically zero
struetural function, so there is no need to think about them at all. The
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role of this parts is explained via the notion of cohomologous first order
cocycles — see [8], [27]; and for our analytical investigation there is no
interest at this stage to take care on this parts.

To begin with we notice that for s # 0

(7.9) le““'”—ll]/ l”l*;l'f D < V3 (jul+2).

Let n(s) be an B(X) measurable complex function such that #(0) = ¢
= an arbitrary number and [5(s)|2 = (1 -} |s]|?)/[s|% for s = 0.

Levma 7.3. Let u be a compler measure on B(X) such that u({0}) = 0
If

[ (6® —1)n(s)du, = 0
X

Jor all we X, then u = 0.
Proof. The above integral makes sense, because by (7.9) |(e*** —
—1)n(s)| = V2 (Ju|+2), s # 0 for w € X and #({0}) = 0.Suppose X = R"

and take @ € S(R") such that ¢(s) = p(s) is vanishing around zero. By
Fubini’s theorem and (7.9) we get that

[ [lpe > —1)ns)du,du = [| [ o) —1)du]n(s)dp,

R™ R™ R® R"
= [(p(s)—p(0)n(s)du, = 0.
R®

Since »(0) = 0, we get therefore

(7.10) [ w(s)n(s)du, = 0.

Rn
Let ¢, = o, be two closed balls in R", with the common center @ and such
that o, < into, and 0 ¢ 0,. We take, following [30], 1.46 u(s) =1—
—g(|s —al?), whereg e C*(R')and g(u) = 0ifu < I/E, g(u) = lifu > l/r_g,
where r; = radius of o; (¢ =1,2). We can take g so that without
any loss of generality |g(w)] <1 for all u. It follows then that |p(s)| <2

for all s and any o,, 0;; w(s) = 1 on o, and p(s) = 0 outside of g,. Formula
(7.10) yields that

(7.11) Ja®du,+ [ ps)ns)du, =0,
a

92—01

Let us take a decreasing sequence o such that of” — ¢,. Then

| [ we)n®)du|< 2 sup y(s)llul(e —a;) -0,

?
0(21))_ o ) )_ o
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which by (7.11) with ¢, = ¢{” proves that f 7(8)du, = 0. Since g, was an

arbitrary closed ball not including zero, y ({0}) = 0 and u is regular,
we conclude, since 7(8) # 0 for s % 0, that u = 0.

Just like in the proof of Lemma 7.2 we conclude now that y = 0
for any real separable Hilbert space X. m

Now suppose that the function b (f, g) is of Poisson type, i.c.

e (@, y> | 14+ lyl
b.(f>9) = f(e( P —1— ;<_T_ ];Ilz) |’]/|§I dpeo(y)y -
X

where u,, are such as in Theorem 6.0. Since ,u”(u) 0 for oe B(X),
we can apply Proposition 2.1 and just get that u.,(0) = (E(o)Rf, Rg)x,
where K is a complex Hilbert space, E(-) a spectral measure on K and
R: & - K a linear operator. We assume once for all that K is minimal,

i.e. K = \ E(o)R& what determines in a unique way K, E, R up to
geB(X)

unitary isomorphism and the formula
Uy glo1noy) = (E(U1)Rf’ E(Gz)Rg)

is the corresponding canonical representation of funetion {o,, 6,} — us (g0
N a,). Notice that E({0}) = 0, because all measures u,, vanish on {0}.
It follows now from (7.9) that for every « and # such as in Lemma 7.3,
the function h,(s) = (6 —1)y(s) for s # 0, k,(0) = ¢ (any number)
B(X) measurable and E-bounded, simply because it is bounded. It
follows then that if #(s) is a B(X) complex valued function such that
[7(8)I12 = (14 |s{%)/Is|* for s # 0, 7n(0) = ¢, then the spectral integral
[ (6#®® —1)9(s)dE, is a bounded linear operator in K.
X

We now define for xe X, fe &
(7.12) Y, (@)f = [(6—1)5(s)dE,Rf;
b4

Y, () is a linear operator from & into K.
Suppose now that Kah | Y, (2)f for € X, fe &. It follows that

[ (@ —1)n(s)d(B,Ef, b)x = 0
X

for every z € X. By Lemma 7.3 we conclude that (E(o)Rf, h)g = 0 for
every o € B(X), which, since K is minimal, proves that » = 0. Conse-
quently, since plainly Y, (0)f = 0 for every fe &, we get that

(7.13) K=V (Y,(2)—Y,(v)6.

z,yeX

Let us now take the inner product (Y (o)f, Y y)g)K forz,yeX, f,geé.
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We have then (omitting the subscript “K”)
(Y, (@)f, ¥,(¥)9)
_( f(ei<z,s> )9 (8)dE, Rf, f ¢U® _ 1)y (4)dE, Rg)

1+18|2

~ f (6= —1) (@ 1) a(B,f, Rg),

because E is a spectral measure. By the Yaglom formula we now conclude
that, d being the structural function of b,

(Y (@)f, ¥ 3/)9) = d(a:,o) (y.o)(f’
= b,_,(f, 9)—b.(f, 9)—b_,(f,9) = 2%(f, 9)

with #, = 0. Having in view (7.13), we infer therefore that ¢;%, K, Y, are
associated to z, = 0 for function b_(f, g).
It follows then that the corresponding map

(@) Ty(@) = Xy ()f = (Yp(2+8) = T,(y+9)f
depending apriori on 7 is an S-continuous unitary representation of X.

Let us write for brevity U, in place of 7,(s). We will show that U, =
i[ ¢ dEg,, i.e. that U, does not depend on the choice of 7. So, suppose

that, by Stone’s theorem,
U, = [é*wdF, for seX,
X

where F is a spectral measure in K. It follows from the definition of U,
= 7y(8) that for ze X, fe &

U, Y, (@)f = [ ¢V —1)y(y)dB,Rf.
X
On the other hand,
o)f = [ €V dF, Y, (o)f
X
and consequently, for every he K and se X
J &P —1)n(y)A(B,Rf, 1) = [ P dF, T, (@), ).
X X

The uniqueness property of Fourier transforms implies now that the
measures

(€™ —1)y(y)d(E,Bf, k), 4(F,Y,()f, k)
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are cqual for all # € X. It follows then that for 0 e B(X) and z € X
(' (o) X, (2)f, B) = (Y, (@)f, F(o)h)

= [ (&P —1)n(s)d (B, Ef, F(0)})
X
= [ (6 —1)n(s)d(E,Ef, )

= [ (= —1)y(s)d (B, RS, E(c)h).
x
The measures (E(a)Rf, F(o)k) and (E(a)Rf, E(c)h) as a function of
e € B(X) vanish at e« = {0}. Applying Lemma 7.3 to the difference of
these two measures, we conclude that

(E(e)Rf, F(o)h) = (E(a)Rf, E(0)k) for aeB(X)

which, since K is minimal, implies that ¥ (o) = E(o) for o € B(X).

We just obtained the spectral picture of spaces and representations
related to. Poisson type functions of class CP(X; &), which by Theorem
6.1 is conditionally positive definite.

Summing up we get the following theorem:"

THEOREM T7.1. Let {b,(f, 9)} be a function of CP(X; &) class of Poisson
type and

_ Yy _ 1 Ii<w7 y> 1+ |?!|2
bl!(f? g) - 5{{ (6 1 1 + Iylﬂ l?/iz dluf;g

its Levy—Khintchine canonical representation. Suppose u,,(o) = (E(o)Rf,
.Rg)K i8 the canonical representation of the related family of measures ;.

For every complex B(X) measurable function n(s) such that |n(s)|?
= (14 1s]%)/is|2 for s #* 0, n(0) = ¢ (arbitrary complex number) the formula
Y, (2)f = [(6“% —1)n(s)dE,Rf defines a family of linear maps from

X -
& into K, such that ¢,(f,9) = b,_,(f, 9) ~b,(f, 9)—b_,(f, 9), K and ¥
are associated to xy = 0, i.e.

K=V E()R¢ =V (Y, (2)—T,(y)¢,

geB(X) T, yeX
&, (fr 9 =X, @f Y,9)9)x for ,yeX; f,geé.

Moreover, the mapping U, Y, (2)f = (Y, (v+48)—Y,(s))f defines an S-con-
tinuous unitary representation of the additive group of X, U, does not depend
on n and has the spectral representation

U, = [¢=an,.
X

15 — Annales Polonici Mathematiel XLII
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Remark 7.0. Notice that canonical representations related to Y,
corresponds to the same space K. So, we have an natural example of
different canonical representations with the fixed minimal space. It fol-
lows that for 7, %, there is a unitary map U, ,, such that U, , ¥, (2)f
= Y'u (2)f for z e X, f € &. It is easy to show that U,,M,2 commute with
U,, i.e. with E(:). We observe by the way that there is a lot of functions
n satisfying the relation

2 3
In(8)* = .1__;;% for s # 0 — for example 75(8) = ?/.-.ll:lletl ’
_ L q/10P
n(8) = & o
: _
n(s) = 6e(s) (areal), where |o(s)|* = _T; |':'  ete.

We can take measurable partitions of X and define on its parts 7(s)
by different formulas, for instance by the ones given above.

COROLLARY 7.0. If X = R', then, as we notice already, the Gaussian
part of CP(R'; &) can be “swallowed” by the Poisson part — see (6.14)
and comments after Theorem 7.0. It is then possible to get an analogon
of our Theorem 7.1 when adding the Gaussian part, whose classical model
scalar version for 7(s) = (i+s)/s is due to Masani [18]. The suitable
uniqueness statement follows from uniqueness properties which we proved
in this section. The corresponding operator version of Masani’s theorem
will be given in the next section. '

COROLLARY 7.1. The closed support Sy of the spectral measure E (')
18 called the Poisson spectrum for any b, whose Poisson part is as in canonical
representation of b = iu —3G+P. Suppose b = P. If 0 is not in Sy, then
E (o) = 0 for some neighbourhood o of 0. Using notation of the above theorem,
the formula

2
F(a) =f1+'yi iE

Joowrr

defines a semi-spectral measure on K, for a € B(X).

Using Proposition 2.0 for v ,(a) = (F(a)f, g)K or, which is equivalent
i this case, the classical Naimark’s theorem — see [22] [24], we conclude
that there is a complex Hilbert space K, a spectral measure E(-) in K and
a continuous linear operator V: K — K such that F(a) = V*E(a)V for
a € B(X) — the minimality condition K = \/ B(a)VEK determines K, V, E

up to unitary isomorphism. Having b of the Poisson type as in Theorem 7.1
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we define
?
%f,y(w) = - f <l,l:l2l fog(y)'
Since
; 14yl
e z<“”?’>) G0 (y)
7 xf( 1+l e
d * '
and (d/‘f.o)( ) = lfllylz for v,, (or, as it is equivalent to u.,)
V.0

almost all y e X, we get
by(fs 9) = tgg(@)+ [ (6% —1)dw,,(y)
p.¢
= upy(2)+ [ (6% —1)d(E,VEf, VRg)z
D. ¢

which implies for any b of class CP(X; &) such that 0 ¢ Sy the formula
(1.14)  b,(f, 9) = uyo(@) —3G(f, 9; @, )+
+ [ (& —1)d(B,VRf, VRy)x
x

which, following Cuppens [3], Theorem 4.3.1, we call the De Finnelli for-
mula. The structural function d of b is of the form

d(m,y);(z',y’)(f; 9) = G(fy g; *—Y, w’_y') +

+ f ( 61'(::,3) _ 61‘(11..9)) ( ei(zﬁs) —e i(y’.s>> dvfg( 8)
x
and the speciral domain picture for P = b in this case, associated to x, = 0

takes the simple form for B 2 VR:

K=V Bke, Tof= [ (v -1)ak,Ef

acB(X) X
and K = V (Yo (#) —Xo(y)) & as well the shift group defined by U,¥,(®)f
(ZY., w+s)— o(8))f has thevspectml representation

0, = [ e“VdE,.
X

The proofs of all these statements are just as in the proof of Theorem
7.1, with obviously simplified versions of previcus lemmas, for we have
not “fight” with the factor (14 |y|?)/ly|?, when y ranges close to zero.
Recall that all this works provided 0 ¢ Sy, i.e. there is a neighbourhood
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o of 0 such that all measures u, (o) appearing in the Levy-Khintchine
canonical representation of b vanish on o.

8. Continuity properties. In this section we assume once for all that
X = R™ for some m. If b e CP(X; C"), b € CP(X; C"), i.e. if b, bO
are scalar wvalued conditionally positive definite functions and for o
= 0’ 1’ e

¥ = ilu, a) — }<(B,z, x>+ f (e""'w —-1—
m

i, y>) 14 jy)?
1+

02

the convergence b — b for € R™ does not imply that B, - B, and that
i, converge weakly or in some other reasonable way to u,. The reason
is that (see [3], Theorem 4.2.4) every infinitely divisible distribution
over R™ is a complete limit of a sequence of finite convolutions of Poisson
type distributions. However, if we have to do with CP(R™, &) functions
the situation is not so bad. The “philosophical” reason is that functions
of this class are in some sense rigid, for they satisfy for example some
consistency conditions following from the bilinearity in f, g € &. To make
it clear let us take & = CF with the natural convergence in CF and let
b ( f, ) be of class CP(R™; C?) with canonical representation

b (f, 9) = use(®)—3G(f, 9; @, 2)+

: iz, y>\ 1+ yl°
+ [ (e —1— ) Bpis ().
{ ( R TR

Let ey, ..., 6, be the orthogonal basis in C? and suppose that f, — fo,
n —> go- If

r
fo = Gy Gn = Zﬁj,nej for n =0,1,...,

in

e

[

gl

then for re X = R™

P 4 P

b:c(fn? gn) = 2 Z a],nﬂj, ej,ek )_%Z aj,nﬁk,nG(eﬂ €3 Ty w)‘l"
jn k|1 7.k|l
<@V _ ":<wr y>) 1+ y? 2—d
+] Y f( 1 + |yl2 Iy|2 aj,nﬁk,n nuej,ek(y)
, R™
p —
'n-_m""z aj.oﬁk,ouej.ek(w) —%Z @0 B0 G (€, €5 ®, )+
JrkIl 7.kl

_ z'<a:,y>) 14 [yl?

P
+2 f (em’y)_ 1+WwlE! e

ikl X

%0 Bra ey 0 (Y) = by (fo 90)
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for every xz, and it is plain that the elementary (Gaussian, Poisson resp.)
parts of b_(f,, g,) converge to elementary (Gaussian, Poisson resp.) parts
of b.(f, g).- The moral is that the situation is not hopeless in contrary to
what we said before. Notice that if & = C' the example above becomes
pretty trivial, because b,(f,, 9,) = b,(1, 1)f,d, in this case, as well G(f,, 9.;
z,2) = G(1,1; @, 28)fp,Gny P(frn) ga;®) = P(1,1;2)f,§, and ufn.an(m)
= U1, (a")fngn'

In order to be in the general investigation we will prove the
“well-known?” inequality: '

LevmmA 8.0. For every m = 1,2, ..., for every h > 0 there is a constant
Nm(h) > 0 such that the inequality

. " <

2 - sh (y)
)" yl
8in 0 L
holds true for every y = (Y1, +.+y Ypn) # 0, y € R™, (T =1by defzmtwn).
Proof. Suppose our assertion is not true. Then there is a sequence
¥, = (™, ..., 49} # 0 such that for some & > 0

(8.1) 8,(4,) — 0.

Choosing a subsequence of {y,} if necessary, we have only three possibil-
ities:
(1) ¥yl = oo,
(i) ly,l -0,
(iii) ¥, =¥, # 0.
In case (i) |y¥)| - oo for some k,.

sin hy(? sinu

Hence 0, because '

k
that s,(y,) — 1 which is in contradiction with (8.1). In case (ii) our argu-

ments go as follows: since 1 —cosu > u*/2! —u*/4! for every real u, we have

{my yO* _ (@, Yt
21 4!

hyt 0 |< 1 for 4 = 0 which implies

(8.2) (1 —cos (@, ¥>) >

for z, y € R". Notice now that (see Section 6) for » > 0

= sinky,\ 1

k1l

where K, = {y = (Y1, «-+y Yn): ¥,/ < hfori = 1,2, ..., m}simply, because
(1 —cos{z, ¥>) = Re(l —e<=W)
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and
R = sin hy
K0 Jop — f TV dp, — (2 m” k.
fe x H é Z;, = (2h) o,
K, ki -h K11
It follows now from (8.2) that
1 14y,
W) > Gam (1 () —I2(¥5)) s
where
2, 9 (@, 9
nw= [, g = [
Sp ) Sp )
7r115
a8, ={z: |z|<h} < K,.Since i 1 tir = ——  _yl?
and 8, = {#: |z| <k} < K, mcemgeneras_{(w,w % ST (Imi2) ly2,
we have
i L .
J1(y) = 2 Gm+3) lyI* = elyl

where g is the above coefficient at |y|*. It follows now that

(8.3) U0 > = (L4 ) (e — —s 7,(3,)
¢ h yv = (2h)m Yo valz 2 yv ¢
But
1 1 (x, yv>4
—dJ =— | ————dr ——0
IZI,,lz 2(yv) 41 S Iyolz v—co ’
h

4 4 4

because K, ¥ < lyU el = |y|?[«?| for y # 0. It follows now from

ly|? [yI*

(8.1) and (8.3) that

. 0
O = 1 m > "
”1 sh (yv) = (2h)m

which is a nonsens.
Suppose (iii) holds true. Then s,(y,) —> 8;(¥,). Since y, # 0 then,

since

u|<1foru;ﬁ0

T sinhyP\ 14 [y,f?
5 (4,) =(1_H Yi ) %]

) 2
Ll o %ol
= sin hy( ) 14 [yl
>{1— l I >0
( hySf’ Yol

| kN
which is in contradiction with (8.1). m
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_ We next formulate (see [3], Chapter 2 for references) a consequence
‘of Levy’s continuity theorem for characteristic functions of probability

distributions:

(L) Let v, be a sequence of probability measures on B(R™) and v,(x) their
characteristic function. Let v be a probability measure on B(R™) such
that for © € R™ v,(x) - v(x). Then v,(x) —v(x) uniformly on every
compact o = R™.

Suppose that we given the sequence b} of function of class CP(R™) with
canonical representations

y 2
b = ila,, x> —3<B.x, 5>+ | [gi@w 1L z<6v,y>) 1+ lyl .
. n? ’ R;[(e 1: TP e du, (y)

LEMMA 8.1. Suppose that for every x b™ — 0. Then a, -0, B,z —~0
Jor every & e R™ uniformly on every compact and p,(R™) — 0.

Proof. By the Levy—Khintchine theorem

(n) -
s = v, (¢) (zeR™)
for infinitely divisible distribution #,(-) on B(R™). By our assumption
v, (z) converges to v(¢) = 1. Consequently, since »(:) is a characteristic
function of the degenerated distribution concentrated at # = 0, we infer
by (L) that »(z) — 1 uniformly on every compact. It follows that |v,(z)]

= ¢™% 1 uniformly on every compact. Hence Reb” ->0 uniformly

on every compact. Hence

2
—Red? = 3<Boo, 2>+ [ (1—cosqa, y3) L d,(9) > 0

2
o 1yl

uniformly on every compact. But g, > 0 and 1 —cos{(z, y) > 0. It follows
that B,z — 0 on every compact uniformly, and

1 2
[ @ —conca, 4 - a0

R™m
uniformly in # on every compact.
It K, ={w: |&|<h, 2 = (2, ...,%,), © =1,...,n}, where h > 0 we
conclude that

1+ |yl

o= [ [—cos@ = du
R™ K, y
y sinhy,,.) 14y
= (2h)™ 1— — dp, (y) - 0.
() f( ” Yy lyi* )

R™ L
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By previous lemma, B S > p,(R™) > 0 and consequently u, (R™)
(2R)" 9 (B)

— 0. On the other hand, by (6.3)

; t{w ?!>) 1ty ks
2(z, y) = ||V -1 — — <2+ ——
@9 ( R
for x e R™, y #* 0. Since u,({0}) = 0, we get that
2
0< [ 2z, 9,y < (2+' | ) J(B™) >0

Rm

which, since B,z — 0 uniformly on every compact, implies that {a,, z)
— 0 uniformly on every compact. This plainly proves that a, — 0 which
completes the proof of our lemma.

We define as before for z ¢ R™

h(z,y) = (ef<’~w>—1— ﬁ’_’lé’;) ng/}ﬁ”z for y = 0,
h(z,0) = 0.
Suppose that u,, x4 are positive measures on B(R™) and
(8.4) U, (0) > u(s) for o e B(R™)
and p,({0}) =0, n =1,2,... Then, of course, u({0}) = 0 and, moreover,
(8.5) f h(@, y)dp,(y) - f h(@, y)du(y)

uniformly in x on every compact ¢ = R™.

Proof. For >0 we write 8, = {x e R™: |2| < %}. Since [h(z, y)|
< 24%9%2 = g, for z € §, and y arbitrary, it is sufficient to prove (8.5)
for ¢ = §,. For ¢ > 0 there is 7, > 0 such that u(R™—8,)) < ¢/67,; which
implies that for n = n(n,)

>
I f @, Y)A(p, —u)(Y )‘ <e/3, wek,.
m>g

n2
If 3 > 0 is small enough, then for n = n(e, ;)

/“n( 3)+/"(S’13) 8/31]1’
because u({0}) = 0. It follows that

[fh z,y)d(u, — 1 e/3 for n=mn(e,n5), ®e8l,.
'73

We take 5, so small that §, <= 8, . We define
r = max(u(8,, —8,), supu,(8,, —8,)).
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Since h(z, ) is uniformly continuous on 8, Xx(8,,—8,), for > 0 there
is a measurable partition oy, ..., o, of §,, — 8, and points y; e 0; (¥ =1, ...
«.., p) such that

. & !
lh(w,yi)—h(w,y)l<m, wES,, for Y € g;.
Hence for ye8,,—8,,, ve8,

\

D
IZ h(@,Y;) %o, (4) — (2, y)‘g e/12(r+1).
in )

Since u,(0;) — p{a;),

p p
| Y (@, 99 o) — X b, y;)u(op)| < e[12(r+1)

il il

for n > n(oyy ..., 0,), x€8,. But the previous inequality proves that

&r &
IZ h(z i’l, ) o (05) — f h(w,y)d,un(y); STr+n SRTE
il Sny=Sng
8
|Zh(w,y, (o) — f M, )| < 50 <
jl1 Sﬂz M3
and consequently for xS,
| [ h@pdp—p)|< e
Sny~Sng
for n > n(ay, ..., 0,). Summing up,
| fh(w,y)d(.un—ﬂ)l <e forwzes,
Rm
and n > max (n(1,), n(e, 75), n(0y, ..., ;). W
If b.(f,g) is in CP(R™; &), then
(8:6)  by(f, 9) = up,(2) —3G(f, g5 @, o)+ [ h(z,y)d(E,Ef, Rg),
R™

where (E(o)Rf, Rg) = u;,4(0) is the corresponding canonical representa-
tion of u;,, B: & -~ K = the minimal Hilbert space with inner product
(*y *). Representation (8.6) will be called the spectral representation of
b(f, 9)

ProrosiTioN 8.0. If b,(f,g) of class CP(R™, &) has the spectral
representation (8.6) and f, € & and b (f,,f,) — Q for z € R™, then Rf, — 0.
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Proof. We put ™ = b,(f,,f,) and, using notations of Lemma 8.1
conclude that (Rf,, Rf,) = (E(R™)Ef,, Bf,) = u,(R™) — 0 which proves
the claim.

It is sufficient for amalytical purposes to deal with metrie linear
spaces.

We are able to prove now the following theorem:

THEOREM 8.0. Let b, (f, g) of class CP(R™; &) have the spectral rep-
resentation (8.6). If & is a metric space and the function f — b (f,f) s
continuous at f = 0 for every xz, then the operator R is continuous.

Proof. Let f, -0 in &. Then b,(f,, f,) = 0 for every x. By Prop-
osition 8.0 Rf, —0. m

Our basic result is the following:

THEOREM 8.1. Let b,(f, g) of class CP(R™; &) have the spectral rep3
resentation (8.6). Let & be a metric space. Suppose that b (f, g) i8 jointly
continuous in f, g for every x € R™, i.e. by polarization formula b (f, f) is
continuous in [ for x € R™. Suppose that f, — f, g, — 9. Then the following
holds true:

(i) R i8 a continuous operator;

(ii) “fn’an(“’) — Uy, (@) uniformly on every compact v < R™;

(iit) G(fns Gn5 @, y) > G(f, g5 @, y) uniformly in (2,y) on every com-
pact a =« R™ x R™;

(iv) f h(z,y)du, o — [ h(z, y)du,, uniformly in & on every compact

Rm

m
occ R"".n

Proof. (i) follows from Theorem 8.0. Since the parts of the spectral
representation of b,(f, g) are bilinear in f, g, it is sufficient to prove our
assertion for f, =g,, f=g. We define pu,(c) = (E(o)Rf,, Bf,), n(o)
= (E(o)Rf, RBf). It follows that u,({0}) = u({0}) = 0. The continuity
of R yields that (8.4) holds true. Consequently, by (8.5) (iv) holds true.
Now, b (fnyfa) = b:(f,f) by assumption, for v € R™. Hence

1, (2) = esinln) - 5 (z) = ¢b=lh)

for every # e R™, in fact uniformly in # on every compact o ¢ R™ by (L).
It follows that
6b¢(fnvfn)"bz(fnf) —_ 1

uniformly on o, which just like in the proof of (8.5) implies that
bz(fn’fn) - ba:(f?f)

uniformly on o. Since (iv) holds true, we conclude that

ufn.fn(w) —3G (fos fus @, 2) —~ Uss(8) —3G(f, f; =, 2)
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uniformly on o. Since u; , (2), %, () are purely imaginary and G(f,, f.;
z,x), G(f,f; #,x) are real, we infer therefore that wu, . (x) — u (@)
uniformly on # which proves that (ii) is true, as well that G(f,, f.; =, %)
— G(f,f; ©,z) uniformly in # on o. Since G(f, ¢; =, y) is real bilinear
in o, y (iii) follows from the polarization formula for G with respect to
«, 4. This completes the proof.

The short reformulation of the above theorem reads as follows:

(8.7) If & is a melric space and b, (f, g) of class CP(R™; &) is jointly con-
tinuous in f, g for every x € R™, then the parts of the canonical rep-
resentation of b.(f,g) are joinily continuous in f,g wuniformly for
x varying over an arbitrary compact in R™.

The following definition is now in order:

DEFINITION 8.0. Let & be a complex linear metric space. We denote
by L(&) the totality of linear maps A from & into the space &* of antilinear
continuous functionals on &, such that (Af)(g) is jointly continuous in
iz

It is easy to see that thereis one-to-one correspondence between joint-
ly continuous bilinear forms I(f, g) and operators in L(&), where I(-, *)
corresponds to A, if and only if (4,f)(g) = U(f, g) for f, g € &.

Let us say that the function z — B(z) e L(&) (x € R™) is of class
CP(R™; ¢), it the function b,(f,g) = (B(#)f)(g) is of class CP(R™;&).
The operator version of Theorem 8.1 reads as follows:

THEOREM 8.2. Let B(x) be a function of class CP{R™; &), where & is
a complex linear metric space. Then there are the unique functions iA(x),
G(xz, ) of class CP(R™; &) and the unique function F(-): B(R™) — L(&)
such that (F (0)f)(g) 18 a complex measure on B(R™) for f, g € & satisfying
the following conditions:

(i) (A(@)f)(f) is real for € R™, f € &, real Linear in & and (A (2)f,}(g,)
— (A (2)f)(g,) uniformly for ©eo = compact = R™ if f, —f, g
— g5 (A (2)f)(g) is continuous in .
(ii) G (x, y) is real bilinear in , y, (G(z, #)f)(f) =0 forxeR™, fe &
and (G(z, y)f)(g) is continuous in x, y and in f,g uniformly for
(x, y) varying over any compact in R™ X R™;
(iil) (F(0)f)(f) = 0 for 0 € B(R™), f € & and the formula

(8.8) B(x) = id(2)—}G(2,2)+ [ h(z,y)dF,, «ecR™
R™
holds true, where the last term is the unique operator in L(&) such

that [ h(z,y)d(F,f)(g) (f, g e &) exists and equals to the Poisson
R™M

part of (B(x)f)(9)-
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Proof. The uniqueness properties follow from results of Section 6.
tA (z), G(2, y) are defined by equalities i(A (m)f)(g) = Uy ,(2), (G(m, y)f) (9)
= G(f, g; #, y) and (F(0)f)(g) = (E(o)Rf, Rg) of spectral representation
(8.6). Then the assertion follows from Theorem 8.1.

COROLLARY 8.0. If & is an F-space (see [4], [30]), i.e. linear metric
complete space with translation invariant metric or if & i3 metric barrelled
locally convex (J. Horvath [10]), then if b (f,g) i8 separately continuous
in f and in g for every x € R™ then Theorem 8.1 as well Theorem 8.2 apply to
b.(f,9) = (B(w)f) (g). Consequently, if & is a mormed space or especially
a complex Hilbert space, then the separate continuity in f, g for © € R™ of
b.(f,g) imply that b,(f,g) = (B(2)f)(g) with B(:) in class CP(R™; &).
This is true if & is a Fréchet space, i.e. a locally convex, metrizable complete
linear space with metrics

N1 p(f-9)
o(f,9) = 22— T

where {p,} is a sequence of seminorms p, which separate in &, i.e. if p,(f) = 0
for all n then f = 0.

The compact and nice formulation of Theorem 8.2 appears when
& is a complex Hilbert space with the inner product (-, -). In what follows
we refer to [2], [21] for semi spectral integrals.

THEOREM 8.3. If & is a complex Hilbert space and B(x) € L(&) is of
class G_P(R'"; &), then there are unique functions A(z), G(x,y) e L(&)

for ,y € R™ and the unique semi-spectral measure F (o) € L(&) on B(R™)
such that

(8.9) B(x) = iA(z) —1G(z, z) + fh(m,y)dF,,, z e R™,
Rm

for y5= 0 and

. ) 1 2
where k(z,0) = 0, h(z,y) = (et(a:,y)_l_ i{x, y)) + 1y

1+1y?] Wyl
(i) A(x) = A(z)* is real linear in w;

(ii) G(z;2) = 0 for x € R™ and G(x, y) is real bilinear in x, y;

(iii) A(x) and G(x,y) are continuous in x, (x,y) resp. in the operaior

norm.
(iv) The Poisson part | h(z,y)dF, is strongly continuous in x, F({0})
= 0’ R™

and consequently B (x) is strongly continuous in x and continuwous in operator
norm if and only if the Poisson part shares this property (for instance, when
the closed support of ¥, §, is compact).



Oonditionally positive definite functions on linear spaces 237

Proof. Tt follows from the previous theorem that only the conti-
nuity properties need the proof. Let ey, ..., ¢, be the orthonormal basis
m m
in Rm Then for # = > a;6;, ¥ = 2 p;¢; which implies that A(w)
FI11

m

= Z B;A(e;) and G(= ,yl) Z G ej, ek) a; 8, which proves (iii).

The proof of (iv) runs as follows by Proposition 2.0 (in fact, by the
classical Naimark’s theorem — see [22], [24]) for F of (8.8) we have
{F(0)f, g9} = (E(o)Rf, Rg)g with some minimal space K = B\{‘m E(o)RE&,
spectral measure E(-) in K and a continuous operator( R): & —~>K.
It follows that E({0}) = 0. Let h(x,,y)—h(2y,9) = p,.(y) for o, - x,.
The inequality (6.3) implies that p,(y) is bounded sequence of functions

and p,,(y) — 0 a.e. with respect to #. It follows that for fe &
| [ 2P ff <IB*F [ 19, () d(B,BSf, Bf)x 0
R™ R™

by dominated convergence. m

COROLLARY 8.1. This is a simple exercise to formulate the analogon
of Theorem 8.3 for & being a Banach space.

COROLLARY 8.2. If R™ = R', then (8.9) takes the form

+00

B(z) = iAzx—3}G -2+ f (”‘” 1—

-0

iy \ 144
1+y2) yz dEy; F({O}) =0,
where A* = A = A(1), @ = G(1,1) > 0 according to nolation of Theorem
8.2. Defining

, oy \ 1492
_ 1:1:1/_1__
HeLy) — ‘(e 1+y2) - Jory %0,
—a? for y =0,
we get formally
+oo
(8.10) B(2) = ida+ [ h(z,y)dF,

where F(o) = F(o) if 0 ¢o, F({0}) = G(A,1).

If & is a complex Hilbert space then according to Theorem 8.3 we have
the unique representation

+o0

(8.11) B(x) = idx+ f h(z,y)dF,,
A = A* F — a semi-speciral measure. By Theorem 6.3 the last formula
gives the general form of B(-) in class CP(R'; &) and B(-) is conditionally
positive definite, i.e. b (f, g) is
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COROLLARY 8.3. Following notation of Section 7, if & is a complex
Hilbert space, all formula as the Yaglom one, the formula for the structural
fumctions, etc. cam bewritten in an operator version for B(+) of class CP(R™ ; &) —
for instance, there corresponds to the structural fumction related to B(-)
of Poisson type of Theorem 8.3 the semi-spectral integral

: 2
f (30'<I-S> — eiw.S>) ( eiEH®) _ 6i<u’.s>) 1+ |§/| d F,
BR™ [y

and to Y,(z) the formula

Yo(@) = [ (6= —1)y(s)dF,,
RmM

where F is the semi-spectral measure appearing in (8.9) when A (x) = G (z, x)
— 0, because B(-) is of Poisson type. If R™ = R', then we get therefore for
F = F of (8.11) the generalizations of Masani’s [18] results for operator
valued functions with n(s) = (14 8)/s.
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