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On the convergence of the iterates
of the Frobenius-Perron operator
associated with a Markov map defined on an interval.
The lower-function approach

by PioTR BUGIEL (Krakow)

Abstract. The problem of the convergence of {P}g}j%, is considered for a certain class of
expanding transformations ¢ of an interval (bounded or not) into itsell with countably many
monotonicity intervals (P, is the Frobenius-Perron operator associated with ¢). An approach to
the problem is presented which relies on the lower-function argument.

Introduction. We study the problem of the convergence of the sequence
{Pig}i, (P, is the Frobenius-Perron operator) for a certain class of
expanding transformations ¢ of an interval (bounded or not) into itself with
countably many monotonicity intervals. The main result of our study is
contained in the convergence theorem in Section 1.

The above problem and some related ones have been studied by several
authors during the last few decades (see e.g. [1], [3]-[7] and [10]-[12]). Their
approaches are based on compactness arguments; moreover, they study the
problem separately for transformations defined on bounded and on un-
bounded intervals.

The main aim of this paper is to present a new approach to the problem in
question. Our approach does not rely on compactness arguments but on the
lower-function argument introduced in [8]. This technique turns out to be well
suited to control possible tendencies of the mass to escape to infinity under the
action of the transformations in the case of an unbounded interval. It also
enables us to bind together the cases of bounded and of unbounded interval.

This work was done while the author was visiting the Department of
Mathematics, Michigan State University. He wishes to thank the Department
for providing him with nice facilities. He also wants to thank T. Y. Li for
discussions on the topic of this paper.

1. Preliminaries and the statement of the main result. Let I be an interval
and m be the Lebesgue measure on I. Denote by L' = L*(I, m) the space of all
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real-valued Lebesgue-integrable functions f with norm | f| = f1f1dm. Then
the Frobenius-Perron operator (F-P operator in short) P_ (see [9]) of
a nonsingular transformation 7: I—1I acts on L}. (We shall often omit the
subscript T in P..)

We denote by G the set of all probability densities of L', i.e., G = {ge L*:
g =0 and |g| = 1}, by D" f the n-th derivative and by f|W the restriction of
a function f to a set W. We shall also use the following abbreviation:
Reg(g) = sup {|Dg(x)|/g(x): xel, g(x) > 0, and Dg(x) exists}.

We are concerned with piecewise monotonic transformations ¢: [ -]
given by

DEFINITION 1.1. A piecewise monotonic transformation ¢ from an interval
I (bounded or not) into itself is said to be a Markov map iff there exists an at
most countable family = = {I,: ke K} of open intervals which is a partition of
I (modm) such that;

(1.M1) for each I,, the function ¢, = ¢| I, is strictly monotonic, and Do,
is locally Lipschitzean function which possesses one-sided limits at the
endpoints of I;

(1.M2) n is a Markov partition for ¢, ie, for each I, I,en, if
o(I)nI, # G, then I, = o(I);

(1.M3) ¢ is an irreducible transformation, ie., | J%Zo¢/(1,) =1 for all
lem

Throughout the paper we shall assume that ¢ is a Markov map satisfying:

(1LH1) C, = inf{{Dp(x)]: x€(Jrex I} > 1 (expanding condition);

(LH2) C, = sup{ID?@,()/(Doy(x)*: xel,, keK} < co (Rényi’s con-
dition);

(1H3) C, =inf{m(p(I)): keK} > 0;

(1L.H4) C, =sup{m(l,): keK} < .

To state the last condition we have to introduce a certain family of
densities generated by ¢ (the r-fold composition of ¢ with itself) in the
following way:

Let Iy, # © be a monotonicity interval of ¢" where k(r) = (k,, ...,k )e K",
and let @) be the inverse function of @) = ¢'|l,,,. Then we put

(1.1) Oin = Doy
By convention, ¢! = ¢, consequently Liyy = 1, @k = @, and oy = 0.
Now we denote by G(¢") the family consisting of all densities of the form

(12) Gsiry = Z Wi Ok(r) _[ Wsir) o's(r)dm:
k(r)eK(r) Tiry

where K(r) = {k(r) = (ky, ...,k)eK": Ly # 3}, s(r) = (s, ...,s)e K(r) and
Wiy = M(Ii) ™" is the normalizing factor for g, i.e., Wi Oxn | = 1.
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The last condition guarantees that some G(¢") has a nontrivial lower
bound:

(1.HS) There exist ry > 1 and a function u,, > 0 such that |lu, [ > 0 and
Gstrey = Uy, for all gy, € G(@™).

Remarks. (1.1) Counterexample 1 in [2] shows that (1.HS) is indis-
pensable. However, it is always satisfied provided ¢ is defined on a bounded
I and ¢'(Ig) = I for some 7> 1 and I;. This follows from the boundedness of
the family {w,0,: ke K} of densities under conditions (1.H1)<1.H3).

(1.2) When ¢ is defined on an unbounded I, then (1.H5) tums out to be
essentially less restrictive than the following counterparts of it: (10) in [7], (ix)
in [5], and (3.1) in [1]. In fact, (10) = (ix) = (3.1), and (3.1) = (1.HS).
Furthermore, this chain of implications is one way (see Example 2.1).

Let ¢ be a Markov map with respect to = = {I,: ke K}. We denote by G(1)
the set of all densities ge G satisfying the following two conditions:

(1) for each I, g|I, is a locally Lipschitzean function which possesses
one-sided limits at the endpoints of I,; and
(2) Reg(g) < 0.

We are now ready to state our main result.

CONVERGENCE THEOREM. Let ¢ satisfy (1.H1}{1.HS). Then there is precise-
ly one g,€G such that:

(1) go = lim;_,, Pig (in L) for all g G. In consequence, P g, = g, and ¢ is
an exact endomorphism.

(2) For each I, and all ge G(1), the sequence {P}g|I,}{% converges in the
supremum norm to gollI,.

Remark. (1.3) Let conditions (1.M1) and (1.H2) be replaced, respectively,
by the following two conditions:

(1.M"1) For each I,, the function ¢, = @|I, satisfies: (1) ¢, is strictly
monotonic, (2) ¢, € Cherip(ly) (n > 1), and (3) D', (i =0, 1, ...,n) possesses
one-sided limits at the endpoints of I, (D¢, = ¢)).

(1LH"2) C,,; = sup{sup| D" *o¢ '(x)|/|1De ' (x)|: keK} < oo
fori=1,2,...,n

The symbol Cj,.Lip(W) in (1.M"1) denotes the set of all functions f (defined
on W) with continuous derivatives D'f (i=0, 1,...,n) and locally Lip-
schitzean D" f.

Denote by G(n) the set of all densities ge G satisfying the conditions: (1)
for each I, en, g|I,€ Cllin(,) and Di(g|1,) (=0, 1, ...,n—1) has one-sided
limits at the endpoints of I,, and (2) sup |D'g(x)|/g(x) < o0 fori=1,2,...,n

xel
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Under the replacements described above, the following differentiable
counterpart of assertion (2) of the convergence theorem holds: (27) For each I,
and all ge G(n), the sequence {D'(P,g|I,)};Z converges in the supremum
norm to D(gy|I) for i=0,1,...,n—1. In consequence, D"~ !(g,|I,) is
a Lipschitzean function.

We conclude this section with the following:

COROLLARY 1.1. (1) There exist a density §, of the form

go = Z Wi(ro) Tk(ro) I godm,
k(ro)eK(ro) Tiirg)

and some constants C5 > 0 and Cg > 0 such that Cs§, < go < Cgdo (here the
index r, has the same meaning as in (1.HS)).
(2) There exists a constant C, > 0 such that for each I,

90 1 1)(x)—(go 11)O) < C7|x—y|  for all x, yel,.

2. Proof of Convergence Theorem. We first prove the first assertion of the
convergence theorem. The idea of the proof is to show, under (1.H1)-(1.H4),
that any lower bound of G(¢") (r is arbitrary but fixed) is a lower-function for
P,. More precisely, set

ar = inf{gsm: s € G((Pr)}
where gy, is defined by (1.2). Then there exists a constant Cg > O such that
(21) PI**g>Cgi, for each geG(l), g >0, and all j > j,(g).

Then assertion (1) of the convergence theorem follows from (2.1), (1.H5),
Theorem 2 in [8] and the denseness of the set {ge G(1): g > 0}.
The proof of (2.1) will be done in four steps.

Step 2.1. Let geG(1) and set g, = gogy ‘o, where o, is defined by (1.1).
Then for each keK,

(2.2) Reg(gi) < C,+ C1 ' Reg(g);

(2.3) 9. ()| < (Reg(g)+C3 ') llgl, | for all xelJ, = (1),
where C3' =0 if C, = w0;

24 lg(x)—g0)| < Reg(g) (suplge(2))lx—yl  for all x, yeJ,.

zeJyx

Proof (2.2) follows from (1.H1)~(1.H2) and the inequality
IDgil/g, < |Doyl/oy+ oy ([(Dg)o oy *|igo i ).

To prove (2.3) take x, e J, such that g,(x) > g,(x,) for all xeJ,. Then we
have

16091 < || Dgydm| +m(1)" [ g, dm.
x T

The desired inequality follows from this and (1.H3).
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Finally, (2.4) follows from the inequalities:
y
19:()— g, W)l < [ Dgdm|  for all x, yed,

IDg,| < lgi Reg(g,). m
In the second step, we show that the inequalities analogous to those from
step 2.1 are valid for Pg.
Step 2.2. For each ge G(1),
(2.5) Reg(Pg) < C,+C1 ' Reg(g);
sup|Pg(x)| < (C,+C3 ")+ Ci ' Reg(g);

xel

and for each I em, and all x, yel,
2.7) \PgIL(x)— Pg| I,(y)| < Colg)lx—yl,
where Cy(g) = supicx Reg(g,)(supiex Reg(gy) +C3Y).

Proof. To prove (2.5), we first note that the F-P operator of ¢ can be
expressed by
(2.8) Pg=) g,, where g, =gopy'0c,.

keK

Now, since g, is a function of bounded variation, it follows from the
. Jordan decomposition and Fubini’s theorem that the sum on the right-hand
side of (2.8) is termwise differentiable a.e. (m) and its derivative is equal, a.e. (m),
to DPg. Thus (2.5) follows from (2.2) of step 2.1.

(2.6) follows from (2.8) and (2.2)+2.3) of step 2.1.

Finally, (2.7) follows from (2.8), (1.M2) and (2.3){2.4) of step 2.1. =

Step 2.3. For each ge G(1), g > 0, there exists j, = j,(g) such that for each
I, and dll x, yel,,

CsPlg(x) < Plg(y) < CsPlg(x)  for all j=]y,
where the constants C5 > 0 and C, > 0 depend solely on ¢.
Proof. We note first that from (2.5) of step 2.2 it follows that
(2.9) Reg(P/g) < Cyp  for all j2ji(9),

where C,, is an arbitrarily fixed constant such that C,, > C,C,/(C,—1).
Next, notice that (1.M3) implies ¢@(I) =1, which, in turn, implies
Pig(x)>0 for all xel and j> 1.
Finally, set f; = In(P’g) for all j. Then, using (2.7) of step 2.2, (2.9) and
(1.LH4), we obtain

)£l < [[Dfdm| < CoCy
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for each I, all x, yel,, and all j = j,(g). This implies the inequality of step 2.3
with Cs = exp(—C,C,o) and Cq =exp(C4Cyy). u

Step 2.4. For each geG(l), g > 0, there exists j, = j,(g) such that
CsF.(Plg) < P/*'g < CgF,(Plg)  for all j2j, and each r 21,
where F, is the operator given by

F,(g)= Z Wi(r) Ok(r) j g dm,
k(r)eK(r} I k(r)

and Iy, Wiy and dyy have the same meaning as in (1.1H1.2).
Proof. From step 2.3 we obtain
(2.10) C s (P! ghiny(X) 0wy (%) < (P Gy 1) Oty (%)
< Co(P!g)iin(X) onry (%)

for each Jyp = ounlin) #9, all x, yeldy, and j2j;; here (P/g)n
= (P/g)opuys and @y = " | Iy _ _

Note that from the piecewise monotonicity of ¢" and the equality P, = P,
it follows that
(211) P;g = Z gO(PIRr% Ok(r)-

k(r)sK(r}

Integrating (2.10) with respect to x on Jy,, multiplying by wy) 04 and
summing the resulting inequalities over all k(r) = (k,, -..,k,) € K(r), we obtain,
upon using (2.11), the desired inequalities. =

From step 2.4 and the equality

Z ||1-rk(r)P£’g" =1
k(r)eK(r)
it follows that (2.1) holds with Cy; = C% As has been mentioned at the
beginning of this section, this implies assertion (1) of the convergence theorem.
For (2), note first that from (2.6) of step 2.2 and (2.9) it follows that

(2.12) sup|Plg(x)| < C,;  for all j>j(g);

xel

and from (2.7) of step 2.2, (2.2) and (2.9) it follows, for each I, and all x, yel,,
that
(2.13) |Pjg |I,‘(x)~Pjg| I:;(.V)i < Cylx—yl  for all j=j,(g).

Inequalities (2.12)+2.13) imply that the sequence {P}g|I,},>;, is bounded
and equicontinuous. Thus (2) follows from the lemma of Ascoli-Arzela and (1).
The proof of the convergence theorem is complete.

The two assertions of Corollary 1.1 follow directly from step 2.4, (2.13) and
the convergence theorem.
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We conclude this section with a simple example of a transformation ¢,
defined on the real line, for which {P/g} converges by the convergence theorem
but for which the previously known results give no information.

ExampLE 2.1. Let ¢, be an arbitrary, twice differentiable function from the
interval I = (—1, 1) onto the whole real line R such that |Dpy| > C, > 1 and
ID?@ol/(D9o)* < C, < 0. Let ¢,,(x) = @p(x—4k) if dk—1 < x < 4k+1 and
let @ax+1(X) = qpo(x 212k + 1))+ 2(2k+1) if 4k+1 < x <4k+3 for k=0, 1,
—~1,2, =2, ... Then, for each xe| JiZ _, I,, put ¢(x) = ¢, (x) iff xeI, = (2k—1,
2k+1).

Since 04;4+1(x) = ao(x—2(2k+1)), @ does not satisfy (3.1) in [1]. In
particular, it does not satisfy (10) in [7] and (ix) in [5], either. Nevertheless,
@ satisfies (1.H5) because

2 %0, [0, dm,
4

where g, is defined by (1.2) and A is the union of all I,,’s.
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