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1. Let M be a C® almost Hermitian manifold, that is, the tangent
bundle has an almost complex structure J and a Riemannian metric ¢
such that ¢g(JX,JY) =¢(X,Y) for all X,Y e ¥ (M), Z(M) denoting
the Lie algebra of C* vector fields on M.

Curvature identities are a key to understanding the geometry of
almost Hermitian manifolds (see [3] and [4]). In particular, an almost
Hermitian manifold such that the Riemann curvature tensor satisfies
the Kahler identity

R(X,Y,Z,W) =R(X,Y,JZ,JW) foral X,Y,Z, WeZ(M)

is called an F-space [8] or a para-Kihler mantfold [7]. For this class of
manifolds it has been proved [8] that they are Kahler manifolds if the
holomorphic sectional curvature x is pointwise constant and non-zero.
The authors have proved in [10] that the case u = 0 is exceptional by
constructing a 4-dimensional flat almost Hermitian manifold which is
not a Kihler manifold. This provides also an example of a non-Kihler
F-space with vanishing Bochner curvature tensor (see [11] and [12]).

The main purpose of this paper is to give a 6-dimensional non-Kaihler
flat F-space. This is done in the following way. We start with a study
of the tangent bundle of a Riemannian manifold with Riemann connec-
tion V. Using a metric connection V' with torsion, the associated hori-
zontal and vertical lift and the corresponding Sasaki metric, one can
prove that the tangent bundle has an almost Hermitian structure with
respect to this metric. With this almost complex structure, 7'(M) is an
F-gpace if and only if M is flat with respect to V and l7., and T'(M) is not
a Kdhler manifold if and only if V # V

So we have only to prove that there exist flat 3-dimensional Rie-
mannian manifolds which have also a flat metric connection with torsion.
Such an example has been given in [10] by considering connected Lie
groups of dimension 3.
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2. First of all we give some well-known results and formulas for the
geometry of the tangent bundle T (M) of a C* n-dimensional Riemannian
manifold (M, g) with linear connection V. For details we refer to [13],
[9], and [1].

Let ('), ¢ =1, 2,...,n, be a system of local coordinates on M and
let (@, ¥*) be the associated system on 7'(M). Then, the horizontal lift XH
and the vertical lift X" of a vector field X € 4 (M) are defined by

0 , 0
H _ X‘W—PM’Xh@[aa—y‘ and .Xv X‘F,

where X* are the components of X with respect to the basis d/92*, and I}
are the components of V. Then, on T' (M) there exists a well-defined almost

complex structure J given by
J(XE) =XV and J(X')=—X" for all X eZ(M).

Further, M being a Riemannian manifold with metric tensor g, T' (M)
is also Riemannian and this with respect to the diagonal lift g (or Sasaki
metric) which is defined by
§(X%, Y% =§(X', ¥YV)= (9(X, Y))’ and §X', YY) =gG(X", ¥Y")=0
for all X, Y € Z'(M). It is easy to see that § is a Hermitian metric with
respect to J, ie. §WJX,JY) =§X,¥) for all X,¥YeZ(T(M)). We

may conclude that T'(M) is an almost Hermitian manifold.
In the following we choose an ada.pted basis defined by

0
(1) (Ow) =5 Ity — oy
(2) JE¢=EE=(W) = oy

where i = n+4. Then, § and J are given by
. (g9 O = [0 I
i=(5g) = I=(2r3)
I being the unit (n, n)-matrix, and ¢ the matrix for M.

3. Now we suppose that V is a metric connection and we calculate

the components of the Riemann connection 7 and the Riemann curva-
ture tensor R associated with the diagonal lift § on T'(M).
We put

[E.y Eg] = 2, B,
where {E,, a, B,y =1,2,...,2n} is an adapted basis. Using (1) and (2)
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we find that all 2, are zero except
(3) szi = —Rmh?l'; Qﬁh— = Pﬁh, ij’; = - ‘Qﬁh- = —Fjih;

where R,;,* denotes the components of the curvature tensor of V.

The components of the Riemann connection V with respect to g
are given by (see [13])

frﬂa = %ju(Drgaﬁ'l'Dﬂgw_Dagﬁy) +% (‘Qaﬂr + 'Qarﬁ+ ‘Qvﬁa)’
where
-Dygcﬁ = Eygcﬁ’ 'Qaﬂy = gd.'gcﬂogay’ gacg‘p = 6;'
Using formulas (3) we find that all Q°, are zero ewcept
'Q‘jl? = —Rijak?/.7 ‘Q-ijl? = _Pj‘k) 9‘?12 = I’fﬂc’
where
Rl = 9" By Gy I = 9" Tyl ey e = 9™ T _m.fpgpk-
Using the fact that all D,g,, are zero emcept

09

D\gy; = Dig5 = B

for the component of V we get
f'kj‘ = ﬁkji’ fk}i = "%Rikaj?ls, ficji = -%Rijek?lsy
fk—j{ = f%j{ = f’ic?i_ = 0, f'kj? = —%Rkjai’!l” -f'k;? = ka‘*
Now, the components of the tensor R are given by (see [13])
Byyg’ = DoI'yp* — D, Loy + 10T — I, 7T op* — 2,17,
where D,f’,,,“ = E’d(f,,,,“). These components may now be calculated by
using (1)-(3). With t]~10 help of the symmetry properties and the first
Bianchi identity for R we may conclude that it is sufficient to calculate
B’y Bizi®y By and Ryz;°. Finally, we find
Ryt = 'kkhji“" } (RYom g™ — RiremBig™ + 2R pns™ Blyi) 4° 9
Rz = =3 (Vi RYp — Tid B™n+ T3" Bip) ¥°,
kaf = }F! khj—i‘(RimhRm m)?/’?/':
R = B’ = B’ = 0,
B = —3(ViBus' — VaRige' + T1™ Rpmg’ — T3™ Boms' + 8™ Bngs) ¥*
Rkﬁj; = } B’ 43 (Byms B™3)¥°Y'

(4)

(5)

where
Tkjm = ijm—ijm, Skhm = thm—Phkm°

8 — Colloquium Mathematicum XL.1
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4. With the help of these formulas we prove now some interesting
results for the almost Hermitian manifold 7' (M).

THEOREM 1. T (M) is an F-space if and only if M 48 flat with respect to V
and V (and thus T (M ) 48 an F-space if and only if T (M) is flat).

Proof. IfR = E = 0, then it follows from (5) that 2 = 0, and hence
T (M) is flat, and so it is an F— space.

Oonversely, suppose that T( M) is an F-space. Hence we must have

Ryz3(JZ) = JRy3Z for all X,¥,Z e &(T(M)). With respect to the
adapted ba.sm th1s is equlvalent to

R&yj‘ +jédyji- = 0, Rgﬁ‘-—Rdﬁ‘ =0.
Since Rz = 0 we must have, in particular,
(6) Rkh?{—Rkhj‘ =0, Eﬁj‘ = 0.

These conditions must be satisfied on the zero cross-section, i.e.
at the points where y* = 0. At these points we have

Rkh}'T = Rkhjiy Rkhji = Rkhjii Rk—hji =% (Rijhk—R‘jkh)
and this implies with (6) that B = R = 0.
THEOREM 2. T (M) i3 a quasi-Kdahler manifold ¢f and only ¢f V =V.
Proof. A manifold T'(M) is quasi-Kahler if and only if (see [2]-[4])
Ve NT+V5g (HIX = 0.
Hence, after substituting E; for X and E; for Y, and using (4), we
obtain _ .
fijk—fijk = I",-jk—f'ﬁk - 0
and, consequently, V = p.
Conversely, if V = V, then T (M) is an almost Kéhler manifold,
and hence also quasi-Kihler (see [2] and [3]).
Theorem 2 implies also that T (M) is quasi-Kdihler ¢f and only if ¢t
48 almost Kahler. We note that an almost Kéihler manifold is an almost

Hermitian manifold with closed fundamental 2-form (Kéahler form).
It is also interesting to state the following known theorem [9]:

THEOREM 3. T (M) is Hermitian if and only if V =V and R =0,
%.¢. if and only if it is a Kdahler manifold.

From this we}have

COROLLARY 1. T (M) 8 a nearly Kdhler manifold if and only if ¢t is
a Kdihler manifold, i.c. if and only if V =V and B = 0.

Proof. A manifold 7'(M) is nearly Kahler if and only if Vg(J)X =0
for all X € & (T(M)). Such a manifold is necessarily quasi-Kahler [2],
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and hence we have V' = V. This means that T' (M) is also almost Kahler [1],
and since nearly and almost Kahler means Kéhler, we have the required
result from Theorem 3.

The converse is trivial, since any Kéhler manifold is nearly Kahlerian.

We may now state the main theorem of this section:

MAIN THEOREM. Let M be a Riemamnian manifold which has also
a metric conmectton with torsion. If M is flat with respect to this connection
and to the Riemannian connection, then the tangent bundle T (M) has a flat
almost Hermitian structure which 18 not a Kdhler structure.

5. We give now an example of a manifold M which satisfies the condi-
tions given in the Main Theorem.

Let G be a connected Lie group and ® its Lie algebra. We shall identify
® with the tangent space T,.(@) at the neutral element of G. Further,
let A, B, ... denote elements of ®, and A, B, ... the corresponding left
invariants on G.

There is a natural bijection between the set of positive-definite
non-degenerate bilinear forms ¢: & X ® — R and the set of left invariant
Riemannian metrics g on @ (see [6], p. 200, and [6], p. 125). This bijection
is given by

(9(4, B)), =¢(4,B) forall 4,BeG.

There is also a bijection between the set of bilinear maps r: ® x® — G
and the set of left invariant linear connections. This is defined by (see [5],
p. 92)
(V4B), = t(4,B) for all A,BeG.

Let g be the left invariant metric on G corresponding to ¢. Then one
can prove that the Riemannian connection V associated with g is a left

invariant connection. Precisely, V is the linear connection associated with
the bilinear map v which is entirely defined by the conditions

(7) ¢(v(4, B), C)+¢(B, v(4,C)) =0,

(8) 7(4, B)—7(B, A) = [4, B]

for all A, B, C € ®. In fact (see [6], p. 201), 7 is given by
2¢(z(4, B), C) = ¢([4, B], O)+¢([0, 4], B)+¢(4, [C, B)).

The Riemann curvature tensor R of V operates on left invariant
vector fields as follows:

(Rz50), = (4, 7(B, 0))—7(B, 7(4, 0)) —=([4, Bl C).
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Thus, R = 0 if and only if
(9) <(4,(B,0))—z(=(4,B),C) =(B, (4, 0)—(v(B, 4), ()
for all A,B,Ce®.

We may conclude (see [10])

THEOREM 4. Let G be a connected Lie group and & its Lie algebra.
If ® has a positive-defimite non-degenerate symmetric bilinear form ¢ and
a bilinear map v which satisfy (7)-(9), then @ 8 a flat Riemannian manifold.

If this Lie algebra is not commutative, then G' has also a metric
connection which is flat and which differs from the Riemann connection.
Indeed, it is sufficient to consider the classical ( —)-connection of Cartan-

Schouten (see [6], p. 94). It is denoted by V and is associated with the
null map =, i.e.

(V3B), =0 forall 4,BeG.

It is easy to see that l-7-g = 0, that is, this connection is metric. On
the other hand, the torsion is given by

(T(4, B))g = —[4,B] for all A,Be6.
Consider now the Lie algebra of dimension 3 over R defined by

1 | 4, 4, 44
4, 0 0 4,

We define a positive-definite symmetric bilinear form ¢: ® X ® — R by

@ (4y, Aj) = 5:‘17
and a bilinear map 7: ® X ® - G by

(4, 4;) =0
except
7(45,4,) = —A, and 7(4,,4,) = 4,.

Then, conditions (7)-(9) are verified [10] and this algebra, clearly, is
not commutative.

We note that this Lie algebra may be represented as a subalgebra of
gl(3, R) by putting

001 000 010
.A.1=OOO, A2= 001’ A.3= —100.
000 000 000
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Hence the Lie algebra is formed by the matrices

0 23 =
—23 0 x|, #;eR,:i=1,2,3,
0 0 O

and the corresponding Lie group is formed by

(1]
(2]
(3]
[4]

[6]
[6]

7]
(8]
(9]
[10]
[11]
[12]

[13]

@11 Gz O3
2 2
- a12 an a23 9 Whel‘e au + alz == 1 .
o o0 1

It is a connected subgroup of G1(3, R).
This provides thus an example of the required class of manifolds.
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