FASC. 1

ON GROUPS IN WHICH IDEMPOTENT REDUCTS FORM A CHAIN

BY

J. PŁONKA (WROCŁAW)

For a given algebra $\mathfrak{A}=(A,F)$ we denote by A(F) the family of its all algebraic operations. An algebra $\mathfrak{B}=(A,G)$ is called a *reduct* of $\mathfrak{A}=(A,F)$ if $G\subseteq A(F)$. We write then $\mathfrak{B}\leqslant\mathfrak{A}$. If $\mathfrak{A}\leqslant\mathfrak{B}$ and $\mathfrak{B}\leqslant\mathfrak{A}$, we put $\mathfrak{A}=\mathfrak{B}$. An operation f is generated by a set S of operations if f is a superposition of operations from S and trivial operations.

In [2] we have proved that

(*) In the idempotent reduct of any group $\mathfrak{G} = (G, \cdot, ^{-1}, 1)$, the two ternary algebraic operations $x^{-1} \cdot y \cdot z$ and $x \cdot y \cdot z^{-1}$ generate every idempotent algebraic operation in \mathfrak{G} . If \mathfrak{G} is abelian, then these operations generate each other.

Further, if \mathfrak{G} has the exponent m, then the algebraic operation $x_1^{k_1} \cdot x_2^{k_2} \cdot \ldots \cdot x_n^{k_n}$ is idempotent iff

$$k_1+k_2+\ldots+k_n\equiv 1 \pmod{m}.$$

This last operation we shall often denote by

$$x_1 \cdot x_2^{k_2} \cdot \ldots \cdot x_n^{k_n}$$

because k_1 is determined by the idempotency of this operation, i.e.

$$k_1 \equiv 1 - (k_2 + \ldots + k_n) \pmod{m}.$$

In this paper we prove that if \mathfrak{G} is an abelian group with the exponent p^k , where p is a prime and $k \geq 0$, then the idempotent reducts of \mathfrak{G} form a (k+1)-element chain with respect to the relation \leq . Moreover, abelian groups with the exponents p^k are the only groups in which idempotent reducts form a chain. The problem of characterizing such groups was suggested to me by \mathfrak{G} . H. Wenzel during the conference in Mannheim, November 1971.

LEMMA 1. The idempotent operation $x_1 \cdot x_2^{q \cdot p^l}$ $(1 \leqslant l \leqslant k)$ generates every idempotent operation of the form

$$x_1 \cdot x_2^{q \cdot p^l} \cdot x_3^{q \cdot p^l} \cdot \ldots \cdot x_r^{q \cdot p^l} \hspace{0.5cm} (r \geqslant 2 \,,\, 1 \leqslant q < p) \,.$$

Proof. For r=2 the lemma is obvious. Suppose we have already constructed the operation

$$f(x_1,\ldots,x_n) = x_1 \cdot x_2^{q \cdot p^l} \cdot \ldots \cdot x_n^{q \cdot p^l}.$$

Consider the operation

$$f_1(x_1, \ldots, x_{n+1}) = f(f(x_1, x_1, \ldots, x_1, x_{n+1}), x_2, \ldots, x_n)$$

$$= x_1 \cdot x_{n+1}^{s \cdot q \cdot p^l} \cdot x_2^{q \cdot p^l} \cdot \ldots \cdot x_n^{q \cdot p^l}$$

and, by induction, let

$$f_{t}(x_{1}, \ldots, x_{n+1}) = f(f_{t}(x_{1}, x_{1}, \ldots, x_{1}, x_{n+1}), x_{2}, \ldots, x_{n})$$

$$= x_{1} \cdot x_{n+1}^{s^{t} \cdot q \cdot p^{l}} \cdot x_{2}^{q \cdot p^{l}} \cdot \ldots \cdot x_{n}^{q \cdot p^{l}} \quad \text{for } t \geq 2.$$

Since $s = p^k + 1 - (n-1)q \cdot p^l$, s and p^k are relatively prime. Thus, there exists t_0 such that $s^{t_0} \equiv 1 \pmod{p^k}$. Hence

$$f_{t_0}(x_1,\ldots,x_{n+1}) = x_1(x_{n+1}^{s^{t_0}})^{q \cdot p^l} \cdot x_2^{q \cdot p^l} \cdot \ldots \cdot x_n^{q \cdot p^l} = x_1^{s_0} \cdot x_2^{q \cdot p^l} \cdot \ldots \cdot x_n^{q \cdot p^l} \cdot x_{n+1}^{q \cdot p^l}.$$

LEMMA 2. The idempotent operations $x_1 \cdot x_2^{p^l}$ and $x_1 \cdot x_2^{q \cdot p^l}$ (1 < q < p) generate each other.

Proof. The operation $x_1 \cdot x_2^{pl}$ generates the other. It is enough to put in Lemma 1 q = 1, r = q+1 and $x_2 = \ldots = x_r$. On the other hand, since q and p^k are relatively prime, there exists an integer m such that

$$q \cdot m \equiv 1 \pmod{p^k}$$
.

Putting in Lemma 1 r = m+1 and $x_2 = ... = x_r$, we get the first operation.

Now consider the sequence of reducts of 65,

(1) $\mathfrak{G}_0 = (G, \mathbf{I}), \, \mathfrak{G}_1 = (G, x_1^{s_1} \cdot x_2^p), \, \mathfrak{G}_2 = (G, x_1^{s_2} \cdot x_2^{p^2}), \dots, \mathfrak{G}_k = (G, x_1^{s_k} \cdot x_2^{p^k}),$ where \mathbf{I} is the set of all idempotent operations in \mathfrak{G} .

LEMMA 3. The idempotent reducts G_i from (1), $0 \le i \le k$, are the only idempotent reducts in \mathfrak{G} .

Proof. Let $\hat{\mathfrak{G}} = (G, F)$ be an arbitrary idempotent reduct of \mathfrak{G} . If there exists an operation

$$f = x_1^{q_1} \cdot x_2^{q_2} \cdot \ldots \cdot x_n^{q_n}$$

in \mathfrak{G} such that two different exponents q_i and q_j are relatively prime to p, then, as in Theorem 1 of [1], we can prove that $\hat{\mathfrak{G}} = \mathfrak{G}_0$; otherwise, any algebraic operation in $\hat{\mathfrak{G}}$ would be of the form

$$x_1 \cdot x_2^{q_2 \cdot p^{l_2}} \cdot \ldots \cdot x_n^{q_n \cdot p^{l_n}}, \quad \text{ where } 1 \leqslant q_i < p.$$

Let

$$l_0(f) = \min l_j$$
 for any f

and

$$l_0 = \min\{l_0(f) \colon f \in \mathbf{F}\}.$$

Let $f_0(x_1, ..., x_n)$ be an algebraic operation belonging to F such that l_0 appears among its exponents. We can assume

$$f_0 = x_1 \cdot x_2^{q_2 \cdot p^{l_2}} \cdot \ldots \cdot x_n^{q_n \cdot p^{l_n}}, \quad \text{where } l_n = l_0.$$

Consider the algebraic operation

$$g(x_1, x_2) = f_0(x_1, x_1, \dots, x_1, x_2) = x_1 \cdot x_2^{q \cdot p^{l_0}}, \quad \text{where } q_n = q.$$

By Lemma 2, the operation g generates the operation $x_1 \cdot x_2^{p^{l_0}}$. Thus $\mathfrak{G}_{l_0} \leqslant \hat{\mathfrak{G}}$.

We now prove that $\hat{\mathfrak{G}} \leqslant \mathfrak{G}_{l_0}$. Let

$$f(x_1,\ldots,x_n) = x_1 \cdot x_2^{q_2 \cdot p^{l_2}} \cdot \ldots \cdot x_n^{q_n \cdot p^{l_n}}.$$

Write $r_i = q_i \cdot p^{l_i}/p^{l_0}$ (i = 2, 3, ..., n). Putting in Lemma 1 q = 1 and $l = l_0$ we see that the operation $x_1 \cdot x_2^{p^{l_0}}$ generates the following one:

$$x_1 \cdot x_2^{(1)p^{l_0}} \cdot x_2^{(2)p^{l_0}} \cdot \ldots \cdot x_2^{(r_1)p^{l_0}} \cdot x_3^{(1)p^{l_0}} \cdot \ldots \cdot x_3^{(r_3)p^{l_0}} \cdot \ldots \cdot x_n^{(1)p^{l_0}} \cdot \ldots \cdot x_n^{(r_n)p^{l_0}}.$$

Putting in the last operation $x_i^{(j)} = x_i$ for i = 2, 3, ..., n, we get $f(x_1, ..., x_n)$.

THEOREM 1. If \mathfrak{G} is an abelian group with the exponent p^k , $k \ge 0$, p-prime, then the idempotent reducts of \mathfrak{G} form a (k+1)-element chain with respect to the relation \le .

Proof. For k = 0 the proof is trivial. For k = 1 our theorem follows from Theorem 1 of [1]. If k > 1, then it follows from Lemmas 1, 2 and 3.

LEMMA 4. If $\mathfrak{G} = (G, \cdot, 1)$ is an abelian group with the exponent $m = p \cdot q \cdot s$, p, q - primes, $p \neq q$, then the idempotent reducts

$$\mathfrak{G}_1 = (G; x_1 \cdot x_2^p \cdot \ldots \cdot x_{q \cdot s}^p)$$
 and $\mathfrak{G}_2 = (G; x_1 \cdot x_2^q \cdot \ldots \cdot x_{p \cdot s}^q)$

are uncomparable.

Proof. Observe that any operation generated by $x_1 \cdot x_2^p \cdot \ldots \cdot x_{q \cdot s}^p$ has the property that only one exponent is not divisible by p. Thus, it cannot generate $x_1 \cdot x_2^q \cdot \ldots \cdot x_{p \cdot s}^q$. Since the roles of p and q are symmetric, the lemma follows.

LEMMA 5. If \mathfrak{G} is an abelian group which satisfies no identity $x^m = 1$, then the reducts

$$\mathfrak{G}_1 = (G, x_1^3 \cdot x_2^{-2})$$
 and $\mathfrak{G}_2 = (G, x_1^5 \cdot x_2^{-4})$

are uncomparable.

Proof. Observe that any operation generated by $x_1^3 \cdot x_2^{-2}$ has the property that only one exponent is not divisible by 3. So $x_1^3 \cdot x_2^{-2}$ does not generate the operation $x_1^5 \cdot x_2^{-4}$. Analogously, the second operation does not generate the first one.

LEMMA 6. If G is a non-abelian group, then the idempotent reducts of G,

$$\mathfrak{G}_1 = (G, x_1^{-1} \cdot x_2 \cdot x_1)$$
 and $\mathfrak{G}_2 = (G, x_1 \cdot x_2^{-1} \cdot x_1),$

are uncomparable.

Proof. Observe that every operation $f(x_1, ..., x_n)$ which is generated by the operation $x_1^{-1} \cdot x_2 \cdot x_1$ has the property that $f(x, 1, 1, ..., 1) \in \{x, 1\}$. If $x_1 \cdot x_2^{-1} \cdot x_1$ is generated by $x_1^{-1} \cdot x_2 \cdot x_1$, then $x^2 = 1$ for all $x \in G$, which implies that G is abelian and we get a contradiction. Further, observe that every binary operation in \mathfrak{G}_2 is of the form

$$x_1 \cdot x_2^{-1} \cdot x_1 \cdot x_2^{-1} \cdot \dots \cdot x_1 \cdot x_2^{-1} \cdot x_1 = f(x_1, x_2)$$
 or $f(x_2, x_1)$,

where

$$f(x_1, x_2) = x_1^{-1} \cdot x_2 \cdot x_1.$$

Putting $x_2 = 1$, we get $x^k = 1$, where k is the number of occurrences of x_1 in $f(x_1, x_2)$. Multiplying (2) by x_2^{-1} from the right-hand side, we get

$$x_1^{-1} \cdot x_2 \cdot x_1 \cdot x_2^{-1} = (x_1 \cdot x_2^{-1})^k,$$

whence $x_1^{-1} \cdot x_2 \cdot x_1 \cdot x_2^{-1} = 1$. This implies commutativity and so we arrive at a contradiction. If

$$(3) x_1^{-1} \cdot x_2 \cdot x_1 = f(x_2, x_1),$$

then, putting $x_1 = 1$, we get $x_2^k = x_2$, whence $x_2^{k-1} = 1$, so

$$x_1^{-1} \cdot x_2 \cdot x_1 = (x_2 \cdot x_1^{-1})^{k-1} \cdot x_2$$

and, finally,

$$x_1^{-1} \cdot x_2 \cdot x_1 = x_2$$

which means commutativity.

By Lemmas 4, 5 and 6, we have

THEOREM 2. Abelian groups with the exponents p^k are the only groups in which idempotent reducts form a chain.

REFERENCES

- [1] J. Płonka, R-prime idempotent reducts of groups, Archiv der Mathematik 24 (1973), p. 129-132.
- [2] On the arity of idempotent reducts of groups, Colloquium Mathematicum 21 (1970), p. 35-37.

Reçu par la Rédaction le 8. 11. 1972