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Global inverse problem of the Sturm-—Liouville type
for a linear elliptic partial differential equation
of second order

by JAN BocHENEK (Krakow)

Abstract. The purpose of the present paper is to generalize the known results on the
so-called inverse problem of the Sturm-Liouville type (see [4], [5], [12], [13]). In particular,
we deal in this paper with a certain theorem of Ambarzumian [!] and its generalizations
(see [4], [5], [12]). The main purpose of this paper is to transfer the above Ambarzumian’s
theorem known for the Neumann boundary condition to other homogeneous boundary condi-
tions. The method of this paper is based on the results of papers [4], [S], [12].

Introduction. Let D be a bounded domain in the space E™ with a suf-
ficiently regular boundary dD. We assume that the boundary ¢D of D is so
regular that there exists a Green function and sequences of eigenvalues and
eigenfunctions for the value problem which is treated below. In the sequel
we denote by X = (x,,...,x,) and Y = (y,, ..., y,,) the points of E™.

We shall consider the problem of eigenvalues and eigenfunctions for
the differential equation of the form

(1) Lu)+(A-qu=20

with the boundary condition

) %—hu—O on D—-I'’ u=0 onTl,
vV
where
0%u
(3) L) = ,,Z—na” 5%, 0%,
4) Z a,, S cos (n, x),
i,j=1 L.

n being the intertor normal to 0D, and I" denotes an (m— 1)-dimensional part
of oD (I being connected or not). We assume that a;; = a; (i,j = 1,...,m) are
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272 J. Bochenek

constant, the quadratic form ) a;; & ¢, is positive definite, ¢ is a continuous
LJj=1

function and bounded in D and h > 0 is a continuous function on dD.

The boundary condition (2) may be taken in the sense of generalization

(cf. [3)).

1. The Green function and eigenvalues and eigenfunctions of problem (1) (2).
Let us denote by G(X, Y, 4) the Green function and by {4,}, {¢,} the sequences
of eigenvalues and eigenfunctions of problem (1) (2), respectively. We assume
that A # 4, (n = 1,2,3,..) and that {¢,}-form an orthonormal set of func-
tions in D. We denote by G™ (X, Y, A) the iterated Green functions. For
a definition and fundamental properties of the functions G™ (X, Y, ) see [14]
or [4]. In the sequel by G,(X, Y, 1)) we shall mean the Green function
of the whole E™ with respect to equation (1) when g(X) = 0 for XeD.

Let us assume that the parameter A in equation (1) is a real negative
number and write ¢ = — A, where ¢ > 0. It is known (see [2] and [14])
that '

Gy(X,Y, —0) = \/3(27‘)-'"/2 pomi2m 0 gmia=1/2 K.../z-l(r\/E),

where

Y A(a—y)(xj—y), a = det|a;l,

ij=1

A,; are the elements of the inverse matrix to the matrix |aq;)| and K,

is the modified Bessel function of the second kind of (!m—1)-th order.
Using the properties of the Green functions G(X, Y, ) and G,(X, Y, 4)

and the form of G,(X, Y, 1) and its iterated Green functions and using

also the asymptotic distribution of eigenvalues of problem (1)(2), we can
prove the following formula: ‘

- X
O § 0 - el Tk om0 X, ).

The proof of formula (5) is quite similar to the proof of an analogous
formula in [4]. In formula (5) {g,} and {y,} denote the sequences of
eigenvalues and eigenfunctions of problem (1)(2), respectively, in the case
g=01in D and &, is a continuous function in D for each ¢ > 0 satisfying
the condition

(6) fld(X, @)l dX = o(@™>7*"") for ¢ - + o0,
b

where k in (5) and (6) is a positive integer such that k > m/2.
It follows from (5) by Dini’s well-known theorem that the series on
the left-hand of (5) is uniformly convergent in the domain D.
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Therefore integrating over the domain D, we have

i 1
0 ..; (+0)*!

=0 Ja@2n) "I (k+1—m/2)gm2*-1 ——kl,—lj)dik (X, 0)dX,

where |D| is a measure of D.

2. Some properties of the trace of a linear operator. In this section we
shall give a definition of the trace of a linear operator and we shall cite
some lemmas and theorems, which will be used in the sequel

The trace of a linear operator A on a Hilbert space is the series

® ; (AX,5 X,),

where {x,} denotes any complete orthonormal system of vectors in H
(cf. [8], p. 125).

If series (8) is convergent for any {x,}, we say that A has a finite
trace. In the sequel the trace of the operator 4 will be denoted by S(A).
If the operator 4 has a finite trace, then sum (8) is independent of {x,} and
series (8), converges absolutely for each {x,}.

If the operator 4 is positive, then sum (8) has the same value (finite
or not) for any {x,} (cf. [8], p. 126-127).

Let B be a completely continuous operator on H. Let us write C
= (B*B)"/2, where B* is the adjoint operator to B. Evidently the operator
C is a completely continuous, self-adjoint and positive operator on H.
We shall denote by {s,(B)} the decreasing sequence of all eigenvalues of C
with all multiplicities listed (cf. [8], p. 46). By o, (p > 0) we denote the
class of completely continuous operators B such that

Bl, = 1 2, [s.(B)]?}'".

If Beo, and K is a bounded operator on H, then BK and KB belong
to o,, and |BK|, < | K| |B|, and |KB|, < K| |B|,.
In the sequel we shall make use the following lemmas (see [8], Ch. III).
LemMa 1. If the operators Bjeo, (j=1,...,s)and if } p;'=p ' <1,
: i=1
then operator B = BB, ... B; belong to ¢, and |B|, < |B|,, ... |Bd,..

LEMMA 2. The necessary and sufficient condition for the existence of
a finite trace of B is that Be o, and then

PO

9 IS(BY < |Bl; = Y, s.(B).

n=1
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LemmA 3. If A and B are the linear and bounded operators on H, such
that ABea, and BA€a,, then

(10) S(AB) = S(BA).

Let us denote by T a self-adjoint and positive operator and by V
a self-adjoint and bounded operator on H. By T, we denote the operator
T+pel, where I is the identity operator on H, and ¢ is a real positive
number such that the operators T, and T,+V are the positively defined
operators on H. We assume that the operators 7,”! and (T,+V)™' are
completely continuous operators. We shall denote by {u,} and {4,} the
increasing sequences of all eigenvalues of T and T+ V, respectively, and by
{x,} and {y,} the corresponding orthonormal sequences of eigenvectors.
It follows from these assumptions that lim g, = lim 4, = + w0, and {x,} and
{y.} form the complete orthonormal systems in H (cf. [13], p. 579).

1

1 (4 + 0!
bounded operators on H, then the operator A =T, 'C, T, ... T, 'C, T, !
has a finite trace and

LEMMA 4. If the series Z is convergent and C,,...,C, are

IS < IC - (Gl Z P +g)““ .

1
LEMMA 5. If the series Z i

then the operator T, * —(’IZ,+V) * has a finite trace and

is convergent for sufficiently large o,

. _k=°° 11 ]
(D ST =T+ V) ngl{(#ﬁe)" ('1..+Q)"}'

The proofs of Lemmas 4 and 5 are given in paper [5].
We shall need the following assumption

HypoTHEsis Z. The sequence of eigenvalues {u,} of the operator T
satisfies the following condition
(12) U, = Cn*+o0(n’) when n - + o0,
where C and a are the positive constants independent of n.

We shall prove the following

I'J" —ﬂnl
n
the natural number such that k > l/a, then

(13) o]_i,lg Qk+l—1/zs[7;—k_(7:)+ V)—k] = 0.

THEOREM 1. If 1° the series Z is convergent, 2 k denotes
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Proof. From the assumption k > 1/a follows that the assumptions of
Lemma 5 are fulfilled. Using (11) we need to prove that

(14) lim gk+i-1e Z { 1 1 } _o0.

e*+m® n=1 (Aun+Q)k B (/l,,'i'Q)‘

Let us observe that

k+1—1/e . 1 _ 1 }
¢ Z { (ot (o)

o _ k—1/a
_ ¥ A — n ( 0 ) y
n=1

n (o) \ pte
y [A+ ) '+ +of 2, +0)+ ... +(,+0)* e
(Aa+o) '

Because the sequences

oot {5

and { [('L.""Q)k_l+()~,,+Q)""2(un+0)+ +(ﬂn+9)k—1]9}

(A +0)

are uniformly bounded in g for ¢ > 0 and neN, from the least equality
follows that the series

- M'n - ﬂn'
M ,.;1 n

is an absolute majorant of the series

@ 1 1
k+1—1/a _
,.; ¢ {(#.. +of (A, +of }

where M is a positive constant independent of ¢ > 0 and neN.

Consequently this series is absolutely and uniformly convergent in g
for ¢ > 0. Therefore from this we get

. @ 1 1
(13) lim "7 3 { (+of (i..+e)"} =0

From (15) by (11) follows (13).

As we proved in paper [5], under assumption u,+¢ > |V|, the
following equality holds

(16) T, *—(T,+V)* = B,+F,,
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where
(17) B, = 7;-"‘ V’l:,"+ +T:,‘1 V’I;"‘
and
K & 1
(18) IS(F,) < Y

pit+e w51 (teftt
where K is a positive constant independent of o.

THEOREM 2. Under the assumptions of Theorem 1 we have the equality
(19) lim g** '~ 1*S(VT*" 1) = 0.

e~ ®

Proof. At first let us observe that from assumption k > 1/a, and
because V is a bounded operator, we have VT, *"'eg; for ¢ > 0. From
this by Lemma 2 we get that the operator VT,”*~! has the finite trace.
Analogously, we prove that also the operator B, for ¢ > 0 has a finite
trace. Therefore

N © 2 (M, x,)

T-k-1y — VT k-1 = X ——oar
S(V e ) n;]( ¢ x"’ x’l) HZI (ﬂn+g)k+l
and

SB) =Y ByXpX) = Y (VT ' x, x)+ oo + 3, (T, VT %N, x,)
n=1 =

n=1 n=1
2 (Fxx)
=N
Hence
—k=1 1
(20) S(VT, ) = FS(B")'
On the other hand from inequality (18) and from this that the series
d 1
k—1/z
n;g (n+of™!

is uniformly convergent in ¢ for ¢ > 0, follows the equality
(21) lim g**'~ 1 S(F,) = 0.

e~

Because by (16) we have
S(B,) = S[T,*~(T,+V) ] -S(F,),

then from this and from equalities (13), (20) and (21) follows (19). This
yields Theorem 2.
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3. Dependence of the function g on the eigenvalues of problem (1) (2).
In the domain D defined in the introduction of this paper we shall consider
the problem of the eigenvalues and eigenfunctions for equation (1) with
boundary condition (2). .

Let {4,} denote the increasing sequence of eigenvalues of problem (1) (2)
and let {@,} denote the corresponding orthonormal sequence of eigenfunctions
of this problem. Further, by {u,} and {,} we denote the sequences of
eigenvalues and eigenfunctions of problem (1)(2) in the case ¢ = 0 in D.

We shall prove the following

THEOREM 3. If q is a continuous and bounded function in D the series

a 1 —
Y Jou=tal is convergent, then
n=1 n

(22) fq(X)dX = 0.
D

Proof. Let H = L,(D) be a Hilbert space of functions square-sumable
on D and let T be a self-adjoint operator on H, which is a Fridrichs
expansion of the operator — L defined by (3), while V is multipler operator q.
From equality (7) follows that

(23) u, = Cn*™+o(n*™), where n - +oo,

where C is a positive constant independent on n, but m is the dimmensional
of the considered space E™ From this follows that the assumptions of
Theorem 2 are fulfilled, where « = 2/m, k > m/2. Therefore

(24) lim g**'~™2S5(VvT,*"1) = 0.

e~ ™

We express the trace of the operator V7,7*~! by the sequence {¥,}.
We obtain

25) STt = 5 (Vi

n=1 (“n+Q)k+l .

By the definition of the operator V and by the uniform convergence of the
series in formula (5) with respect to X € D, equality (25) may be written
in the form

@© 2
(26) ST = (q, p) (ufT)

By (5) equality (26) take the form

@D ST = - (/a@ny T (ke 1-mf2) ™ g, 1)—(g, @)
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Because

(g. @01 = | [ 4(X)9,(X, dX]| < max|g(X) [ 19,(X, Q)dX

by (6) we get
(28) (g, ) = 0(@™>*""), where ¢ - .
By (24), (27) and (28) we obtain

(29) lim %— {(/a@n) "I (k+1-m/2)(g, 1)+o(1)} = 0.

Equality (29) is posible only when
(30) (1) =0.

It is obvious that (30) is equivalent to equality (22). The proof of Theorem 3
is completed.

Remark 1. From Theorem 3 under the assumption

(31) VXeDg(X) =20,
follows the equality
(32) VXeDg(X)=0.

As we prove in paper [S], if we consider equation (1) with the boundary
condition of Neumann type, ie.,

(33) ﬁ =0 on dD,
dv

and if the function g satisfies equality (22), then the sufficient condition
for (32) is 4, = 0, where A, is the first eigenvalue of problem (1) (33).
Remark 2. The assumption A, > 0, where 4, is the first eigenvalue

of problem (1) (33), is equivalent to the assumption A, > 0, where 1, is the
first eigenvalue for the equation

(34) Au+(A—qu=0 in D,

with boundary condition (33).

From the variational definition of the eigenvalues and eigenfuntions of
problem (34) (33), follows that the first eigenvalue 4, > 0 if and only if

(35) VoeC; (D) [ [grad? ¢ (X)+q(X) 9* (X)]dX > 0.
D

Let us denote by Q* (D) the set of all functions g which are continuous
and bounded in D and satisfy condition (35).



Problem of the Sturm-Liouville type 279

Remark 3. It is obvious that Q* (D) contains the all non-negative
continuous and bounded functions in domain D. In section 4 we shall prove
that set Q* (D) contains also some functions which change their sing in D.

] A _
Tuzokem 4. If the function qe Q" (D) and the series ¥ 12—t s
convergent, then q(X) = 0 for each X eD. n=1 N

Proof. From the fact that the assumptions of this theorem imply the
assumptions of Theorem 3, we obtain equality (22). On the other hand
because qeQ* (D) by (35) and variational definition of eigenvalues and
eigenfunctions of problem (34) (33), we get

(36) A, = min § [grad?e(X)+q(X)¢?(X)]dX > O,

oscliy U
where
_f e*(X)dX = 1.
D

Since q satisfies (22), then function @, = |D|~'/? realizes the minimum (36),
and 4, = 0. From this follows that for problem (34) (33) the first eigenvalue
4y = 0 and its corresponding first eigenfunction is ¢, = |D|~'/> = const.
Therefore the function ¢, = |D|~!/? satisfies equation (34) with A = 0 and
the boundary condition (33) (cf. [6]). From this we get

37 VXeDg(X) = 0.

CoROLLARY 1. From Theorem 4 follows that if the function q in equation
(1) belongs to Q* (D) and if the sequence {1,} of eigenvalues of problem
(1) 2) is near to the sequence {u,} of eigenvalues of equation

(38) Lw)+iu=0

a l —
with the boundary condition (2), in this sense that the series Z M is
convergent, then problems (1) (2) and (38) (2) are identical. n=1 "

4. Positiveness of the operator T+V. From the assumption h{X) > 0
for XedD and from the dependence of the eigenvalues on the boundary
conditions follows that if geQ* (D), then the sequence of eigenvalues of
problem (1) (2) is an increasing sequence of positive numbers. This means
that the operator T+ V, defined in section 3, is positive operator. On the
other hand the operator T is also positive operator. The purpose of this
section is to prove that from the fact that T and T+ V are positive operators
does not follow that V is a positive operator, where T and V are the
operators defined in section 3. In other words we shall prove that from
the fact that g e Q™ (D) does not follow that g(X) > O for all X eD. To simply
the consideration we assume that m = 1, D = (0, n) and

L = d?/dx?,
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then condition (35) takes the form
VeeC;(0,m) g{[¢’(X)]’+q(x)¢’(x)} dx 2 0.

Let us put g.(x):= x—¢, where ¢ is a positive constant such that 0 < ¢ < n/4.
Let us denote

39) A0 = min {{{{¢'X)]*+4.(x) 9> (x)}dx: [@*(x)dx = 1}

peC a(o,n) 0 0
and by ¢, the function which realizes the minimum (39). As we know

@.(x) # 0 for all xe(0,n), and by (39) [¢?(x)dx =1 for every &> 0.
Therefore 0

Ai(e) = g {[o: (0] +4.(x) @7 (x)} dx
£ 3e n
2 g {{o:(x)]* —e@? ()} dx + | [o:(x)]* dx+ g {[oz (x)1* +2eq? (x)} dx
> —¢f @2 (x)dx+2e | @? (x)dx
0 3¢
=¢[2 | o2 (x)dx— [ p?(x)dx].
3e [}]
Because
lim | 2 (x)dx = 1,
=0 3¢
there exists ¢, > 0 such that for 0 < ¢ < ¢, we have

(40) [ 2 (9dx > 3.
3e

From this follows that
(41) { 9 (x)dx < %.

By (40) and (41) we get
A= e for 0 < e < g

This means that the function g, such Athat"cj,‘j(x)‘=\x—..afoﬁ) < & < g, belongs
to Q*(0,n) and g, changes its sigh in the interval (0, m).

-
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