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1. Introduction

Consider a saddle point with one unstable direction in a one-parameter
family of vectorfields, with contraction in the local stable manifolds stronger
than expansion in the local unstable manifolds. Suppose that at some critical
parameter a, one branch of the unstable manifold, say the upper oné, is
homoclinic. If by a change of the parameter this connection is broken in
such a way that upper branches now return to a neighborhood of the saddle
point above the local stable manifolds, then periodic orbits bifurcate.

‘ In case of two-dimensional spaces this has been known for a long time
(compare eg. ch. XII [1]). For arbitrary finite dimension and analytic
vectorfields (C? or C* is sufficient) the result is due to L. P. Sil'nikov [13].
He obtained the bifurcating periodic solutions from fixed points of modified
return maps on a transversal to the homoclinic orbit which — in the
situation described — are defined by translation along the flow above the
local stable manifolds, and assign to each point on or below the local stable
manifold the intersection of the returning branch with the transversal:

at the critical parameter away from it

[243]
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In [15] and [17] we proved analogous results in infinite dimension, for
semiflows defined by functional differential equations (F.D.E.s). The onset in
[15] is different from Silnikov’s; for parameters a # a, close to a, one
obtains return maps #£,: D, =D, so that Schauder’s fixed point theorem
yields initial values for periodic solutions. This has the advantage that only
minimal smoothness is required (of class C!) — at the cost of assertions on
uniqueness and stability for the bifurcating solutions.

The approach in [17] uses a map of Silnikov type and guarantees
uniqueness and stability properties. Initial values of the bifurcating periodic
solutions lie on a differentiable curve. — A major difficulty is to show that
the modified return map in smooth enough for the application of an implicit
function theorem. For this we need certain continuous second order derivati-
ves of the semiflows. The main tool is a sharpened inclination lemma (4-
lemma) for C2-maps in arbitrary Banach spaces which are not necessarily
reversible, Lemma 2.1 in [16].

We make a digression and describe a special case of the relevant
estimate. Consider a C2-map h: U —E in a Banach space E with hyperbolic
fixed point 0eU (i.e. the spectrum ¢ of Dh(0) is disjoint with the unit circle
— O €0 is not excluded here). Assume for simplicity that the unstable space P
of Dh(0) has dimension 1, that Dh(0) is a strict contraction on the stable
spage Q, and that P and Q are invariant also under the nonlinear map h. Let
p and g denote the projections given by the decomposition E = P ® Q.

Then there is a constant ¢ > 0 such that for every suitable transversal H
to P (we do not make this precise here, but H is not required to be a
submanifold) in a sufficiently small neighborhood U’ of 0, for all points x in
preimages H, = (h|U’)"*(H), keN,, and for all nonzero tangent vectors

A €T, H, (which can be defined) we have

/s
m < c|px].
lqt|

(t, x)

Q

This pointwise estimate of inclinations yields in particular a better result
than uniform convergence, as for example in Palis’ first A-lemma [12], since
we have geometrical convergence of sup {|px|: xeH,! to 0 for k — c0.

Similar estimates for difffomorphisms appeared already in the course of
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[7]. [16] contains a necessarily different, directly accessible proof for the
more general case.

For a generalization of Palis’ A-lemma without pointwise estimates, to
arbitrary smooth maps in Banach spaces, see also [6].

Coming back to semiflows, we would like to mention two other new
results on bifurcation from homoclinic or heteroclinic solutions in infinite
dimension, [2] and [3].

An open problem remains to derive analogoues of Sil'nikov’s result in
[13] for homoclinic solutions in higher-dimensional unstable manifolds.

Another drawback is still the lack of examples. This is partly due to the
difficulty of finding homoclinic orbits, of course.

In [15] we established existence of heteroclinic solutions for F.D.E.s

(af) %(t) = af (x(t—1))

with parameter a > 0 and periodic nonlinearity f: R — R which describe the
simplest case of a state variable on a circle with one attractive rest point,
negative feedback, (one other rest point) and a delayed reaction to devia-
tions:

A B

The parameter multiplying the nonlinearity can be interpreted as the delay
since eq. (af) is equivalent to
y@) = f(y(t—a).

Special cases to which the result from [15] applies model prototypes of
phase-locked loops [4, 14]. There are also relations to models from mathe-
matical biology.

Let C denote the Banach space of continuous real functions on [ -1, 0],
equipped with the supremum-norm. Eq. (af) defines a semiflow F(-, -, a):
Rg xC = C, by

F(t’ o, a) = X,

x,(s)=x(t+s) for allt>0 and se[—1, 0],
with the unique solution x: [—1, c0) = R of the initial value problem
x(t) =af (x(t—1)) for t >0,
x|I[-1,01=0, (0)=x(0+).
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The heteroclinic solutions which exist for a critical parameter a, leave
the equilibria given by 4 +j(B— A), j €Z, monotonically increasing and settle
down at A+(j+1)(B— A) in a damped oscillation.

We proved (Theorem 2 [15]) that for a > a,, periodic solutions of the
second kind bifurcate off; i.e. solutions with “periods™ p > 0 such that

x(t+p)=x(t)+(B—A) for all teR.

. ~ //\v/v

A

/\
Y

Such solutions correspond to periodic rotations with period p on the circle.

The same example was taken up in [17], and also in [3]. To our
knowledge, there has been no other example for bifurcation of periodic orbits
from saddle connections in infinite dimension.

In the present paper we state a theorem on bifurcation from homoclinic
~orbits for semiflows defined by F.D.E.s, analogous to Theorem 13.2 [17],
construct an example and verify the hypotheses. This construction is more
complicated than in [15]. The example is again of type (af), with parameter
a > 0 and with a nonlinearity f: R — R which now has zeros at 2¢ <0 and
at 0, with 0 < f on (3¢, 286)u(0, —¢) and f <0 on (2&, 0).

2\/’

We find a critical parameter g, with a homoclinic solution x"® which
decreases from 0 to a value in (3¢, 2&), increases then beyond 2¢ and 0, and
ends in a damped oscillation around O.

0 N\ _ N

v N
X 2y(ao) L(ao)

3¢

2¢
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The two zeros of x'°—2¢ are spaced away from each other by more than the
delay interval (of length 1). A
The bifurcating periodic solutions y*: R — R exist for a <a,. Their

orbits are unique in a neighborhood of the closure of the orbit {x;°: ¢ €R} in

C, stable and attractive with asymptotic phase. Periods tend to oo as a1a,.
The graphs of the solutions y* with orbit {yf: teR] close to thé

homoclinic connection show that y* oscillates around the constant solution ¢

—2¢ with

(SO) |z—z'| >1 for each pair of zeros z # z’

of y*—2¢&. This indicates a relation to “slowly oscillating periodic solutions”;
i.e. to periodic solutions with property (SO). The latter play a prominent role
in the dynamics of equation

x() = f(x(—1)
with nonlinearities f: R — R which satisfy the negative feedback condition
(NF) xf(x) <0

globally, for all xeR\|0}. The dynamics in this simplest case of delayed
negative feedback is very rich — we do not intend to give here an account of
what has been accomplished. In our case, (NF) holds true for af (- +2£) on
the interval (¢, —2&) but breaks down at the zero —2&. Therefore our result
shows how a family of slowly oscillating periodic solutions can vanish in a
homoclinic solution when amplitudes increase beyond the domain of negati-
ve feedback. This process goes along with small oscillations around the other
equilibrium, where one has positive feedback, locally, — the fact behind is
that all trajectories in the stable space of the linearization of F (-, -, a,) at the
stationary point ¢ = 0 are spiralling in.

Small wiggles in larger amplitude periodic solutions are also observed in
more complex scalar F.D.Es, for example in relatives of models

(f, @) x(t) =f(x(t—1))—ax(t)

for the density of the red blood cell population, due to Lasota and
Wazewska—Czyzewska [8], Mackey and Glass [9]. Here, « >0, f(0) =0,
~f(R“)‘c: R*,_f’(O) =0, f' > 0 on some interval (0, ) and f' <0 on (£, 00).
For a detailed study, see [10].

Linearization at the first positive zero of f —aid and-a look to the right
hand side of eq. (f, a) for x(t—1) and x(t) large reveal
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that one may expect parameters with homoclinic solutions and bifurcation of
periodic solutions from them also in this class of equations.

Finally, note that our result includes periodic nonlinearities as shown
above.

2. Scalar autonomous F.D.Ess and the bifurcation theorem

Let f: R =R be a C*-function with f(0) = 0 and f’(0) = 1. By a solution of
equation

(@) X(1) = af (x(:— 1)

with parameter a eR, we mean either a continuous function x: [s—1, o0)
— R, seR, which is differentiable for ¢t >s with (af) for these ¢, or a
differentiable function x: R — R which satisfies eq. (af) for all ¢t eR. Recall
the notation x, for the function [—1, 0]3s — x(t+5) eR whenever [t—1, t]
is in the domain of the solution x.

For each (¢, a)€C xR (see introduction) there is a unique solution x
= x(¢p, a): [—1, o©) =R of eq. (af) with x, = ¢. This follows easily with the
aid of the formulas

x(t) = x(n)+3'af(x(s—1))ds

for all neN,, t€[n, n+1]. The parameterized semiflow F: R xC xR = C
given by the relation F(t, ¢, a) = x,, x = x(¢, a), is continuous, of class C!
on (1, o) xC xR and of class C2? on (2, o) x C x R. Furthermore, D, F exists
and is continuous on ‘Rj xC xR. '
. Trajectories X: Rt -+ X,eC, X: [s, +0)3t—=>X,eC (s€R) of
F(, -, a), aeR, are defined by the implication

s<t=>X,=F(t-s, X,, a).
Solutions x: R—=R (x: [s—1,0)—=R) and trajectories X: R—-C
(X: [s, 0) = C) are in a one-to-one correspondance, with X, = x, for all
teR (t = s); in particular, x(t) = X,(0) for all ¢t in the domain of X.
f(0) =0 implies F(t,0,a) =0 on Ry xR, and we have
D,F(t, 0,a ¢ =y,
where y: [—1, o) =R is the solution of the linear equation

(a-ad) y@)=ay(-1) .

with  yo,=¢. The semigroups T(:,-,a): (t,9) =T, @, 8=y =
D,F(,0,a)p, aeR, are strongly continuous. The spectra o(a) of their
generators are given by the characteristic equation, i.e. by the zeros of the
analytic function
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z —»z—aqe *

(the characteristic equation follows from the Ansatz y(t) = ¢* for a complex-
valued solution of eq. (a-id)). For each a > 0 there is a unique positive zero
u(a). Every such u(a) is a simple zero. The map 0 <a —u(a)eR™ is analytic
and strictly increasing, with u(a) |0 as a|0. We have

(2.1 Rez <loga for all a >0 and all z€a(a)\{u(a)},

see Proposition 2 [15]. One can show that for 0 <a < 3n/2, every
z€eao(a)\{u(a)} satisfies Rez < 0 while +3ri/2 €a(3n/2). Note also 0€a (0). It
follows that for all a in the interval (0, 37/2) there is a decomposition

C=P,®0,
into T(-, -, a)-invariant closed subspaces P, = R®, and Q,, where
&, (t) =" for te[—1,0].

Nonconstant trajectories in the “unstable space” P, grow exponentially,
trajectories in the “stable space” Q, decay exponentially as t = + 0. (For a
=0 and a = 3n/2 there are center spaces, containing nontrivial bounded
trajectories R —C))

Let p, and g, denote the projections onto P, and Q,, defined by the
decomposition above. Note that for ¢ €P,,

(2.2) 0 =002, |0l =]p0)

so that pg: ¢ — @ (0) projects P, onto R, with pg®, = 1.

In the sequel, the symbols B,, B,, B,, ..., B;, B,, ... always denote
open balls in C with center 0. For the statement of the bifurcation theorem
and for the next sections we need the following version of the saddle point
property for the parameterized semiflow F:

Let an open set A € (0, 3n/2) and some B, be given. There exist B,, B,
with B, < B,, constants ¢>0, y>0 and maps u, P,nB, -Q,,
S.: Q.nB, = P,; aeA; with the following properties.

I. For every ae A we have that

() u,(0)=0, s,(00=0. u, and s, satisfy a Lipschitz condition with
constant 1/2. The graphs
U,:= lo+u,(¢): peP,nB;} and

Sa:= 8.(@)+0: 9peQ,NB,}

are tangent to P, and Q,, respectively, at ¢ =0.

(i) For every ¢eP,nB, there is a unique trajectory X* = X*(¢
+u,(¢)): R—C of F(-, -, a) with X§ = ¢o+u,(¢) and |X}| < ce”|¢| for all
t<O0.If X: R—C is a trajectory of F(-, -, a) with X, €B, for all t <0 then
X = X*(p+u,(p)) for some ¢ =P,NB,.
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(i) ¢ €Q, "B, implies |F(t, s,(¢)+ ¢, a) < ce || for all t>0. If
9eC and F(t,p,a)eB, for all t>0 then ¢ =s,()+y for some
‘/’EQamBl'

II. For every a€A, p,B, — B, and q,B, < B,. The maps

BZ XAB((p, a) .—’ua(pa (p)ec9 B2 XAB((D, a) _’sa(qa (P)EC

are of class C2.
Here is the
BIFURCATION THEOREM. Let a, €(0, 3n/2) be given with

Rez < —u(ay) for all zeao(ay)\ \u(ay)).

Let A€ (0, 3n/2) be an open neighborhood of a,. Let balls:B, — B,, constants
¢>0and y >0 and two families of maps u,: P,"B; - Q,, s,: Q,nB, = P,;
a€A; with properties 1 and 11 be given.

Suppose there exist n€R with n®,eB, for all acA, a ball B; c B,,
t. €R, t_ <t,, >0 such that the trajectory X° = X*(n®,,+u,,(n%,,)) of

F(-, -, ay) is homoclinic with
PR Pag X{ < PRSag(dag X7)  for all t <t_

and .
X%eB; forallt>t, (and lim X? =0),
t—=+

while for every a€A with ay—e <a <a, the trajectories X° = X*(n®,
+u,(n®.)) of F(-,", a) satisfy '

PR Pa Xf.,. < Pr sa(qa Xf.,.)'

Then there exist a neighborhood V of {X?: teR} u{0}, an open neigh-
borhood A’ = A of a, and a differentiable curve

A'2a—-¢,eC

such that

() Pay € X?: LER),

(i) for every aeA’ with a < a, there is a periodic trajectory Y*: R -»C
of F(-, -, a) with Y§ = ¢, and (Y?®: teR) c V; Y is orbitally asymptotically
stable with asymptotic phase,

(iii) there is no periodic trajectory Y: R -C of F(-, -, ay,) with orbit
tY,: teR} in V,

(iv) for every a€ A’ with a < ay and for every periodic trajectory Y: R
—C of F(-, -, a) with {Y,: teR) c V there exists t eR with Y, = Y% _ for all
seR.

This can be proved exactly as Theorem 13.2 [17]. — Exponential
estimates (not contained in the saddle point property above) imply the
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following lemma which will be useful for the verification of the hypotheses in
the bifurcation theorem.

LEmMMA 2.1. Let an open interval A € (0, 3n/2) be given. Consider B, — B,,
constants ¢ >0, y >0 and maps u,: P,"B; = Q,, s,: Q,NnB, > P,; a€A;
with properties 1 and 11. ,

Let a,€A be given. There exist 8, > 0 and an open neighborhood A c A
of ay such that for every 6€(0, é,) and r > O there is an open ball By B,
with the following properties.

For every (¢, a)eB; x A, 6®,€B, and 6®,+u,(0®,) €B,, q,¢ €B,, and

PR Pa® > PrS.(q. @) implies that there is t©=1(p,a) >0 with |F(t, ¢, a)
—[6®,+u,(6®,)]l <r and with F(t, ¢, a)eB, for all t€[0, 1].

A proof would be lengthy, without unexpected arguments, so it is
omitted here. Readers interested in the technical details are referred to the
first sections of [17].

radius r

travel time ©

Ua

3. Nonlinearities with two zeros

We bégin with a parameter a, €(0, 1) such that
(3.1) for all ae(0,a,] and zeo(a)\{u(a)], Rez <loga < —u(a).

This is possible because of (2.1). Let g: R =R be a C2-function as before,
with g(0) = 0 and ¢'(0) = 1. Assume furthermore that g has another zero at
2, & <0, with

(32 0<g on (328, g <0 on (2£,0), 0 <g on (0, —¢&],
that g is bounded with
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(3.3) ¢ <d.g,
(34 a,g'(2f) < -1,
and that there is some x €(0, 1) with
(3.5 la, gl < x|yl for all nelé, —£].
[
3% 28 | ~¢
€ _____________________________

Condition (3.4) will only be used for the proof of part (ii) of the next
proposition. It can be weakened to

a,g'(29) < —1/e,

at the cost of a lengthy argument which seems not worth while here. The role
of condition (3.4) will soon become clearer when we modify g on the interval
(=00, 28) in order to start the search for the homoclinic solution.

ProrosiTioN 3.1. Consider a solution x of eq. (ag) with a in (0, a.]. Let
teR.

(i) If 2¢ <x, <0 then either 2£ <x <0 and x <0 on (t, +o0), and
lim x(s) = 2¢, or
s—+

(%) there exists z >t with x(z) =2¢, x <0 on (¢t,z+1), 3¢ <x on (t, z+1].

(i) a=a, and 2 <x, <O imply (*).

(i) x,(0) = —¢& implies x > 0 on [t, + o0).

(iv) If 0 < x, < —¢ then there exists s >t with 0 <x on (t, s], x(s) =
-¢( 0<xon[t—1, +00).

Proof. (i) Note that for all s >t with 26 <x <0Oon [t,s], x <Oon (s
+1], by (3.2), and for ve[s, s+1], x(v) = x(s)+ [ag(x(s'—1))ds’ > 2{ +¢,

by (3.3). In case 2£{ <x <0 on [t—1, + ), (3.2) yields x <0 on (t, +o0).
Set b:= lim x(s). Then 2£ < b <O0. By eq. (ag), lim x(s) =ag(b). 2¢( <b

s—+ o s—=+ ®©

would imply lim x(s) # 0 which is impossible because of 2( <x <0 on

s—+ o

[t—1, + ©). — Therefore b = 2¢.
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(ii) Follows from (3.4), by means of the elementary Lemma 2.3 in [11].

(ii1) Suppose x(s) <0 for some s >t. Then there are v, w with t <v
<w<s, x(v)=-¢ xw=0, 0<x< —¢ on (v,w). By (33), x>¢ on
(v, w). Therefore w > v+1, and 0 < x(v+1). By (3.2), 0 <x on (v+1, w); we
arrive at a contradiction to x(w) = 0. )

(iv) For eachv >t with0 <x< —¢on[t—1,v],0 <xon(t, v+1], by
(3.2). Moreover, x > minag|[minx,, —£] >0 on (t, v+1]. This yields exi-
stence of s >t with 0 <x on (t,s+1] and x(s) = =&, 0 <x on [t—1, 5]
Use (iii).

Now let us examine the lower branch of the local unstable manifold at
0€eC, for a=a,. We employ the saddle point property as stated in the
preceding section, for the semiflow G(-, -, a,): R§ xC — C defined by solu-
tions of eq. (a, g): It follows that there exist balls B, = B, = {p€eC: |¢| <
— ¢}, constants ¢ > 0 and y >0, and maps u: P,, "B, »Q,, ,s: Q,, NnB,
—P,, such that the analogues of I and II hold.

Choose n < 0 with n®,  €B, so small that the trajectory X* = X* (39,
+u(n®,,)): R —C of the semiflow G(-,-, a,) satisfies X} €B, for all t <O0.
This is possible by the estimate of X* in I (ii). Define x(t):= X} (0) for
all teR. x is a solution of eq. (a,g) with x, = X¥ for all teR and

lim x(t) =0.
t——a

ProPOSITION '3.2. There exists z > 0 with 2§ <x <0 on (— o0, z), x(2)

=2 x <0 on (-0, z+1).

Proof. (We omit the index a,.)

(@) For each t <0, gX¥ = u(pX}). Proof: Let t <0. X: R3s = X¥, ,eC
is a trajectory of G(-, -, a,) with X,eB, for all s <0. By the analogue of
I(Gi), X = X*(p+u(¢p)) for some ¢ ePNB,. Hence X} = X, = @ +u(o).

(b) X # 0 for all t <0, since otherwise 0 = pX¢ = n®, a contradiction
to n <O.

(c) pX¥ # 0 for all t <0, since otherwise for some t < 0: 0 = u(pX}),
0=pX*+u(pX¥ = X* (by (a)), a contradiction to (b).

(d). Recall pX¥ = (pX¥)(0)®, for all t eR, and & > 0. By continuity, (c)
now gives that either pX}* <O for all t <O, or pX* >0 for all t <O0. pX§
=nP <0 excludes the second possibility. — lim |u(@)|/|p| =0 allows to

- P3p 20
find 8 > 0 with 2[u ()| < |¢| e ““*’ for all ¢ €P with || <é. By |¢|-e ““*’
=lp©@)]e ““* = min |p(1) for p€P, we obtain ¢+u(p).<0 whenever
te(—-1,0] .
¢ePand -6 <¢ <0. With lim X =0 and pXF <O for t <0 and (a), we
t—— o

get x, = X¥* <O for all t in some interval (— o0, s], where s < 0. x, = X} €B,
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for all t <O gives ¢ < x(t) for all t <O0. Apply parts (i) and (ii) of Pro-
position 3.1.

Observe that the restriction of x to the interval (— oo, z+ 1] does not
depend on the values of g on (— 0, 2£) while for ¢ in the interval [z+1, z
+2],

t
x(®)=x@z+1)+ [ a,g(x(s—1)ds
z+1
depends on t, the restriction of x to (z, z+1] — where x <2, and on the
values of g on (—o0, 2¢) only.
We replace g, if necessary, by a bounded C?-function f with

(3.6) f=g on [2£, +0),
(3.7) {<a,f,
(3.8) 0<f on (3, 2),
so that
z+1
(3.9) —E<x(z+D+ l\' a, fox.

Let x: [—1, +00) =R be the solution of eq. (a; f) which coincides
with x.,, on [—1,0]. Set x(t):=x(r) for all t <z+1, x():=X(t—(z+1))
for all t >z+1. x: R =R is a solution of eq. (a, f) with lim x(t) =0,

26 <x<0on(—00,2), x(2)=2¢ x<0on (-0, z+1) andl—v'v_ito;l
—& <x(z+2).
As in the proof of part (iii) of Proposition 3.1 we infer
O0<x on [z+2, +x).
Let us also note
3¢ <x(z+1)
(since & <a,g(x(t—1)=a, f(x(—1)=x() for z<t <z+1) and
O<x on(z+1,z+2],
by (3.8) and 3¢ <x <2 on (z,z+1].

Remark. We changed g to f in order to obtain —¢& < x(z+2). This
change of the nonlinearity, which depends on x|(— o0, z+ 1], can be avoided.
Alternatively, one can write down somewhat technical a priori conditions on
g which ensure —¢ < x(z+2) — compare the hypotheses in section 2 of

[15].
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4. Critical parameter and homoclinic solution

We fix a_ in (0, a,) so small that
4.1) a_f <-=¢,

choose an open neighborhood A4 €(0, 3n/2) of [a-,a,] and set Bgy:
= lp€eC: |p| < —&]. The first aim is a suitable continuous family of lower
branches of local unstable manifolds at 0eC.

There are open balls B, < B; < By, constants ¢ > 0 and y > 0, and two
families of maps u,: P,"B; —=Q,, s,: Q,"B; = P,; aeA; with properties I
and II from section 2, now for the parameterized semiflow F defined by
solutions of the equations (af), aeR.

Pick n <0 so small that for every a €4, n®, €B,, and that the trajectory
X* = X*(n®,+u,(n®,)): R —>C of the semiflow F(-, -, a) satisfies X eB,
for all t <0. This is possible by the estimate of X* in I (ii). Define
x%(t) := XF¥(0) for all teR. Exactly as in Section 3 we infer that for each
acA, x* is a solution of eq. (af) with lim x°(t) =0, 2£ <x* <0 on

t—+—

(—a0, 0], ¥* <0 on (—oo, 1].

COROLLARY 4.1. For every acA there exists t_ =t_(a)eR with p,x°
< 8,(q.x0) for all t <t_.

Proof. Let a€A. The exponential estimate in I (it) permits to choose an
open ball B, so small that for (z, @) in Rg x(S, N By), |F(t, @, a) <|x3|. As
in the proof of Proposition 3.2 we see that there exists t; <0 such that for
all t <ty, q,x¢ = u,(p,x{) and p,x;{ <0. Choose t, <t, with x{ eB, for all
t<t,. Consider t<t,. xfeS,nB; would imply |x}| =|F(—t, x?, a)|
<|xgl, a contradiction. Then either p,x7 <s,(q,xf), or s,(q,x{) <p,xt
<0. The latter would imply 0 < —p,xf < —s,(q, %) < |5, (s (pa xD)|
< |p. x¢|/4, a contradiction.

Property II implies that the map

4.2 A3a - x} =nd,+u,(nd,) eC is continuous.
Let us write P., Q4, p+, 4+, P4+, 4, s, instead of P,_, ... from now on.
x* :="x"* is merely a translate of x, of course. We show

ProrosiTION 4.1. (i) There are reals s <0, t <0 with x; = x,.

(i) There exists z* >0 with 2£ <x* <0 on (=0, z%), x*(z*) = 2¢,
xt<0on(—00,zt+1), 3¢ <x* on (—o0,z*+1], 0<x* on (z*+1, z*
+2], =& <x*(z*+2), 0<x* on [z*+2, +0).

Proof. (i) lim x(t) =0 and I (ii) imply that there exists t; <0 with g, x,
t—— o

=u, (p+ x,) for all t <t,, compare part (a) from the proof of Proposition
3.2. Now x <0 on (—o0, 0] gives p, x, #0 for all t <t,; ie. p, x, <0 or
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0 < p, x, for each of these t. As in the proof of Proposition 3.2, we have some
6 =0(a,) >0 such that peP, and 0 < ¢ <6 imply 0 < ¢p+u, (), while
peP, and —6 <@ <0 imply ¢o+u, (p) <0. With lim p, x, =0 and with

t—+— o

p+ X +u,(pyx)=x, <0 and p, x, #0 for all t <t,, we infer that there
exists t, < t; with p, x, <0 for all t <t,, and by continuity,

pe X t <t} (7,00 P, for some 7§ <O0.
In the same way we find s, <0 and #* (7, 0) with
Pex i s<s}o(* 0 P,, and q,x =us(psx/)
for all s<s,

Hence there are t <t, <0 and s <s, <0 with p, x, =n*®, = p, x7, and

consequently x, = x.’.

(i) By (1),
xt(v+t)=x(w+s) for all v> —1.

Now the properties of x stated at the end of section 3 and the properties of
+

x* stated above imply the assertions.
For aela_,a.], set
zy(a):=inf{teR: x°(t) < 2¢}) < + 0,

zy(a@):=inf {t > z,(a): 2¢ < x*(t)] < + .

ProrosiTioN 4.2. (i) If z,(a) = + o0 then 2£ <x* <0 and x* <0 on R,
and lim x°(t) = 2¢£.

tgi;c;f z,(a) < +00 then 0 <z,(a), 26 <x* <0 on (-0, z,(a)),
x‘(zy (@) =2¢, x* <0 on (-0, z,(a)+1),
3¢ <xzy(@+1) < x* <28 on (z;(a), z,(@+1].
(iii) If z, (@) < + 0 and z,(a) = + 00 then x* <2¢ on (z,(a), + ),

0<x* on(z(a)+1, +o), lim x°(t) = 2¢.

(iv) If z,(a) < + o0 and z,(a) < + o0 then z,(a) >z, (a)+1,
3 <x* <2 on(z,(a), z5(a), x*(z;(a) =2¢,
0<x* on[z,(@+1,z,(a)+1).
(V) z;(a) =z < 400,25 i=2z,(a4) < +00, x* (23 +1) > =¢,
xt>0 on[z7+1, +o0).

(vi) x :=x"" <0 on R.
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-Proof. (i) z,(a) = +00 means that 2£ <x®. Recall 2¢( <x* <0 on
(—o0,0], and f =g on [2{, +o0). Apply Proposition 3.1 (i).

(ii) follows similarly. For the last estimate, see (3.3).

@iii). By (i), 3¢ <x® on [z;(a), z;(@)+1]. Recall 0 <af on (3¢, 2¢).
Proceed as in the proof of part (i) of Proposition 3.1.

(iv). z,(a) < + 0o and (ii) yield z,(a)+1 <z,(a) and 3¢ <x® <2¢ on
(z1(a), z; (@) +1]. Now 0 < af on (3¢, 2¢) gives 0 <% on (z, (@) +1, z5(a)}+1).

(v). Proposition 4.1 (ii) shows z* =z, (a,). x* <0 on [z*,z"+1) and
—¢<xt(z*+2) imply z,(ay) <z*+2 < +00. z7+1 <z,(a,) gives z" +2
<zy(ay)+1. By 0<x* in (z"+1,z,(as)+1) and by —& <x*(z* +2),
—¢& <x*(z5(as)+1). Use Proposition 3.1 (iii) and f =g on [2&, + ).

(vi). In case z,(a_) = + oo, apply (i). In case z,(a_) < 40, x~ <0 on
(-0, z;(a-)) and x"~(z,(a-)) = 2¢&. We show x"~ <¢ on [z (a-), +o0):
Otherwise, there exist s=>z,(a_), t >s with x, () =& x ~(s) =2¢ 2
<x"~ <& on (s, t). Hence 0 < x"~ (¢). This excludes s <t—1 since a_ f <0
on (2¢,&). By the choice of a_ (see (4.1)), —¢=x""()—x""(s)

t

= [a_ f(x"~ (v—1))dv <(t—5)"(— &), a contradiction.

ProprosiTION 4.3. There exists a, €[a_, a.) such that for all*a€[a,, a,],

z,(a) < + o0 and z,(a) < + o, and x°* (z2(a,)+1) <O0. The maps [a,, a.]>a
—z,(a)eR and [a,, a,]3a —z,(a)€R are continuous.

~ Proof. (a) The set 4, := faela_,a,]: z,(a) < +o0)isopenin [a_, a,]
(use x%(z,(a)) <0), as well as the set

A,:=l{aeA;: z;(a) < +00}.
Continuity of the parameterized semiflow, (4.2) and
x*(zy (@) = 2¢, X*(z;(@)) <0 for aeA,

imply that the map A, 3a —z,(a) €R is continuous. By a similar argument,
A,2a —z,(a)eR is continuous, too. We have [a_,a,] > 4, > 4,3a,.

(i)) In case A, =[a_,a;], set a,:=a_. By Proposition 4.2 (vi),
x*(z,(a,)+1) <O0.

(c) The case A4, £ [a_, a,]. Openness and a, €4, imply that there
exists a'€[a_,a,) with (a’,a*]c A4, and a’'¢A4,. Choose ¢ >0 with

maxa, f|[2¢E—¢€;, 2] < —2¢, and &, >0 with —¢, <mina, f|[2¢&, 2¢
+é,].

(c.1) Suppose a'¢ A,. Then z,(a’) = + o0, 26 <x* <0 on R, lim x¥(¢)

t—=+ oo
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=2¢. Choose s> 1 with 2¢ <x¥ <2f+¢,. By continuity, there exists

a, €(d’, a,) with 2¢ <x™* <0 on (—,s], 2¢ <x;* <2t+e,. We have
zy(a,) < +00, and z,(a,) < +o0, by the choice of a'. It follows that

s <z;(a,). With x™* <0 on (s,2,(a,)], 2&<x™<2+¢, on [z, (a,)
-1, z,(a,)) By eq. (a, f), —&; <X* on (z,(a,), z,(a,)+1]. Hence 2¢—¢,
<x™ <2¢ on (z;(a,), z;(a,)+1]. With 0 <x™* on (z,(a,)+1, z5(a,)], 2¢
—gy < x™* < 2¢ on (z,(a,)—1, z;(a,)). Equation (a, f) yields x"* < —2¢ on
(z2(ay), z5(a,)+1]. Hence '

x"*(zy(a)+1) <2E-2E = 0.

(c.2) Suppose a’'€A,. Then z,(a’) < + o0 but z,(a) = + 00, x* <2¢ on
(z1(a), +00), lim x¥ () = 2¢£. Choose s >z, (a)+1 with 2£—g; <Xx¥ <2¢.

t—+w
By continuity, there exists a, €(a’, a;) with s >z,(a,)+1, x* <2¢ on
(z1(ay), 5], 28—, < x;* <2& We have z,(a,) < + 0, by the choice of a'.
It follows that s <z,(a,). 0 <X™* on (z,(a,)+1, z5(a,)] gives 2&—¢,
<x™* <2 on [z,(a,)—1, z,(a,)). Therefore x™* < —2¢ on [z,(a,), z,(a,)
+1), and x"*(z,(a,)+1) <0.

Finally, consider the set
Ao := {a€[a,, a,]: there exists t > z,(a)+1 with x{ < 0}.

Ay is open in [a,, a,]. We have a, ¢ Ay, by Proposition 4.2 (v), and a, €A4,,
since 2¢ < x* <0 on (z,(a), z,(a)+ 1] implies x* <0 on (z,(a)+1, z,(a)+2].

It follows that there exists aq €(a,, a,] such that [a,, ag) = A, while
a0¢Ao.

x°:= x"® will be the desired homoclinic solution — see Proposition 4.4
below.
For a€[a,, ay] define

by (a):=inf {t €(z5(a), z;(@)+1]: 0 < x°(f)} € +©
(ie, by(a) = + 00 does not imply x* <0 on (z,(a), +©)) We have
(4.3) b, (a) = + oo if and only if x* <0 on (z,(a), z,(a)+ 1],
by Proposition 4.2 (iv). In particular,

(4.4) by (ay) = + 0,
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see Proposition 4.2 (iv) and Proposition 4.3. — Again by Proposition 4.2 (iv),
<

@5) b, (a){:}zz (@+1 implies o{ })'c"(t) for

{all te[b,(a), z,(a)+1)
t=b,(a) .

ProPOSITION 4.4. (i) b;(ag) < z,(ag)+1.

(i) For all t = b, (ay), x"°(t) (&, —9).

(iii) Let x = x°, z, = z,(a,). The zeros of x form a sequence of points b,
= b,(a,), neN, such that

b, <b,+y <b,+1<b,,, for all neN

b,,
0{<}x in {[ 122+ } and in (b,+1, b, +1)

> (z2+1, b, +1)
dd
Sor all {0 }neN.
even

and

(iv) lim x*°@) =0.

t—+

Proof. (We omit the index or argument a, when convenient.)

(@) Proof of (1). Suppose b, = +00. Then 2¢ <x <0 on (z,,z,+1].
Therefore x <0 on (z;+1, z,+2]. Hence x,,,, <0, a contradiction to
ao¢ Ag. — Suppose b, =z,+1. As above, x <0 on (z,+1,2z,+2), x <0 on
(z,+1, z,+2], and for some t > z,+1 close to z,+2, x, <0 which contra-
dicts ag¢ Ag.

(b) On [b,, +x), & < x.

Proof . Otherwise there exists t >z,+1 (> b,) with x(t) =¢ <0 and
with £ < x on [b,, t). We have x < —¢ on [b,, t] (since —¢ < x(s) for some
s<t would imply 0 < x(t), compare the proof of Proposition 3.1 (iii)).
Observe that for all se[t, t+1], z, <s—1 < t. Therefore 2¢ < x(s—1) < —¢
for such s. With (3.2) and (3.5), we infer that either 2¢ < x(s—1) <0 and
X(s) <0,0or 0 <x(s—1)<—¢and 0 <x(s) =aof(x(s—1)<x(s—1) < —¢.
Hence x,,; <0, a contradiction to ag¢ Ao.

(c) For every t > b, there exists s e(t, t+ 1) with 0 < x(s). Proof : Other-
wise x,,, <O for some t > b,. x(b;) =0, b, <z,+1 and 0 < x on [by, 2,
+1) imply t>z,+1. We have t*:=sup{s <t: 0 <x(s)} > —o0, b, <z,
+1 <t*<1t, x(t*) =0, and there is a point t'e[t*—1, t*) with 0 < x(t') <
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—¢&, 0 < f(x(t)); see (3.2). Obviously, x <0 on [t*, t+1]. We have
(%) x(t'+1) <0.
Proof of this: t'+1€[t*, t*+1) < [t*, t+1) gives
x('+1)<0. x(t'+1)=0 and 0 <aqyf(x(t)=x@"+1)

would result in a contradiction to x <0 on [t*, t+1].

With (b), £ <x <0 on [t*, t*+1]. Therefore x <0 on [t*+1, t*+2].
Using (%) and t'+ 1 €[t*, t*+1] we infer x(t*+2) <x(t*+1) <0, and' x <0
on [t*+1,t*+2). Again by (b), { <x<Oon [t*+1, t*+2]. Hence x <0 on
[t*+2, t*+3]. With x(t*+2) <0, x,x,3 <0, a contradiction to ay¢ A,.

(d) On [by, +0), x < —&. Proof: Otherwise, x(t) > —¢ for some ¢
= b,, and x > 0 on [t, + o), compare the proof of Proposition 3.1 (ii)). —
Suppose 0 <x< —¢ on [t,+o). Then O0<x on [t+1, +00),

lim x(s) €0, —¢], lim x(s) = ao f( lim x(s)) >0, and we obtain a con-
s—=+ s—=+ @ s—=+ o

tradiction. — It follows that for some s > ¢, x(s) > —¢&. (4.2) and continuity
of the parameterized semiflow F imply that there is a sequence of points a,
in [a,, ag)) = Ay, n€N, with lim a,=a, and x"(s) > —¢ for ‘all neN.

n—+ o

Arguing as in the proof of Proposition 3.1 (iii) we get

(%%) 0<x™ on[s, +0) for all neN.

a, €4, implies x," <0 for some t, > z,(a,)+ 1. (+*) gives 1, <s for all neN.
We have lim z,(a,) = z,(a0), and there is a subsequence (f,u)hey Which

n—++ w

converges to a limit t' in [z,(ag)+ 1, s]. (4.2) and continuity of F yield

An(k n(k
x,’:(k)) = F(t"(k), xon( ), a"(k)) _*F(t’, xo, ao) = x,, as k d + Q0.

Therefore x,, < 0. 0 < x on (b, (ao), z,(ag)+1] and t’ = z,(ap)+ 1 imply t'—1
= z,(ap)+1, and x, < 0 with t' = z,(ag)+2 > b, (ag)+ 1 is now a contradic-
tion to (c).

(¢) Existence of b,: Recall 0 < x on [by, z,+1) — see (i) and Proposi-
tion 4.2 (iv) — which gives 0 < x(z,+1). 2¢ <x <0 on (z,, b,) yields x <0
on (z;+1, by +1). Suppose 0 < x(b;+1). With (d), 0 <x < —¢ on (b, b,
+1). Therefore 0 <x on (b;+1,b,+2), and 0 <x on (b;+1, b; +2]. By
continuity there exists t > b, +2 close to b;+2 with 0 <x on [t—1,].
Again by (d), x < —¢. Now the analogue of Proposition 3.1 (iv) for f implies
a contradiction to (d).

It follows that x(b;+1) <0, and x <0 in (z,+1, b, +1), and there
exists a unique zero b, of x in (z,+1, b, +1). Note

(%) 0<x<—=¢ on (b, by).
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(f) Existence of by: We have x(b,) =0, £ <x <0 on (b,, by +1], by the
results from (e) and (b). (**x) gives 0 < x on (b, +1, b, +1). With (c), applied
tot =b,: x(by+1) > 0. It follows that there exists a unique zero by of x in
(b,, b,+1), and 0 <x on (b, +1, b,+1).

(g) Now it is obvious how to prove assertion (iii) by induction.

(h) Proof of (iv). Let neN. Assertion (iii) implies ’

max  |x| = |x(bp+ 1+ 1| = [x(bps1+1)—x(bys )l
bn+2:bp+ 3)

byt
s% ,f_llx(t)ldt (with |x] < —¢ on [by, + ),

"2 by+1 <b,.,, and with (3.5)

and a, <a,)

bp+1
<x [ |x(@)lde (since b,+1 <b,,,)

b’l
<» max |[x] (since b,.y—b, <1).

[bn'bn+ l]

Use x €(0, 1).
5. Verification of the hypotheses for bifurcation

A. The linearization (t, ¢) = D, F(t, 0, ap) ¢ of the nonlinear semiflow
F(-, -, ao) at the stationary point 0eC coincides with the strongly conti-
*nuous semigroup T(-, -, a,) from section 2 so that (3.1) and 0 <a, < a,
yield the hypothesis on the spectrum of the generator of (¢, @)
- D, F(t, 0, ag) @.

B. Recall that for all a in the open neighborhood A € (0, 37/2) of a,,
n®,€B, and n®,+u,(nP,) = X§(...)€B, = B, < (9eC: |p| < —¢&].

C. Choose 4, > 0 according to Lemma 2.1. , im  ju,, (@)l/lo| =0 im-

ag3 ;’O
plies that there exists 6 €(0, 6o) with 0 <@, +u,,(6®,,) < —¢ (compare part
d) of the proof of Proposition 3.2). Take r > 0 so small that

(5.1 P <P+ (0Pag) < 6Py +uay (0Pap)+r < L.

Consider an open ball B, = B, and an open neighborhood 4 c A of a,, as
quaranteed by Lemma. 2.1, and furthermore so small that

(52) r<6P,+u,(6P,) <P, +u,(6P,)+r < —¢& for all aeA,
(5.3) F(t, ¢, a)€B, for all (t, o, A R x(B3 NS,) x {a}, aeA.

Inequality (5.2) can be achieved by means of continuity (see II, Section 2, and
(5.1)); (5.3) is obtainable from the exponential estimate in II (iii), Section 2.

(5.4) lo—[6P,+u,(6®,)]| <r and aed imply 0 < ¢ < —¢&,
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since for all te[—1, 0], 0 < [6DP,+u,(6D,)](t)—r < @(t) < [545,,+u,, 6D)]1(0)
+r < =¢, by (5.2).

D. Choose ¢, > z,(as)+ 1 with x"® B, for all t > t, (Proposition 4.4).
E. By Corollary 4.1, there exists t_ <t, with

Pr pao x:’O < Pr Sao (qao xtao) for all t S L.

F. Recall from Proposition 4.3 that 4, < A is open, and that the map
A;3a »z,(a)eR is continuous. It follows that 4,3a —=x?(z,(a)+1)€R is

continuous as well. We have a, €4, and 0 < x"°(z,(ao)+ 1). Therefore there
is an open neighborhood A’ c AN A, of a, with a* <inf4’, and 0
< x%(z;(a)+1) for all acA’. In particular, b, (a) <z;(a)+1 < + oo for all
these a, and 0 < x?(b, (a)). Following the hints in the proof of Proposition
4.3, we infer that the map A'3a — b, (a) eR is continuous.

G. Choice of ¢. Proposition 4.4 allows to find B in (z,(aq), by (ao)) with
¢ <x" < —¢ on [B, + ). Continuity of F and the map A'3a —b,(a)eR
and (4.2) altogether imply that there exists ¢ > 0 with (ao—e¢, ag+¢) contai-
ned in A’ such that for every ae€(ay—¢, ao+¢),

(5.5) x¢, €Bs,
(5.6 B <by(a) <zy(ap)+1,
(5.7) E<x®<—¢on [Bt.].

From (5.6) and (5.7),

(5.8) ( <x®"< —¢ on [by(a),t,] for all ae(ay—e, ag+¢).
H. For every ae(ay,—¢, ay) there exists s > b, (a) with x?(s) = &.

Proof. For such a, a, <infA' < ay—e <a <ay, so that there exists
t>z,(@)+1 with x! <0 (see the construction of a, in Section 4;
[a,, ag) = Ag). 0 < % on [z,(a), z;(a)+1), by (a) <z,(a)+1 and x°(b;(a)) =0
imply t > b, (a)+ 1. With (5.8), £ <x{ <0. Now f <0 on (2&, 0) yields x*(s)
= ¢ for some s >t > b,(a)+1.

L. For all ae(ap—e¢, ag), xi, ¢S.,.

Proof . Let a in (ao—¢, ao) be given. We have x{, €B;. Assume x;, is in

B3 nS,. By (5.3), x{ €B, on [t,, +00). With (5.8), { <x? < —¢ on [b,(a),
+ o), a contradiction to H.
J. For all ae(ap—e, ag), pr Paxf+ <PRsa(qaxf+)-'

Proof. (5:5) and Lemma 2.1 show that s,(q, x{, ) is defined. Part I above
shows p,x{, # s,(q.x{,). Therefore, either p,x{, <s,(q.x{,), or s,(q,x;,)
< Pp.X{, - Suppose the last inequality holds true. Lemma 2.1 and (5.6) show
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that for some v =1(x{, , a) >0,

(59) lx'a+ +t [6¢a +u, (6¢a)]| <r
and
(5.10) x¢€B; on [t,,t,+1].

Using (5.9) and (5.4), we infer 0 < x{_,, < —¢, and the analogue of Proposi-
tion 3.1 (iv) for f instead of g yields
(5.11) 0<x?on [t,+1, +0).

From (5.10) and (5.8), £ < x° on [b,(a), t, +1]. Together with (5.11), £ < x*°
on [b,(a), + ), a contradiction to H.
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