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Consider the following device, which is due to E. R. Berlekamp of
Bell Labs and Professor David Gale (University of California, Berkeley):
an n X n» array of lights is controlled by 2 switches, one for each row
and one for each column. When a switch is thrown, all lights in the corres-
ponding column which are off turn on, and those which are on turn off.
This device may be thought of as a code with 2n—1 information bits
and minimum Hamming distance n. It is easy to enumerate the code-
words by weight (i.e., the number of ways of getting K lights on starting
from an all-off position), but it is not so easy to find the distribution
of co-set leaders (i.e., the minimum number of lights left on starting from
an arbitrary position). Finding co-set leaders for n = 15 was the object
of a computer experiment of Gleason [1]. Moon and Moser [3] showed.
that, as n becomes large, most co-set leaders have weights close to n2/2.
The purpose of this note is to derive upper bounds on the weights of
co-set leaders.

It is convenient to consider the array of lights as a matrix of 4-1s
(4+1: light on; —1: light off). Then throwing a switch simply corresponds
to multiplying the corresponding row or column by —1. In this guise
the problem we are addressing was posed by Tusnady and Van Lint.
There is no inherent reason to restrict our attention to square matrices.

Let C(m,n) denote the set of all m X » matrices with entries 1.
Let A = [a;;]¢C(m,n). We are allowed to choose a subset of rows and
change the signs of all the entries in these rows. We are also allowed to
do the same with the columns. More formally we define

A~B iff B=D,AD,,
where D,,, D, are square diagonal matrices of orders m, n and entries
41 on the diagonal. Clearly ~ is an equivalence relation. Let {A} denote
the equivalence class containing A. Set
d(4) = Z )
i,

1(A) = 3$[d(4)+mn] = {# of ay; = +1}.
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We wish to find

g(m,n) = max min l(B),
AdeC(m,n) Be{d}

f(n) = g(n,n)

Komlés and Sulyok [2] found (for m, n sufficiently large) the value of

max min |[d(4)].
AeC(m,n) Be{d}

They observed that the moment method (which we apply below)
shows that for some ¢, c,
2

n? 3/2 n 3j2
Y — 6N <f(")<—2“ — N,

Our main result is the t‘bllowing:
= THEOREM.

n? ,n3/2 n2 3/2
— = +o(n*?) < f(n) < — — —— +o(n%?).
2 2 2 2%
ne 3/2 _
Part I. f(n)< o Ve + o(n%?).
T

Proof. Define r;(4) = Y ay, s;(4) = Ir;(4), and §;(4) = }[r;(4)+

7
+n] = [# of a; = +1 in the ith row].- Fix A<C(n,n). Let o range
over the 2" possible column shifts. Then, regardless of A, the ¢-th row of A
runs over all 2" possible values. Thus

E,(s:(4°) = BE(X),
where X is the distance from the origin after a random walk of » steps

of +1. By a straightforward integration involving the normal curve
we find that ’

B, (s,(4°) = Vn ]/ 2 +omn.

Thus

z, gnlsi(A“)) — n ]/ % +o(n).
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So for some fixed ¢

D) 8i(4%) = n” ]/—2— +0(n*?).
i=1 T

Upon A° we then apply operation 7, a shifting of each row to achieve
the minimal number of +1s in that row. We have

;(A%") = min[l,(4°), n—1,(4°)]
= $[n—s;(4°)]
Thus

L(A%) = D) HIn—s(4°)]

Z(Aat) — 2

??/3/2

L 32
< 5 Vo +o(n’7).
(Note: 1/V/2r ~.4)
n2 3/2
Part IL — —— + o(n*?) < f(n).

Proof. A Hadamard matrix of order n is an nXxn matrix H with
entries -1 such that

HHT = uI,

where I is the idetity matrix. Hadamard matrices have been studied
extensively and we shall only use some of the elementary properties.
We note that

(D, HD,) (D,,HD,)T = D, HD,DTHTD?T = nl,

so that {H} consists solely of Hadamard matrices. First we show: If H
is a Hadamard matrix of order n, l(H) > n?/2—n**/2. For consider the

rows of H as vectors’ u,, ceny ﬁneR". They are mutually orthogonal of

length Vn. Set v = (1,1,...,1,1)eR" To find a lower bound I(H) we
first find a lower bound for

n—» -
v'v"u/,-.
i=1

—1/2

Multiplying  and all the 3;,- by » affects this sum by a factor

of n~!. By a rotation of R" we send

w; > ¢ =(0,0,...,0,1,0,...,0) (1 in i-th position),

- =

V= 0* = (Vy, Vgy ...y V,) |—'5*| =1.



168 T. A. BROWN AND J. H. SPENCER

By elementary calculus the minimum value of Y v*-¢ = Y'v; subject
to the condition [v*| = 1 is achieved when v; = —n~"2 for all 4. Thus

dH) = Y v-u, > —n?,
i=1
and so
a 3/2
WH) >~ "
2 2

This would complete the proof of Part II except for the fact that
Hadamard matrices do not exist for all orders. It is known that Hadamard
matrices of order 4°12 exist. By the theory of simultaneous approxi-
mations, given 6 >0 we can find an n, such that, if n > n,, then there
exists a pair of integers (i, j) such that 0 < n—4°12’ < én. Thus we can
find matrices of any sufficiently high order which are ‘“‘almost’’ Hadamard.
But in order to complete our proof we must show that the non-Hadamard
portions of these matrices make a substantial contribution to the number
of +1s under any combination of row and column shifts. To do this we
employ a method used by Moon and Moser [3].

Consider an s x ¢t matrix A, where s <t. It is not difficult to show
that there are 2°*‘~! matrices in the equivalence class of A. Thus there
are 2%~(+i-1) equivalence classes altogether. Each contains a matrix B
such that I(B) < ¢(8,t). Thus

st—(s+t—1) " (st
gst—(s+t-1) Z( )

4 ?
=0

An application of Stirling’s formula shows that

st / log2 \e
9(s,0) > — =/ stls+8)—— +o(s"1)

> s?t —18%/10g 2 + 0 (s"21).
Thus there exists a constant K such that
g(s,t) =g, s) 2% — Ks'?t  for all t>s.
Given an & >0 pick %, such that for n > n, there exists an m

such that an m X m Hadamard matrix exists and m-s8 = n, where
0<s<em/4K .
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Imagine constructing an » X n matrix from three ‘‘pieces”, asg indicated

below:
m S

m mxm mxs

S sSxn

Clearly
f(n) = f(m)+g(m, s)+g(s, n).
Applying our results above gives

3/2

m?2 m ms ns
> _ _ 112 7 _ Kps'l?
f(n) 5 5 T3 Kms'?+ 5 n
m+8)2  md?
3/2
> _,rg_ _ n _ 87&3/2.

This concludes the proof of part II.
Applying these methods we have found

f) =0, f(4) =4, 32 < f(10)
f2)y=1, fB)=1, 72 < f(15)
f(3) =2, 22<f(8)<23’

Ty
9.

NN

3
8

We now study the values of g(m, n) for n fixed and m -» 4 oo.
* THEOREM.

k
2@(?) if n o= 2k+1,

k=1 % (n
2@(@)4—?(1‘;) if n = 2k.

1=0

g2 n) =

Proof. We may think of an AC(2""!, n) as corresponding to an
ordered family of 2"~' (possibly non-distinct) subsets of n-element set.
In particular, 4 & (8;,..., 85,_1), where 8; = {i: a;; = 41}. Define A
by letting the 2"~ ! sets run over all 8, |S| < kif » = 2k+1 and if » = 2k
all 8, |8|< k and all §, |8] =%k, 1eS.
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A column shift preserves the family of 8, except possibly if n = 2k
shifting from those 8 with S| =%, 18 to those with 1¢8. Looking at

Part I of our main theorem we note that Z (A°) is independent of o.

i=1

As E[Z1 8; (A" )] i8 lndependent of A this particular 4 gives the minimal

=1
poss1b1e maxz 8;(4°) and thus yields the minimal g(n,2"') which is
o i=1
as desired, q.e.d.
By the same argument

g(2" 'k, n) = kg(2"~',n) for all integral k > 1.

Setting
@ (K) = g2" ' K+p,n)—Kg(2", n),
we can show
g(p,n) < a,,(K) < g(2"", n)

an,p(K) < an,p(K+ 1),
As a is integral valued there exists b, , such that
a,,(K)=0b,, foral K>K,,.

and

Thus, for fixed n, g(m, n) is given for all sufficiently large m by 2"~!
linear equations of the form

92" 'K+p,n) = Kg(2", n)+ by, -
For example

9(2K, 2) = K,

g2E+1,2) = K
g(4K,3) = 3K,

gUE+1,3) = 3K,

g(4K+2,3) = 3K+1,
g(4K+3,3) =3K+2,
g(8K,4) =10K,

g(8K+1,4) =10K,

g(8K+2,4) =10K+2,
g(8K+3,4) = 10K+3,
g(8K+4,4) = 10K +4,
g(8E-+5,4) = 10K+5,
g(8K+6,4) =10K+7,
g(8K+7,4) = 10K+8.

These equations hold for all K > 0. It is possible that in general
g2"'K+p,n) = Kg(2" ', n)+g(p,n) but we have not been able to
prove this (P 733).
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