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LIMIT DISTRIBUTION
OF THE TIME OF COINCIDENCE IN RENEWAL STREAMS

Abstract. In the paper we give some conditions, sufficient for the time of coincidence in
two renewal streams to have the exponential asymptoticity.

L. Introduction. Let {X® k> 1}, i =1, 2, be two sequences of indepen-
dent, positive, integer-valued random variables. Let

k
S0=2 X9, k=1,
j=1 ‘
denote the renewal stream, and let

NO() =max {k>0: $ <j} and 9(j) = Sviog+1
denote the renewal process and the residual time process for the stream i,
respectively. Moreover, let {U®,j > 0) denote the sequence of random
variables defined as UP =1 when y®(j) = 0 and U® =0 otherwise. Then let
WP, j > 0) denote the renewal sequence for the stream {S@, k > 1!, namely

uf) = EU. The random variable

T=min{j>1: U® = UP = 1)

is called the moment of first coincidence of renewals in the considered renewal
Streams,

The distribution of the moment of first coincidence is discussed in [2].
In this paper the question about the exponential asymptoticity of the

distribution of the moment of coincidence was stated. Our paper gives some
answers to this question.

2. The Limit theorems, We consider two arrays of random variables
X0, k> Lnz1),i= 1, 2, such that for fixed n the random variables are
independent and for fixed n and i they are identically distributed with the
discrete distribution 10k, k> 1) on positive integers. The renewal stream

generated by the sequence X, k 2 1) is denoted by {S@, k > 1}, and we

kns o
denote the renewal process by N9 (j) and the residual time process by % (j).
Let T™ denote the mom

ent of first coincidence of renewals in streams
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(SO, k>1) and '{sggg, k>1}. It is known (see [2]) that

ET?™ =0, = 1/AV A2, where 1¥ = I/EX‘fL.
THeOREM 1. Suppose that the following assumptions are fulfilled:
M _ lim A% =0,
2 lim Y | Z (20— AP - Z @k — A2) pi2n) P = O,
noo =0 j=1
(3) lim ,1(2’ j P{X{V) >0,t}dt=0 for x>0.
Then
@ lim P{T"™/0, > x} =exp{—x} for x=0

An intermediate step in the proof of Theorem 1 is the examination of
the case where the sequence {X}2, k > 1} generates a stationary renewal
stream for every n. In other words, we assume that X% =y is a residual
random variable,

o©
Pt (2} k‘ = A? Z p2, k=0
i=k+1 )
In this “semistationary” model the moment of first coincidence of renewals
T™ jis defined by

T, = min {j > 0: U = UR = 1.
THEOREM 2. Suppose that assumptions (1}+3) of Theorem 1 are fulfilled.
Then
lim P{?;‘('g)/ﬂ,, >x} =exp{—-x} for x=0.
n—+a n .
3. Proofs. For simplicity of notation in the proofs, we omit the index n
in the notation of random variables and their distributions.

~ Let us define for any integer-valued, nonnegative random variables the
metric

Ve m= X IPE=il=Pln=1.

In the proofs of both theorems we use the following

LEMMA 1. If \Dx> k = 1} is a probability distribution on positive integers
and {u, k= 0}, 1y(j),j =0} and y are a renewal sequence, a residual time
process and a residual random variable, respectively, generated by this distribu-
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tion, then

.o} i—1 ;
V('YU), 7) = 'go '“j+i—l—k§0(“k+j‘l) Pi-k',

where

1/i=Y kp,.
k=1

Proof. Since

Jj=1

Ply()=i} = Pjvit+ kzl U Dj+i—k
JHi=1 jri-1

=Ppivit D WPjri-x— Z UeDi+i—k
k=1

k=j
i-1

=Ujy;— Z Uk+jDi—ks
k=0

we have

i-1
P {')’(f) = i}—P{’}’ = i} = uj+i‘"1—* kzd(ukﬁ"l)l’i—k,

Which implies Lemma 1.
Let T, be a random variable defined as

T=min{j>i: UP =UP =1|U? =1}-i.
Proof of Theorem 2. First we notice that T2 can be represented as
T =(1=U@)(X+ T y)
where we wrote X instead of X for simplicity of the notation. Hence,
putting .
a(s) = Eexp { —sT,/0},
we have
1

) 7 [Bexp { = s(1— UP) (X + Tz,,)/0} —a(s)] = 0.

Since the stream S22, k>1) is stationary, the left-hand side of (5) equals

1
T2 +(1 =22 E (exp { —s(X + T )6} | US = 0)—a(s)]

1
= '1(—2; [}UZ) +(1 —1(2)) (E (exp {=s(X+ '1;(2)(“)/9} | U(oz) - 0)-a(s)(1 _31(2)))
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+(1 =) a(s)(1 —si?)—a(s)]
=1—a(s)(1+s—s51?)

,1(2)(1 —AD)(E (exp { —5(X + T (2, )/0} | UP = 0)—a(s) (1 —54)).

Thus (5) takes the following form:
a(s)(1 +s—s,1‘2))— 1

sX
=(1 —,1(2)) @ [(exp =s(X + ’I;(Z)m)/ﬂ} [U@ = 0)—a(s) (1 —7)]

We show now that the right-hand side of this identity converges to zero.
Since in virtue of the assumption (1) the expression 1 —A‘® tends to one, it is
sufficient to show the convergence to zero of the following expression:

FiEl |E [(exp { —s(X + T3, ,)/0} —exp { —sT 3, /0} (1 —sX/0))| UP = 0]

1
+E}E [(exp {—sT 3, /0} (1 —sX/0) | U = 0)—a(s)(1—sX/6)]|.

It can be estimated by the sum of two expressions

1
IE) —E |exp 1 —s5X/0} —1+5X/6]

+17_2")' 'E [(exp { _ST;.(2)(X)/9}' I U(oz) = 0)—-cxp {—ST;(Z)/B} (1 —SX/G)]l .

By (3) it is easy to show that the first of them tends to zero (see [3a], p. 51,
or [3b], p. 57).

We prove now that the second expression also tends to zero. It can be
written in the form

N,lz ZPS”ECXPn sT,/6}(P n“z’(ﬁ-llU‘z’—O‘ Py = i})(1~sj/6)

=0 j=1

[+ o} [+ o} . .
ST @ ;1 PV Eexp { —sT/0} (P (y2(j) = i| UY = 0} — P {y® =i})|

1 o0 e o]
+yml L, X AV Bexp {=sT/0} (P (YO () = il UP = 0}~ P 1y® = i})siff].

Notice that
PUA() =il UP = 0} - P {y® =}
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1
“pwp oo LD =0-PHP() =i UP = 1)

—PY® =i} (1-PUP = 1)),

and from the fact that the stream with index two is stationary it follows that

1
THEP P2 () =i UP = 0} =P 1@ = i}]

1
= TmlP 12 () =11 U = 1} =P {® = ],

1—-1@
Therefore
1 o o "
@I L T AV Bexp (T8} (P2 () = i| U = 0}~ P 1y = 1})(1—5i/6)

1
STV P :), v2)
© w0 '
+ ,Zl P Y IPO2() =il UP =1} —P (@ =i} 5j/6]
i= i=0 _ '

1
S 1— @ [V (X), yP)+212].

By Lemma 1 we have

VORI, 1) = T V(G 1)
i=1

® © S i-1 .
=T ¥ A -1 T -1,
i=0 j=1 k=0 :
By (2) this expression tends to zero. Now we prove the main result.

Proof of Theorem 1. Since the assumptions of Theorem 2 are fulfil-

led, Eexp | —5T,2)/0} is convergent to 1/(1+s) for s > 0, and for the proof it

15 sufficient to show that
(6) Eexp {—sT/0) —Eexp { — S'I;(z)/ 0}

18 convergent to zero for s > 0,

| Notice that T= x4 '1;(2)(1\'); where we wrote X instead of X!V for
ET— , \ . :
mplicity of the notation. Using this we can express (6) in the form

E P —
IR exp | —5(X+ T )6} ~ Eexp { = s T, /0)

+Eexp{ —37;(2)(;(, /6} —Eexp | —37;(2)/9”'-
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This expression can be estimated by
° .
Elexp {—sX/0} 1|+ ¥ Elexp {—sT/8}| [P {y**(X) = i} —P {y® = i}|
i=0

E {sX/6} +V (4 (X), y?).
Assumptions (1) and (2), and Lemma 1 prove that (6) converges to zero.

4. Remarks. The exponential distribution of the moment of coincidence
in the discussed limit problem is suggested by the famous Rényi’s Theorem
dealing with the convergence of rarified renewal streams to the Poisson
stream. In the notation of the present paper, Rényi’s assumptions are of the
following form: the first renéwal stream is fixed with a finite expectation of
lifetime and the second one is a Bernoulli trial stream with probability of
success tending to zero. Note that Brown in [1] examines limit properties of
the N, sequence of point processes, thinned by p, processes. However, like
Rényi, Brown assumes that the sequence of thinning events conditional on N,
and p, is an independent sequence.

Our assumptnons (1) and (2) are similar to Rényi’s ones. Note that the
condition

Q)] lim (sup p{})) Z iu@-22 =0
: n=w j21
implies easily the assumption (2). The sum which appears in condition (7) is
the measure of the distance between the renewal stream and the Bernoulli
stream with the same expectation of lifetime. This sum is finite when the
third moment of lifetime is finite (see [4]). The assumption (3) means the
convergence of the sequence of random variables {X%})/6,, n > 1} to zero in
the Khinchin sense. This assumption appears in Soloviev's hrmt theorems
about the asymptoticity of rare events in regenerative processes (see [3a], p-
48, or [3b], p. 53).

The example mentioned below shows that the condition

@’ lim sup p) =0 fori=1,2

n—o j=1
is not sufficient for the exponential asymptoticity of the moment of coinci®
dence.

ExampLE. Consider two renewal processes which are probability copies
of the same process. Let

o =pR =rpd ' +(1-1d;, j=1,2,...,
where p=1/n, q=1—p, r =q, s =n? and 6 is the Kronecker delta. The#
W =u® =rp(g+rpf ', w=r*p*(q+rp*7",
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PITO =i} =r?p*((q+rp)*~r?p?) ™", i=1,2,..,n2-1,
and now

Hm P {T™ > n?} = 1—(1—exp {-3})/3.

Conditions (1) and (8) are satisfied. We have 6, = (2n—1)2 but hypothesis (4)
implies that the limit equals exp {—1/4}. We should notice that in this case
the condition (3) is not satisfied.
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