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It is H.S. Ruse who introduced first the notion of a harmonic Rie-
mannian space, and such spaces have been studied by H.S. Ruse, A.
G. Walker, T.J. Willmore, A Lichnerowicz and others. Its typical
examples are the Euclidean space and the space of constant curvature.
An n-dimensional non-flat space of constant curvature is characterized
as a harmonic Riemannian space with the characteristic function

f(2) =1+ (n—1)V2kQ cot V2R,

where 2 = (1/2)s? and s means the geodesic distance (cf. [2], p. 30).
Lichnerowicz [1] has obtained the following

THEOREM (cf. [1] and [3]). In any harmonic Riemannian space H"
with positive definite metric, its characteristic function f($2) satisfies the
inequality )

(0) +5(n—1)1(0) < 0.

The equality sign is valid if and only if H" is of constant curvature.

On the otheér hand, it is known (cf. [3], p. 141-147) that the complex
projective space CP™ of real dimension 2m can admit a Kihlerian metric
by which CP™ becomes a harmonic Riemannian space. CP™ with such
a metric is a space of constant holomorphic curvature as a Kéhlerian
space.

In spite of these facts, the characteristic function of spaces of con-
stant holomorphic curvature has not been known. In this paper we shall
give it and also theorems for harmonic Kihlerian spaces corresponding
to Lichnerowicz’ one cited above.

In Sections 1-3 we follow Yano-Bochner’s notation. The summation
convention will be assumed for Greek indices.

1. The Fubinian space. Let C™ be the complex number space of
“origin O with coordinates {2°}. Denoting by z*° = z* the complex conju-
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gate of 2°, we introduce real-valued functions » and 8 by

> = Zz"z‘" and 8 =1+ 2ku,

a=1

where k is a non-zero real number. We consider the maximal connected
domain F™ where 8§ > 0, and define a Kéhlerian metric by

1 3*log8

ds? = 2,ga,8' dz“dz" * and guﬁo = _2_70W.

Such an {F™, g} will be called a Fubinian space of complex dimen-
sion m and of real dimension n = 2m.
If we denote by f,,fs,... the successive partial derivatives of

a function f with respect to 2%, 2*°, ..., then it follows that u, = 2, u,. = %,
= 2% 8, = 2kz” and S,. = 2k2°. Thus the Fubinian metric is given by

Jope = —81—2(86,,‘,—2kz"'z"),
and hence we have
g% = 8(6% 4 2k"2%).
The Christoffel symbols are all zero except

2k I
e — _F(a;'zﬁ + 852"")

and their complex conjugates. The curvature tensor, the Ricei tensor
and the scalar curvature are '

. or
R;yc‘ = 0zf'y = —2]‘(9&' 6;4‘97:' 5;)7

.Pup.o = R;‘.a e 2(m+1)kgp‘. and R = 2gp‘.Rﬁ.. = 4m(m+1)k’
respectively. Therefore, we have

.___ B _ _E
 4m(m+1) n(n+2)°

(1.1)

2. Geodesics through O. Consider a Fubinian space {F™,g}. We
shall find the equation of geodesics which go through the origin O.
The differential equation of geodesic is

(2.1) 24 T5 247 =0,
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where and throughout the paper we denote by ‘' the derivative with
respect to the arc length s. Our space being Fubinian, (2.1) becomes

(2.2) 7 = —4; (Zz"z") 2

Now, let C* be constant and ¢(8) a real-valued function of s satisfying
t(0) = 0 and #'(8) > 0. If we substitute 2° = ("i(s) into (2.2) and take -
account of 2g,.2°2”" =1, then it can be seen that

(i) for the case of k> 0, 2 = A*tan(Vks) satisfy (2.2), and A* are
constant such that 27»:2:1“‘4‘1 =1,

(i) for the case of k < 0, 2* = A‘tanh(l/lkls) satisfy (2.2), and A* are
constant such that 2%k3A4*4" = —

As any point of F™ is represented in the form of (i) or (ii), we know
that the equation of any geodesi¢ through O is (i) or (ii) according to
k>0 or k<O. '

Remark. If we write for ¥ < 0 as ta;n(ﬁs) =1 tanh(l/lk[s), then
the geodesic of (ii) becomes
2 = A'tan(Vks), D (V2k4*) (V2k4%) = 1
‘which coincides with one of (i) in appearance.

3. Ay8 in {F, g}. It will be seen in this section that any Fubinian
space - i8 harmomc getting its characteristic function. For this purpose
we calculate the Laplacian 4,8 in {F™,g}.

Putting

2 if k>0,

1z if k<O,

we give an outline of the calculation for the case of k > 0, where [ is a
positive constant.

Any point 2 in F™ bemg on & unique geodesic through 0, 2® is written
as 2" = A°tan(ls), 2k>A°4° = 1. Hence it follows that

(3.1) 2ku =2k ) "2 = tan?(ls),

(3.2) S = 1+2ku = sec3(ls).
Differentiating (3.1) by 2°, we have

(3.3) - Iz** = tan(ls)sect(ls)s,,

from which it follows that

(3.4) 9" 8,85 = lPucot?(ls).
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If we differentiate (3.3) by 2*°, then
léaﬂ = lS(3S - 2)8a8ﬂo +Sta|n(ls)sapo

follows. Multiplying this equation with ¢**° and taking account of (3.4)
and 4,8 = 2¢*°8,., we have '

(m 4 2ku)l = (38 — 2)Pucot?(ls) +3tan(ls) 4,s.
Therefore, it follows that
(3.5) 4,8 = (2m —1)lcot(ls) —ltan(Is)

by virtue of (3.1) and (3.2).

Let M™ be an n-dimensional analytic Riemannian space and O
a point of M". We denote by s the geodesic distance from O to the point
in a neighbourhood of 0. If 4,s is a function of s only, then M™ is called
to be harmonic at 0. When M™" is harmonic at any point, it is called har-
monic and denoted by H". For a harmonic Riemannian space H", if we
put 2 = (1/2)s?, then it is known that 4,02 = f(2) is a function of Q
only and does not depend on the reference point O. f(£2) is called the
characteristic function of H".

As the right-hand member of (3.5) is a function of s only, {F™, g}
is harmonic (we notice that {F™, g} admits a holomorphic free mobility).
Its characteristic function is

(3.6) 4,2 = f(2) = 1+ (2m —1)Iscot(ls) —Istan (Is)
by virtue of the identity 4,02 = 1+s4,s.

Similarly, for ¥ = —1?, we can get
(3.7) 4,2 = f(2) =1+ (2m —1)lscoth (Is) + lstanh (Is).

4. The calculations of f(O) and f(O). Consider the function f(£2) of
2 = (1/2)s® given by (3.6), i.e.,

(4.1) f(2) =1+ (2m—1)lscot(ls) —lstan(ls), &k =12

Evidently, f(£2) satisfies f(0) = 2m. If we develop f(£) in the power
series of £ and s, respectively, then it holds that

(4.2) f(Q) =2m+f(0) Q2+ %}(0).@%...

’ 1 4] 1 s 1 1z
=2m+f (O)s—i-?f (0)82+;f (0)83+F (0)s* +...,

where - means the operator taking the derivative with respect to 0.
Thus we know that

43) O =f"0)=0, f0)=f"(0), f(0)=24f""(0).
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Now, if we write (4.1) as
(f(2)—1)tan(ls) = Is(2m —1 —tan?(ls))

and develop the both sides in the power series of s taking account of
(4.2), (4.3) and

2
tanr = v+ — a3+ —a°+...,

3 15
then we can get
c0) = —2ml), 2oy = _16m+TD) L,
fO) = ===k, [0) = — =k
Therefore, f(£2) satisfies
., 5(m+1)* - =
(4.4) 0+ = ———1(0) =o.

Similarly, it can be seen that (4.4) is valid for the f(2) of (3.7) in
the case of k = —I2.

5. Harmonic Kiihlerian spaces. In” what ‘follows Latin indices 1, j,
k,h,... ran through 1 to » (or 2m), and the summation convention is
assumed. Let H" be an n-dimensional harmonic Riemannian space (with
positive definite metric) and f(£2) its characteristic function. It is known
that H" is an Einstein space and

3n -
(5.1) E = —2(0)

holds good (cf. [1], 9-2). On the other hand, it is-easy to get the identity

52) By = — {0+ 202 ool

from equation (11-1) in [1].
Now, consider a 2m-dimensional Kihlerian space K°™, and let g,
and F? be the (positive definite) Kihlerian metric and the complex

structure with respect to a real coordinate, respectively. These tensors
satisfy

gkhF:'cF;' = Gy F?Fr’; = —6{,
Fy(= gpF?) = —F;.
If K*™ satisfies

-Rc'jkh =k (yl'hgjk —Gik9in +Fthjk _Fiijh —2F; Fip),
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then it is called a space of constant holomorphic curvature, where k is a (real)
constant given by (1.1). It is known that such a space with non-zero %
is locally regarded as a Fubinian space. Hence a space of constant holo-
morphic curvature (¥ # 0) is harmonic, and its characteristic function
is f(2) of (3.6) or (3.7) and satisfies (4.4).

We consider the converse problem. Let AK*™ be a harmonic Kihlerian
space (with positive definite metric) and A = T, T¥** the square of
the tensor Ty, defined by

thk'h = Rﬁkh—l(gihgjk—gikgjh +F£hij_F'ijh—2Fiijh)7

where A is real constant. If A vanishes identically, then hK”" 1s of con-
stant holomorphic curvature.

We calculate A by taking account of (5.1), (5.2) and the identities
(see, for example, Yano [4]) ' '

F inijkh = —2F I{-thf F jF thijlch = —2R7
F ijijkh =F gth; F*F ijijkh = R,

then the following equation is .obtained:

- . < A
(5.3) 32(m+1)A*+48f(0)A—3{f*(0) +5(m +1)f(0)} = =0
Taking the discriminant, we obtain

. 5 1)
(5.4) £0)+ "” )f( 0)<

from which it follows
THEOREM 1. In any 2m-dimensional harmonic Kdihlerian space, the
wnequality

5(m +1)2

O +————f(0)<0

holds good.

When the equality sign holds in (5.4), there exists a real 4 satlsfymg
A = 0 and hence our hK*™ is of constant holomorphic curvature. Thus
we have

THEOREM 2. A 2m-dimensional harmonic Kdihlerian space i of con-
stant holomorphic curvature if and only if its characteristic function satisfies

(+)’

2(0)+—=f(0) = o.

THEOREM 3. A 2m-dimensional space of constant holomorphic curva-
ture (k +# 0) is8 characterized a8 a harmonic Kdhlerian space with charac-
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leristic function given by

f(2) =1+ (2m —1)lscot(ls) —lstan(ls),

or
J(2) = 14 (2m —1)lscoth (Is) + lstanh (Is)
according to k =1? or k = =12
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