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On a certain property of solution of the equation
Uy = ;m:'['f(w’ i u)

by Z. KNAP (Rzeszow)

It is a classical result that if we are given two solutions #,, u, on
[0, a] of the differential equation ' = f(f, ) (f continuous) such that
%,(0) = u,(0) = u,, then for every 0 <i{,<a and v e[u,(t), us(ty)]
there is a solution # on [0, a] which satisies #(0) = u,, u(t,) = v,. The
situation is especially simple if %, is the maximum solution and u, is the
minimum one. The present paper attempts to give a certain theorem
concerning an analogous property for the non-linear parabolic equation
Uy = Ugz+ [y 2, u).

Let R = {(z,t): a<z<b,0<t<T} The interior of R is denoted
by R° the boundary by FR.

I’ stands for the plane set composed of points (z,0) with a <2 <b
and (a,t),(b,?) with 0 <1< T.

By a regular function in B we mean a function 4 which is continuous
on R, continuously differentiable in ¢ to du/dt and twice in & to 0%u/0x?
for 0 <t<T,a<ax<bd .

Suppose that the functions u(zx,t), g(z,t,2) and ¢(x,t) are con-
tinuous in R, Q = {(z, t, 2): (#, t)eR, z arbitrary} and in I', respectively.

Define the function r(z,?) by means of the formula

t b
1 exp[— (¢— £)*/4(t—{)]
@ = = ff . (&, ¢, u(E, £)deds

Vi—¢
and let ¢g(x, ¢) be the solution in R° of the equation
0_z 0%z
ot o0x?
such that ¢(x,?t) = ¢ (2, t)—r(x,t) for (x,t)el.
We put

v(xz,t) = q(z,t)+r(x,t) for (z,t)eR.
Denote by T(u,g,y) the transformation » — v:
v=1T(u,9,¢).
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One can prove [1] that if u,=> u,g, =g,¢, =>¢ (1), then v,
B Q r
= T (tUy, gnon) = v =T(u,g,¢) on R.
If u,,g,,p, are bounded in the sup norm, then {v,} is compact.
If g (=, t, 2) is continuous in (#, ¢, z) and Holder continuous in z and z,
then the solution z of the equation

2 =1T(z,9,9)

is a regular solution of the problem:

1 0z N 0%z ;
(1) E—W+g(m’ ) 2)y
(2) z(z,t) = @(z,t) on I'(?).

Let us introduce the following condition:

CoNDITION (H). There exist functions wuq(z,t),vy(z,t) which are
regular in R and satisfy the inequalities

ou 0%u .
(3) —# < aw; +f(@,t,u) in RO+ (FR—T),
dv 0%v .
(4) > gt Ti@ityv)  in BV (FR—T),
(5) ug(2, 1) < @, ) <wvo(x,t) for (z,t)el.

We say that the regular solution u(z, t) of the problem (1) and (2),
is the mazimum solution (minimum solution) if for every other solution
v(z,t) of that problem the inequality »(z,?) < u(x,?t) (v(z,?) = u(x, 1))
holds in R.

Following Mlak [2] we formulate the following

LEMMA. Let assumption (H) be satisfied. Suppose that the functions
p(z,t) and f(z,t,2) are continuous im I' and Q, respectively, and let
flz, t, 2) be Holder continuous with regard to x and z. Then (1) and (2) has
the maximum solution u(x,t) and the minimum solution wu(xz,?).

Our basic theorem is the following one.

"THEOREM. Let the assumptions of the lemma be satisfied, and denote
by 8 the set of points (x,t, u) such that (x,t)eR and u(w,t) <u < u(z,?).
If (x° 1% u®)eS, then (1) and (2) has a solution w(x,1) such that wu(x®, 1°)
= O

(1) 8, > s means that s, tends uniformly to s.
(%) For references, see [1].
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Proof. Define the function f*(z,t,2) as follows:

f(mstr uo(a’yt)) if uy(z,t) >z,
.f,(m’t7z) =1 f(z,t,2) if uy(z,t) <2< 0(2y 1),
flw, t, vo(w,t)) if z > vo(w, t).

The function f* is bounded. We choose constants M and K such
that supl|f*| < M, suplp| < K. Then the funetions %, = —Mt—K,
9, = MT+ K satisfy (H) with @, = %y, ¥y = v, f = f*. It is easy to
check that f* is Holder continuous in z and =z.

Consider the equation

ou _ 0%u
ot 0Oz

(7) u(z,t) =¢(x,t) on I'.

(6)

+ (=, t, u),

Every solution v of (6) and (7) satisfies u,(z,t) <v(z,t) < vy(x,t)
(see- [2]).

Let ¢ >0 and let v(x,t) be an arbitrary solution of (6) and (7).
There exists a continuous funection &, (x,t, ; v) defined on Q depending
on ¢ and (the fixed) v(wx,?) such that:

() {h(zyt, u;0)| < M+e on Q,

(i) 1f*(zyt, w)—h,(2,t, u; )] < e on @,
(iii) h,(x,t,u;9) is uniformly Lipschitz continuous with respect to u,
(iv) v(x, t) is the unique solution of the problem

ou 0%u

= g +h(z,t, u;v), u(z,t) =¢(@,t) onl,

In order to see this, let é = {(z,t,u): (x,t)eR, upg(w,t) < u
< vy(z, t)} and w(x,?, w) be a polynomial with the properties:

w(w, t,u) <M on @,
|f*(x, t, u)—w(z,t,u)| <4e on (5
Define the function w*(x, ¢, ) as follows:
w(w, t, ug(w, 1)) if ug(w,1) > u,
w* (@, t,u) ={ w(ze,t, u) if ug(x, ) < u < vy(2,t),

w(z, 1, vy(x, 1)) if U > vy(z, 1),
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Let
hy (@, t, u;0) = w*(2,t, w)—w*(2,t, v(z, 1))+

+f*(w,t,v(2x,t)) on Q.
Then

|hy(@, t, u; v)—w* (@, 1, w)| < f* (2, t, v(z, ))—w*(z, t, v(z, 1))| < je
and
\f* (e, t, u)—h,(z, ¢, u; v)|
< |f*(zy t, u)—w* (2, t, u)|+|w* (2, t, u)— h (2, t, u;v)| < &
on @,
so that conditions (i)-(iii) follow.
Condition (iv) follows from the equalities
ho(m, t, v(@, 1); 0) = w* (2, t, v(x, ) —w*(, t, v(x, 1)+ f* (2, t, v(2, 1))
ov(x, 1) 0%v(x, )
ot ozz

=f*(w) t, v(z, t)) =

Let #(x, t) be the maximum solution and u(z, ¢) the minimum solu-
tion of (6) and (7). For a given ¢ > 0, let %,(z, t, u; %) and h(z,t, u; u)
be the functions with the properties (i)-(iv), when o(z,1?) = u(z, ),
u(z, t), respectively.

Consider the 1-parameter family of equations

(8) K _ T @ty
ot ox?
(9) u(z,t) = ¢@(x,?) on I,
where 0 <A< 1 and
(10) gil@, t, u) = Ak, (@, b, u; @)+ (1 —A) b, (2, ¢, u; ).

The function g¢,(z,t, ) is uniformly Lipschitz continuous with
respect to » and

A1) lga@, t, 0 <A K (@, ¢, w3 @)+ (1= D) (2, 8, w5 w)]| < M+e.

Problem (8), (9) for a fixed A has the unique solution u(z,?, A).
One can prove [3] (p. 147) that if 4 — A% then u(z,?, A) §>u(m, t, 2%).

If («° 1t is fixed, u(x° 1% 4) is a continuous function of A.
Since (2% °, 0) = u(a®, 1°), u(x® 1, 1) = %(x® 19), so that wu(x® 1) < u°
< (2 t°), there exists a A°-value, 0 < A° < 1, such that «(x®, 1%, 1°) = u°.
The choice of an A° depends on & Say A° = A%(¢). Let ¢ =1/n,n > 1,
and let ¢"(x,f, %) = g,(x,t, w), where A = A°(1/n). Thus (ii) and (10)
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show that
(12) |f*(w, 8, w)—g" (@, t, )| <1/n on @
and by the choice of 4 = 49,

o _ o
ot ox?

+ 9" (=, t, u),

u(z,t) = ¢(z,t) on I.

has a unique solution u"(x,t) such that «"(x° t°) = u°. Note that
lg*(z,t, w)| < M+41/n on @ imply that |u*(z,?)| < (M41/n)i+K on R
(see [1]).

Obviously

(13) w" = T(u" g" ¢).

Hence {«"} is compact. The sequence u'(x,t), u(x,t),... has
a subsequence %™ (z,t), u*?(x,1t),... which is uniformly convergent,
say to v = u(z,?) on R and u(xz° 1°) = u".

From (13)

(14) u* = T (u’m g°n ).
But by (12) g¢*(x,t, ) = f*(x,t,u) on Q.

By a limit passage in (14) we get u = T'(u, f*, ¢). It follows that
u(z,t) is a solution of the problem
ou  0%u

E iy +f*(z, t, u),

u(x,t) = @(x,t) on I.
But u(x,?t) <u(z,t) < u(r,?) on R.
It follows from the definition of f* that
f*(wy t, u(x, t)) =f(9'}, t, u(w, t))

This proves that » is a solution of (1), (2) and (2 %) = u°..
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