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Assymptotic behavior of non-linear inhomogeneous
equations via non-standard analysis

Part 1. Second order equations

by Vapmu KoMrov and CARTER WAID (Lubbock, Texas)

Abstract. Techniques of non-standard analysis are used to prove some assympto-
tic properties of second order equations of the type z'’ 4¢(l)g(x) = f(), and of
the type ((a(t)qn(z)z’)')+c(t)g(a;) = f(t). Following various assumptions on a(f),
¢(t), g(x) and f(!) a number of theorems is proved oconcerning oscillation, or non-
oscillation and boundedness. For example, an oscillation theorem resembling Wong's
criterion is proved, however, with the integrability conditions applied to the in-
homogeneous term. Also a novel application of energy arguments is introduced,
and solutions are classified according to the assymptotic behavior of the total energy.

1. Introductory remarks. This paper proves some basic theorems
of boundedness theory using non-standard techniques, in the framework
of Robinson’s theory [6], [7]. An expository monograph of Machover
and Hirschfeld [5] outlines concisely the basic techniques of Robinson
avoiding the use of the theory of types and relying more on algebraic
arguments. A discussion of logical foundations of non-standard extensions
is given in [6]. In particular a completeness theorem of Henkin [2] implies
the existence of a (non-standard) extension of the real number system
*R, which has the property that certain sentences suitably formulated
for the real line R remain true for *R. (Since the gentences stated in the
formal language %, which are formulated in mathematical analysis usually
imply relationships between elements of R, of subsets of R, ete., it is
necessary to first establish some foundations within the framework of
the theory of models). _ _

In this article we shall assume that the reader is familiar with Ro-
binson’s theory, and we shall not attempt to offer another exposition.
The higher order structure *R discussed here is an ordered field (the
usual algebraic operations in R, the relations and their properties being
expressible in the language %, *R properly containing the real number
system R. *R contains elements which are larger in absolute value than
any real number, which will be called infinite numbers, and their reci:
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procals which will be called infinitesimals. If x,y are elements of *R
such that |z —y| is an infinitesimal, then we shall say that « is close to y
(or infinitely close to %), and we shall denote it by writting # ~y. If »
is a real number (i.e. z ¢ R), # will be called a standard number, or a standard
element of *R. Otherwise & shall be called mon-standard. *R, ., *R_,
will denote respectively the infinite positive, and the infinite negative
elements of *R. *R,; will denote elements of *R bounded in absolute
value by a standard number.

2. Statement of the problem. In this paper in part 1 we shall consider
the assymptotic properties of equations of the form:

(2) (a(t)p(@)2) +e(t)g(z) = 1)
on some infinite ray I = [%,, o0), subject to the assumptions:
(i) ¢(®), f(t)e Cl2y, ),
(ii) a(t)e C*[ty, o0),
(iii) ¢(w)e O'(— o0, +00),

(iv) g(z)e O(—o0, +o00).
In part 1 we shall consider algo the special cases of equation (2), i.e.

(1) @’ +o(t)g(z) = f(2)

and the homogeneous equations (2¥), (1¥) obtained by putting f(¢) = 0
in (2) and (1) respectively. By a solution we shall always mean a classical
solution, i.e. twice continuously differentiable solution of the correspond-
ing equation. To prove our main theorems we shall require the following
lemmas:

Leyvma 1.1. A standard funciion x(t) is oscitllatory if and only if the
fundtion x(t), te *R, vanishes for some ve*R_ .

Proof. Assume that »(¢) is oscillatory. Then the sentence "‘ze R =
EteR[t> v &o(f) =0]"is a true sentence in our model R. Hence it is
true in *R. Choosing re*R,,, completes the argument. Conversely let:
us assume that #(7) = 0 for some ¢ "R, . Lot # be a (fixed) standard
number. The sentence “dre *R[z > I, & x(v) = 0]” is a sentence in our
formal language % which is true in *R. Therefore it remains valid, when
interpreted in R. Since i was arbitrarily chosen standard number, we
have shown that «(#) is oscillatory.

LEMMA 1.2. The standard function ®(t), te[t,, oo) is unbounded if
and only if |z(z)|e *R,, for some re*R, ..

The proof is straighforward and shall be omitted.

Remark 1. It is know (see Robinson [6]) that given any standard

function g(z), such that [g(w)dw < oo, then g(z) satisfies the following
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. 7
condition: for any &, ne *R,, it is true that J’ g(@)dz ~0 (s ~ 0 means s
is an infinitesimal).

Remark 2. If lim fg(z)dz = + oo, then it is true that given any

>0 #p

number 4 ¢*R, and given any &<*R, £3>1,, there exists # such that
7 .
gf g(z)dw > A. Also it is true that given any ze*R,; and £<*R,,

¢
[g@)dne*R .

Remark 3. If for some positive integer K, the K-th derivative
f® (=) of a standard function f(x) exists on [t,, o) and has the property
F® (%) < @ < 0 for all # sufficiently large (i.e. for all # greater than some
number M > t,, Me*R), then there exists Ae¢*R,,, such that f(z) <0
for all # > A. The proof is elementary.

Remark 4. If for any ¢, ¢ *R,, there exist ¢, > ¢, such that for any
$> 1y, l&’ (1) — o' ()| € *R_,,, then @(t)e *R,; for some t<*R,,.

3. Frequency and boundedness theorems for equations of the type.

@) @' +o(t)g (@) = (1),
(1) " +6(t)g(x) = 0,

(2) (at)o(@)a) +e(t)g(@) = f(2),
(2%) (a®)p(@)2) +c(t)g(a) =0,
(14 2" +b(t)2’' +o(t)g(w) = f(t).

The first two theorems of this paper deal with the so-called frequency
function
n(@(t)) = =(t).

We offer the following definition:

Let & () be the ray function continuous on [?,, oo). (In our discussion
2(t) will always denote a trajectory of a corresponding differential equation,
(1), (1F), (2) or (25).) Let ¢ be any point of [#,, co). We define x(t) = 7(3 (1))
to be the maximum length of a half open (half closed) interval [¢,, i,)
containing 5, such that the open interval (t,, ¢,) contains 1o zeros of z(1).
In the case when either.[?,, ;) containg no zeros of #(t), or [{, o) contains
no zeros of %(t), we assign x(& (;)) = n(f) = + oco. Hence w(f) has values
in {R, U}, is constant on any zero-free interval in [f,, co), and in general
has a jump discontinuity at every zero of #(t). m(#(t)) will be called the
frequency fumction associated with the trajectory #(t). We shall prove
theorems for equations (1), (1¥), (2), (2¥) concerning boundedness, and
assymptotic behavior of the solutions.
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LuMMA 1. We consider equation (1) satisfying the following conditions:

g () g()
&

1) 8 a bounded function of 2,  # 0 (and hmsup

< '+ o0),
2) lime(t) = 0. |
[ 22
Then ]im:z(t) =

The proof of this lemma is elementary, and uses only standa.rd argu-

ments.
We have for 2 # 0

O(t)g(fe(t))] |

e —rg — . t ? t

y +[ o) | Y 0, 01

with

c(?) g(w(t)
T e

Assuming that y(t) is oscillatory (otherwise there is nothing to prove)

we apply the classical inequality due fo Liapunov.
If y(1) vanishes at ¢ = ¢,, and ¢ = ?,, then

f

U}

limsup = 1.
z—0

o(t)g (= () P 4
(1) T t—t

t
Let M Dbe any upper bound on ﬂ:(—i)))
1y

4 .
M f le(?)| dt > —— — and since 0 — 0, given ¢ > 0, we can choose ¢, suffi-
1

for all w #0, t>1,. Then

clently large so that |¢| < ¢, for all i€ [?,, t,] and (i,—1,)% > 4/ Me.
Hence lim (?,—1%,) = 4 oo, a8 required. This method of proof fails

t—»e0

to work for equation (1). However, a fairly sm'a.ightforword non-standard
J@)

o(t)
tion to hypothesis (1) and (2). Instead of proving this lemma we shall
offer the proof of the more general case of equation (2).

TeEEOREM 1. We consider equation (2), t > 1,, subject to conditions
(i) ime(t) =0,
[ Y-

argument shows this lemma to be valid for (1) if f dt < oo, in adi-

(ii) g(z)/z is a bounded funciion of @ (and in partioular

@
221 < o).
$ N
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(iii) f() > 0 for sufficiently large values of t. (Note that this assumption
can be made whenever f(t) is of constant sign.)
(iv) limint|e(z)] > 0.
]

Suppose there exists a function h(t)e C'[t,, oo) such that
(v) h(t) > 0 for sufficiently large wvalues of t and limh(t) = +oco.
{00

. ' (2)
(vi) 5oy

(vil) lima()h(t) = + co.
t—>00

= 0.

(viii) Tim|e(£)h(s)| = 0.
->00
Then limn(z(t)) = + oo along any trajectory &(t) of (2).
>0

(We observe that condition (viii) implies condition (i), and that
considerably weaker hypothesis are sufficient to the proof of this theorem
if a(t) and ¢(t) differ in sign for all sufficiently large values of ¢.)
L(t)a(t)p(@)a (t)

o (1)
along a trajectory #(t) of equation (2). Assuming that #(1) is oscillatory
we select points t;, t,e *R_, such that (i) = &(t,) = 0, and z(t) # 0
on the open interval (¢, ;). (It is easy to show that such points exist
in *R_.) The function y(¢) is defined, and is in fact continuously differen-
tiable on (¢, t,). Let us assume that #(¢) > 0 on (i,, t,) (without any loss
of generality since an identical argument follows if # () < 0. »(?) is pseudo-
unbounded on (i, 1?,), and will assume all values in *R on this open
interval. In particular it is possible to select points 7y, 7a (v, > 7,) such
that p(ry) = +1, p(7,) < —1 and |¢(?)| < I for some standard number M,

and such t];at ‘p(?w

Proof. Westudy the behavior of the function () =

e *R,; on [1y, 7,]. Clearly

]
[ o' @)t = p(z) —p(z) < —2,

71

f”’“ o= f[(_h_ W) +(3)- (econ ") - e <

k(1) £ (t)
(1)

But > 0 on (7y, 7,), and therefore

T2

W gl@) ¢

—p— - dt < —2
f [ h p—oh x hap(x) < ’

!
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or

Ty

! 2
f[%zp—chg(w)— L ]dt'>2.

x . hap(x)

1

However, our assumptions imply that every element of the sum in the
integrand is an infinitessimal on (vy, 7,). Hence (v,—7,)¢ R,.,. The
equivalent “standard” statement is limm(#(f)) = + oo, completing the
proof. e

EXAMPLES OF APPLICATION.

1. Consider the equation:

1
(cosa-2') + Tmsinw =0, 1>1,

where ¢ is any real number, and C is a constant.

We observe that h(¢) = t*%, ¢ > 1 satisfies all the requirements of
this theorem (a(t) =1 in this case).

2. A simple pendulum with variable mass: @'+ e(t)sine = f(2),
where f(f)> 0. Assume that c(tf) ~1% a < 0. Choose Nh(t) =i®, where
0<f, and a+p8 < 0.

TrEmOREM 2. Suppose that

(1) limsup |p(2)| = +o0, p(0) =0, p(x) #0 if @ #0.
T—rco
(ii) limsup |a(t)| < co.

t—>o0

(i) limfc(t)dt = + o0, ¢(t)> 0.

A )

(iv) f(t) = 0.

by
(v) lim ('Lf(t)dt) = 0.
=\ [e(t)dt

(vi) g(@) # 0 if @ %0, ¢(0) =0,

lim |g(z)] = + co.

|E|~—>00

Then any solution &(t) of (2) will have the assymptotic behavior: lim |Z(2)|
= + oo, or liminf|#(t)| = 0. broo
{00 '

Proof. Let us assume that there exists a solution #(t), such that
for some 7' > 0, for some standard m >0, |¢(&(t))| > m for all t> T,
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-

i.e. liminf|g(4(t)) |> m > 0. Let t, be any point € *R.,.,
t—>o0
[ ewelz®)a @) +cglew)]dt = [ ftrat,
T I

) ty
|a(t)¢(m(t))w'(t)j‘; —tff(t)dt|> mTf c(d)dt,
1

b
apa)e@) _ 47O

4 . > m.
d[c(t)d’t [ e(t)at
T
But
Ly
[f@)dt
T ~0  (since t,e *R,,,).
fe@a
T

Henece for any standard m’, such that m > m’'> 0
a(tplz(t)a’ (t) |~

!

. > m'.
[e@t)at
ty 7 i=T
But [c(t)dt<*R,,, which implies that
oy
plz@)e’ (t)e "R,

for any {,¢ *R,. In particular 2'(t) # 0 for any {¢*R_, and now it is
easy to show that there exists fe *R., . such that for all {> 7 we have
¢(#(t))e *R,,, which is possible only if &(f)e *R,,. But this implies that.
Z(t)e R, for all te*R,_. (Choose a standard number ¢ > 0 and consider
the statement in our language & “J i« *R, such that for all t* > 1, &(t) > ¢.”

This statement must be true in our model R, hence ‘3 fe Rsforall t>1¢

it is true that £(¢) > ¢".) Since ¢ is arbitrary this is equivalent to lim |Z(z)]

= 00, ’ {—>o0
CoROLLARY 1. If condition (i) is replaced by (i*) limsup|p(z)| < oo,

I—+00

then every solution (1) of (2) must have the property liminf|Z(t)| = 0.
(-]

Proof. Observe that the conclusion of the entire argument, namely
that for all te *R, ., we have ¢(.’f(t))e *R,, is now impossible. The only
remaining possibility is: liminf|z(f)] = 0. Part of the vecent results of

{—co

Hammett [1] is easily shown to be a corollary of this theorem.
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We observe that the implication of Corollary 1: limsuplzp(.'% 1) <
< o0 = hmmf lp(# (2))] = 0 can be proved under shghtly Weakel hypo-

thesis. We really do not need the condition lim f = 400 and no

T—00

-changes are required in the arguments if it is replaced by llm sup f t)dt

= + o0, since ?, in the argument of Theorem 2 can be chosen so that
2 ’ ’

!‘rfa(t)dte "R, .

DeriniTION. If given any ?, > t,, and given any ¢> 0, § > 0, there
-exists 7'y > t,, such that for any T, > T, the Lebesgue measure of the
set S: p(8){S: te [Ty, Ty]e|®(t)] > ¢} is less than §, then we say that
essentially the limit of 4(t) is zero, and denote it by: esslim@(t) = 0.

{—00
A non-standard definition is much simpler. esslim® () = 0 <« Z(t)
=0a.e.te(Ty, Ty), Ty,— T, *R,; (where a.e. implies u(8) ~ 0, 8 = {t| (1)
#0}), u: P(*R) —~*R,. We observe that T, T,c R, must belong to
the same galaxy (see [6]).

THEOREM 3. We assume
(i) liminfle(?)|> 0, (i) xg(z)>0 if @ #0,
l—+o0a
(iii) @0) =0 (peC'(—o0, +00)), (iv) [ft)dt< oo.
Then either the solutions £(t) of (2) is non-osoillatory. or else esslimz(t) = 0.
Proof. Assume that an oscillatory solution #(f) of (2) does exist.
Let ¢,,t, be two points R, such that #(t,) = D(f,) = 0. x(f) %0
Vie (11, 1,)
11

)

[ (ae@)a @) &+ [ o(t)g(w(®))dt ~0  (by (iv)).
1 !

Hence .
a(t)p (@ (1) (1) |jj + [ eglz®)dt ~ 0.
U1
But

‘J'D(m(tz)) = ¢(m(t1)) =0,
and therefore

2
fc(t)g‘(a:(t))dt ~ 0.
1
Since |¢(t)| > m >0 (for all te R,,) and g(x(i)) is of constant sign, it
follows that ,
2

f |lg(=(t)|dt ~ 0.
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If g(w(t)) # 0 on some subset of [#,, ;] of measure x> 0, it follows
that 4 ~ 0. Hence z(t) # 0 only on subset of [t,, ¢,] on infinitessimal mea-
sure. But this implies that for any i, f,e *R,, such that t3—¢,¢ *Ryg,
#(t) 5 0 at most on a subset of [f,t,] of infinitessimal measure.

Consider as an example of application any equation of the form

(a(t)a™a') +- 2™+ = f(2),

where m, k& are any non-negative integers, a(t) > 0, and [f(t)dt < oo.
In the next two theorems we offer a set of sufficient conditions for
a bounded, or monotone behavior of solutions.
First let us introduce the following functions:

@(x) = sign(a)- [ p(8)dE, G(a) =sign(e)- [(£)g(&)ae,
0 ]

‘as before we shall assume that £p(£) > 0 if £ 5= 0 and &p(£)g(&) > 0 if
& #0. . '
We observe that ¢(x) and G(x) are monotone increasing functions
of . -
TEEOREM 4. Suppose that
(i) limsup|a(t)| < oo,
(i) }im(w(t)f(t)) =0,
(ii) liminfa(t)o(t) = m > 0.
{00

Then either any continuable solution Z(t) of (2) is bounded, or 'h'm[a'i*(t)]
= 4 00. o0

Proof. Equation (2) implies the following equality

4) (s @) +2{et)at)p(@)g@)s —at)fB)o(@)a’} =0,

along any trajectory @(f) of (2). We shall prove, using equality (A) that
it is impossible for #(t) to be unbounded while liminf|z(i)| < oo.
[ A ’

Let us assume to the contrary that it is possible to find %, t,¢ *R,,
3, > t, such that Z(t,)e *Ryy, Z(t)e *R,,. Without any loss of generality
we can assume that either (i) and o'(f) have the same sign on [¢,,t,]
(say positive) and that 2’ (1,) ~ 0, or else we can choose ¢, so that #(t,) = 0
while 2£(t) and «'(f) are of the same sign (say positive) on [¢,, t,]. Hence
a(t)p (B (1) (1) ~ 0. Choose Te(fy,1;). Then for some te[f;, T,

~

T

f [a(t)f(t) %m’] dt = a (@) f(2) [Q(m(f‘)) —d(z(ty))]

h
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Since a{f)f(t) ~ 0 Vie "R, it follows that
7
f (a@)f(t)p(z)z)dt ~ 0

for any .’Z‘ such that w(T) *Rbd, < T < t,. It is therefore true that
for any fe [t,, 1,] such that w( ye *Ryy
T

[ef)p(@)a')dt < K,

b
where

E = m|G{z(T)—G(z ()],
m = [11m1ni(a(t ¢(t))], and where T is chosen so that #(f)e*R,; and

G(w(T)) —G(w(t,)) » 0. Hence by a well-known lemma of non-standard
analysis there exists Te [t ?,] such that a:(T)e *R.. But

f (a()f (1) p (@) @)@t < & < m-[G (2 (D)) — G (w(ty)]-
f
It follows that

T
[ llaf ®)g(@)a') — (ac (W) p(@) g () 2)]dt < &, < 0,
21

where %, is a standard number. However, it follows from equation (A)
that

3[a(T)p (#(D)) o (T)] f{[(af () (2)2')] — [ao(t)p(x) g (x)a' ]} dt + &,

where ¢ is an inﬁmtessnna,l.
Hence
Ha(D)p(@(D))2 (D)} <0
which is impossible.

We comment on the almost complete absence of hypothesis con-
cerning the behavior of the non-linear functions ¢(z), g(x), aside from
the usual assumptions on respective differentiability and continuity.

TBEEOREM 5. In addiiion to hypothesis (i), (ii), and (iii) of Theorem 4
let us also assume that

(iv) lim inf|p(z)| > 0,

|x| =00

(v) lim infg(z) > 0.

|Z|—>00
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Then hm [2(t)] = 4+ oo implies that |&(t)] is a monotone increasing

Jfunction for suffwwntly large values of t.
Proof. We only need to show that z'(t) is non-oscillatory. A non-
standard characterization of non-oscillation is:
z'(t) #0Vie*R .

Let us assume to the contrary that &'(t) is oscillatory. Then it is possible
to choose t< *R,, such that z'(t) =0, p(x)a’(f) > 0 on some interval

[t, T] = *R,., since p(z) must be of constant sign. (Observe that this
property can be stated as an appropriate sentence in our language in
our model R, hence it is true also in *R.) Then

Ha(D)p(@) (T)] f [(a)p (@)a' — (a0) p (@) g ()"

- f[(a'f acg (z)) d‘?’((a’( ))]

Since af(t) ~ 0 Vte*R,,, and 3% (a standard number) such that
ao(t)glz(t) > k>0, Vie'R,, me *R,,, it follows that ¢(»)z'[af—
— acg(z)] is negative on the interval [, T'], hence that [a(T)p(x)2' (T)]* < 0
which is impossible.

This proves the monotone behavior of (i) (t¢ "R, ).

TEEOREM 6. We assume hypothesis (i)-(iv) and also
(v) ima(t) = @ exists,
]

(vi) for sufficiently large values of |z|, p(x) i8 a monolone increasing
Junction of =.

M
(vii) Lim [ g(£)dé = +oo.

| M |00
Then all solutions of (2) are bounded.

Proof. Assume to the contrary that #(t)¢ R,, for some te "R, ..
Hence it follows from Theorem 4 that &(f)e "R, for all ie *R,,,. Take
any te*R,,, and choose i,¢*R,,, 3,> 1, such that #,—1, 4 0. It is
easy to show that

[a(t) @ (@ (t,)) 2 (1)]* — [e(t) @ (2 (t;)) @' ()]
=2 f (afp(@)a’ — acp (x)g(w)a')die *R_,
t

However, for all i< *R_,

a(t)p(a)e (1) = @+ Eplz )’ )],
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where & ~ 0, and therefore for some &, & ~ 0,
(@ + &) o(n ()@’ (1)) —[@+ &) @ (5 (8) @' (i)]*e *R_e,
@{[p(e(ta) o' (W] — [plo ()@’ @]} + 28] & o (o(t) 2’ () —
— & (plo(t) e’ (t))7] +[8 (e (2 () @ (t)} —
— 8(p(e() o ()] +[&(p @) (1) — &(p(z(t) 2 ¢))]  *R .
This is possible only if
[p(x()) @’ (1)]* — [p (w (1)) ' (8)]* € "B o«

Since ¢ {2(ts) = @(x(2), it follows that [@'(f,)] — (2’ ()] e "R_,. But by
Remark 4 in the introductory discussion I T e*R_ , such that 2(T)e *R,;"”
which is a contradiction.

TOTAL ENERGY ARGUMENTS. In all future discussion we shall assume
that a(¢f) > 0 for all {>1%,. We shall denote by p(¢) the function p(t)

= —l/;qo (x)z’ (where ¥V~ denotes the positive square root). Then equation
(2) can be written as a first order system:

Vag(a) o' = —p(t), (Vap®) = olgle)—f().
The function F(t) defined below will be called the total energy

B(t) = 3a()p* () +a(t)e(t) [ p(&)g(&)dé

= a(d) [P*(1) + o (1) Gz (1)),
whers

G(@) = [@(&)g(8)de.
We compute the total derivative of the total energy along a trajectory
# (1) of (2),
(B)  E'() =(Vap)(Vap) +a()eclt)p(d)g(@)d +[at)e(t)] (5 ()
= [a®e®))G@)+f1)Va p(3)3 .

DEFINITION. A solution #(t) of (2) or (2%) is called conservative if
E(#(t)) = constant for all ¢ >>1,, and is called assymptotically conservative
it Him B (Z(t)) exists.

{00

If every solution of (2¥) is (assymptotically) conservative, the equation
is called (assymptotically) comservative. (Clearly (2%) is- conservative if
¢(t) = k(a(t))™', where k is some constant.)
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The energy function is non-negative if

(vil) G(z) > 0 whenever z # 0,

(vill) e(?) > 0 for all ¢t >1¢,.

THEOREM 7. Let us assume that (vii), (viii) are true, and [a(t)c(t)]e
€ O'[ty, o), F(2) # 0 for sufficiently large values of f,

[a(t)e(t)]
f(@)
If both |%(t)| and |&"(t)| are bounded, then the system is assymptotically
conservative.

Proof. We need to show that F(,) ~ E(t;) for any iy, *R_,,.
From formula (B) we have

f If()|dt < o0, limsup < oo, limsupa(l) < oco.
{—00 o0

[a(®)e(®)]

G
0 (‘"”] a

)
B(t)-5() = [ 10 Vaplo)o'+
t

ly
.| Ta@e®Y
< m ]{Iﬁtp(m)mH L2l G(w)l}hf oL

ty
Since the quantity inside the brackets is bounded and 'f f@)at ~ 0 Vi,
t,e 'R, the conclusion of this theorem follows. T

Frequently it is easier to check the behavior of total evergy function
along an arbitrary trajectory of equation (2) than to check the assymptotic
properties of the solution. It becomes important to deduce some parti-
cular properties of the solution from the corresponding behavior of the
total energy function. Theorem 8 offers a set of sufficient conditions for
limd (¢) to exist along arbitrary trajectory #(¢) of equation (2).

1—00

THEOREM 8. Assume that
(i) limsup (a(t)) < oo.
{—00

(ii) limsup|a(t)e(t)] < oo.
t—00

(iil) o(t) > O for sufficiently large values of t.
(iv) lim@ (%) = + oo.

I=—-00

(v) We assume the ewistence of a function p(t)e C'[t;, o) such that
Hm (Va)f(t)y'(t) exists, and is not zero.
{—00

i) [Ila(t)e®T wio)ldt < oo.

(vii) imw(t) ewists.
[a]
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Then the existence of the limit lim E(t) implies that lima (t) = 0.

{—~o0 {—~ro0
Proof. (i), (ii), (iii) and (iv) imply that 2(f) and 2'(f) are bounded
whenever E(t) is bounded. Choosing i,,%,¢ *R,, we compute
by b

f B (t)p(t)dt = f {la(®)e()Y ()& (2 (1) +Va f(t) p(Dp(@)a’ (1)} dt
=d(@VafW)p(t) |2 — f Vaf(t)y ()] Bl (1)) di + f [a(t)o(t)] v(HG(z () dt.
Yog &
Since &(z) is bounded and for any #,%,¢ "R, (P(z) = 6[ o(s)ds),

}zﬁ(t)vp(t)dt ~ 0,
it follows that !
ftz Vaf(t)p()O(z(t))dt ~ 0.
Condition (vi) implies )

iy
[ la®e@®) v(t)dt ~ 0.
t

Hence

f B()y' (t)ds ~ O(a)Vaf()p()]?.

1y

Since limE(#) exists, and [ ¢'(1)dt ~ 0, it follows that
{00 ty

D (2 (1)) Va(te)f(1)p (ta) ~ D(2(t,))Va(t)f () v(t)
and because of (v)
(D(m(tz)) ~ D(z(t,))

2(ly) ~ x(ty).

which implies

The equivalent standard statement is

lima(f) exists. QED.
B
Consider as an example the equation
(2°5) +costa? =1, a4+f8> —1,
i.e.

a(t) =1, o) =cost, G(z)= —_a-|-;+1 L
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We check that the funetion (f) = 1/t satisfies all conditions of this
theorem.

As an example of this tiype of total evergy argument we shall offer
a proof of assymptotic behavior of solutions of the non-linear equation

(%) ' —h(E) ()" +az® =0, liminf|h(s)] >0,
t-r00

where %, m are positive odd integers and R(t) is positive for sufficiently
large values of ¢, and a is a positive number. We intend to show that
every bounded solution (t) of this equation has the assymptotic behavior
}im@’(t) =0, ‘h'm|a“:(t)] < oo. This will be done using total evergy argu-
—>00 ~H00

ments.
We first rewrite (*) in the form

(**) 2" +as" = f(1),

where the ‘‘inhomogeneous term” f(#) is in fact f(8) = h(¥){&"(¢; 1, o)™
The total energy of the “modified” equation (**) is:
(w')z mﬂ+l

E(t) = .
(t) 2 +an+1

The rate of change of the total energy along a trajectory of a solution
Z(t) is
E'(t) = f()5" = h(1)(@)™*".

Hence E'(t) > 0. Since E(¢).is bounded, if # and &' are bounded lim B(#)

]
exists, and lim E’(f) = 0. However, this is possible only if lim#(t) < oo
{0 {0

and lim2’(t) = 0.
t—o00

SOME ADDITIONAT, EXAMPLES OF APPLICATIONS. Consider the equation
of motion of a pendulum whose resorting force is decreasing with time

z'' et~ %ing =0, a>0.

(The restoring force comes from a magnet rather than gravity and the
demagnetizing effect is of the form Ct™%.)

By Lemma 1 we have limn(f) = + oo, which can be easily predicted
by purely physical arguments.

A more complex motion where the ‘‘apparent mass” depends on
the position in the magnetic field would result in equation of motion of
the form '

(p(z)2') + ot~ sing = f(t).

8 — Annales Polanici Mathematicl XXVIII.1,
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Assume that ¢(x) is of the form

p(z) =L+y(x), pz)>0
and
f@)y ~t?,  f>o0.

Then conditions of Theorem 1 are satisfied and #(#()) = =(¢) has the
property hm(n(t)) = 4 o0,

A non-lmea1 equation of motion studied by Poincaré (Ouwres,
Chapter 7) was represented in the usual polar coordinates by a simultane-
ous system of first order equations

Dy = “(V’(B))ze'a P's = G‘P(V’(e)a 6)7

where a and ¢ are constant. However, assuming that a, ¢ are functions
of time, and rewriting this system as a single equation we obtain & parti-
cular form of equation (2) of this paper:

[a(t) (9 (6))°6'] +0(1)g(6) =0, where g(6) = B(w(6), 6).

Consider as a special case the equation
[C.(L+Cre6%6'] 4O, (1+ )(6+0 sin @) =

01,02, 03, 04, Cs 0, a>1 t> 1 Then lunlﬂ(t)l +°° by Theorem 2.

We finally comment that the problems of existence and continua-
bility of solutions for the initial value problem of equation (2) can be
handled by existing standard arguments and will be discussed in a separate
paper [4]. Estimates concerning the sup norm of solutions of (1) and (2)
are given in [3] and [4].

4. Equations of the type (1) or (1¥). The boundedness and oscillation
theorems for equation (2) can be clearly restated with much simpler
hypothesis for the equation (1). However, some important results can
be obtained for (1) which run into difficulties when an attempt is made
to generalize them to equation (2). In the next theorem we shall congider
equation (1¥), and prove a theorem which is curiously resembling a well-
known result of Wong [10], except that the integrability condition
appears to be applied to “the wrong function.”

THEHEOREM 9. Suppose that ¢(1), f(1) satisfy conditions (i) and (ii) of Lem-
o(?)

ma 1 (we do not assume o(t) > 0), and that (a) im W = 0. Then for any bo-
{—>c0

unded solution of (1) lima’ (¢) emisis only if [f(t)dt < oo, and limaz(t) ewists
o {—o0 {0
only if [tf(t)dt < oo



- Non-linear inhomogeneous equations, I 83

Proof. We choose =, ye "R, and compute:

Y
o) =) = [ f01-Z-afot)] .
o)

Condition (a) implies ﬁ ~ 0 for all te*R, ., while the assumption

lim#' (1) = 0 is equivalent to the statement 2'(y)—a'(z) ~ 0 for all y,
t—»00

L
7e R,,. Hence

0 mff(t)[l—}a—g(m(t))] dt.

If g((2)) is bounded in R this is easily shown to be equivalent to the
b4
condition 0 v [ f(t)d¢, which is equivalent to

b
lim [f(t)dt exists.
b0 o

An identical argument concerning the relationship

[ =012 glote) a5 ~ o,

shows that a necessary condition for lima(¢) to exist is the convergence
o {—+c0

of the improper integral [if(t)dé. The more general cases of equations
a

(2), (1} or (1%) can be easily handled by similar techniques, provided
assumptions are made to imply that roughly speaking for large values
of ¢ they behave like (1). Equations of the type

&' +h(t, ) = f(¢)
can also be handled similarly, with additional assumptions.
We shall offer without proof the following oscillation theorems.
The non-standard proofs are easy, and only use the fundamental theorem

of calculus. The sequential version of these proofs is somewhat more
difficult.

THEOREM 10. If
(a) lim m = 0,
TR\ e at

(b) fo(t)dt = + o0, ¢(t) > 0,
(c) wg(z) >0 if # #0,
then the solutions of (1) can not be bounded away from zero.
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Remark. The hypothesis of Theorem 10 also imply that either
o' (t) is oscillatory of lima(t) = 0.
-0

THEOREM 11. Assume conditions (b) and (c) of Theorem 10, and suppose

that there ewists te [t,, oo) such that f f(t)dt = 0. Then all solutions of (1)
are oscillatory.

The technique of proof offered here is particularly well suited to
boundedness and stability theorems. To demonstrate its application we
shall prove the following novel boundedness theorem for equations of
type (1).

THEOREM 12, We consider equation (1) and assume that

(a) e(t)e C[ty, o), ¢(2)> 0 for all sufficiently large values of t. .

(b) There exist constants ¢ > 0, 0 > 0, such that for any 1e R there can

be found an open imterval (i,,1,), t, > t, of lenglh greaier than o, such that
c(t)> e for all te(ty,1,) (i.e. the lengths of intervals on which ¢(t) is uni-
forml J bounded away from zero do mot converge to zero)

11m f@)e(t) = +oo.

Then all solutions of (1) are unbounded. (Observe that mo conditions
were given concerning the function g(xz), except that 4t is continuwous.)

Proof. Assume to the contrary that there exists a solution Z(#) of
(1P) satistying conditions (a), (b), (¢), which is bounded. Hence we claim

that «* (f) must be of constant sign for all e *R, .. Assuming that " (E) =0
for some te R, We see that g(z(?)) = f(t)/e(t), which is infinite because
of condition (c). Since z(¢) is near standard, and g(z) is continuous funetion

of z, we have obtained a contradiction, proving our claim. Since ¢(f) > 0
for sufficiently large values of ¢, we have for all te'R,

oty oty T

Condition (a) implies the existence of an interval (f,, ¢,) of length greater
than some standard nuinber & > 0, such that c¢(t) s¢ 0 for all ze (¢, t,).
Hence on the interval (#,,%,) «’/(t) is an infinite positive number. Since
xz(1,) was near standard, it follows easily that x(¢,) is a positive infinite
number in contradiction of the hypothesis. This completes the proof of
the theorem. As an easy example of application we note that all solutions
of the equation "'+ (logt)®g(x(?)) = t*, are unbounded, if a, # > 0 and
if g(x) is continuous.

5. Concluding remarks. Other applications of non-standard analysis
will no doubt be forthcommg in almost any area of differential equations
or control theory in.the near future. The -applications selected in- this
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paper only reflected the personal taste of one of the authors. Theorem 11
is known in the ‘“folklore’® and can be proved using Liapunov’s arguments.
A more general theorem can perhaps be proved using the techniques of
non-standard analysis, by examining in greater detail the particular
caseS of possible behavior of ¢(¢) and of f(¢) for infinite values of ¢. The
authors would like to comment on the relative simplicity of the proofs
of Theorems 1-5, and the insight the non-standard arguments give into
such problems. Theorems 10-14 can be easily rewritten with ¢ — § method
of proof substituted for non-standard arguments. However, even here
the non-standard analysis offered clues to the meaning of our hypothesis,
and more or less fixed the hypothesis of these theorems. In Theorems 2
and 4 it would be difficult to translate the non-standard arguments into
the £ — ¢ arguments without lengthening and complicating the arguments,

ArPENDIX 1. So far in the discussion of oscillatory behavior of so-
lutions of equations of type (1) we have stipulated that the inhomogenious
term f(¢) is such that zeros of solutions are distinet. There are of course
easy examples of pathological behavior of even linear equation

(4) o’ +o(t)r = f(t),

if f(t) is only assumed to be continuous. In fact it is easy to construct
examples of pathological behavior of solutions of (4) even if ¢(¢) and f(¢)
are of class C™[t,, o). For example consider the function

0 ifitg<anm, orit=n+1l)x,

8i & ) ex /2
pa(t) = . t—(n+1)w P([ 2n+1 ]2 'J'I:z)
t— Tt ——
2 4
if nr<ti<(n+l)m,n =1,2,...,

and the function z(t) = D w,; #(f) is a bounded ¢* function for all ¢ > 0.

Toma]

The zeros of 2 () have an accumulation point on every interval of length =,
and the distance between consecutive zeros of z(?) approaches zero for
large values of t. Differentiating x(f) twice and eomputing f(¢) = ()4
+ 2" (1), we see that z(t) solves this differential equation (1) (with ¢(¢) =1,
and f(t)e C*[0, 0)). )

Below we offer sufficient conditions insuring that the zeros of so-
lutions of equation of type (1) do mot have accumulation points. We
consider the equation '

(1°) o' +o(t)g(@, o) = (1), g(0,0) =0.

Suppose f(t), ¢(t) belong to the class C*[{,, o), and g(& #) is %-times
continuously differentiable function of the variables &, 7.
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Let us assume that f(t) and all derivatives of f(¢) of order 1,2,..., %
do not vanish simultaneously at some point > t,. Then { can not be
the accumulation point of the zeros of any solution #(t) of equation (1°).

Proof. It is clear from equation (1°) that any solution &(f) is of the
class C*2(t,, co). If fe (t,, o) is an accumulation point of zeros of #(t),
then 7 is also an accumulation point of zeros of @' (2), 2" (8), ..., 2F+¥ (¢).
Hence by continuity Z(t) = 0 for every j < k+2. However, differen-
tiating all terms of equation (1), we have

g(w m’) 17 g(w, a;’)
&

o (t)+¢' (g(@, o) +o(t)e’ ——— +e(i)a =f'(¢),

o+ (8) + L (e, g, o,z ..., o®) = f(k) (t)s

where 2(c, g, &', ", ..., #™®) is a linear combination of g(, '), and terms
containing the derivatives of z(f) of orders 1, 2, ..., &. Substituting ¢ = ¢,
we see that the left-hand sides of this system of equations are all equal
to zero, and therefore f(f) =f'(f) =... = f®(f) = 0. in contradiction
of our hypothesis. This proves that the zeros of #(t) cannot have an accu-
mulation point at . We also make the fo].lowmg observation: If both
#(t) and 2’ (t) vanish simultaneously at some point # e [2,, co), then f (t) =0,

. mf’ (t)
lim ——

i3 f(t) ) n
number such that f?(¢) # 0. We observe that f(}) — 0 implies #" () = 0.
Differentiating again both sides of equation (1°) j-tlmes we obtain z@ (1)

2+ (1) z" (1)
= 0, for all 7 < j+ 2 consequently hm f‘f) = 0. Hence lim ——

t—»t f(
as can be checked by a repeated applxcatlon of PHéspital’s rule.

= 0. To prove it, let us assume that § is the smallest natural

=0,
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