i:STOSOWANIA MATEMATYKI
PLICATIONES MATHEMATICAE
20, 3 (1990), pp. 423-434

- KUCZYNSKI (Warszawa)

IMPLEMENTATION OF THE gmr ALGORITHM
FOR LARGE SYMMETRIC EIGENPROBLEMS *

_ Abstract. We present an implementation of the generalized minimal
Tesidual (gmr) algorithm for finding an eigenpair of a large symmetric matrix.

€ report some numerical results for this algorithm and compare them with
the results obtained for the Lanczos algorithm. A Fortran implementation of
the gm algorithm can be obtained from the Institute of Computer Science of
‘t‘he Polish Academy of Sciences and is also available via anonymous FTP as
Pub/gmrval” on Columbia.edu 128.59.16.1 on the Arpanet. The input of this
Subroutine is a matrix which has been partially reduced to a tridiagonal form.
Such a form can be obtained by the Lanczos process.

1. Introduction. The usual procedure for finding an eigenpair of a large
SYmmetric matrix 4 is to approximate eigenpairs of 4 from its behaviour in
4 given subspace of small dimension. The most popular method of this type is
the Lanczos algorithm which gives approximations of eigenvectors in the

Iylov subspace. It is known (see [4]) that the Lanczos algorithm does not
pr_oduce an approximate eigenpair of 4 with minimal residual. The generalized
Minima] residual algorithm (the gmr algorithm) was introduced in [3]. It finds
the eigenpair with minimal residual in a Krylov subspace. The gmr algorithm
®Njoys certain theoretical optimality properties. The residuals of the gmr
Agorithm are never greater than the residuals of the Lanczos algorithm and
SOmetimes they are much smaller. Since the cost of both algorithms is
®Ssentially the same, the gmr algorithm seems to be preferable.

In this paper we present an implementation of the gmr algorithm for real
SYmmetric matrices. By applying k steps of the Lanczos process, a symmetric

\—

S * This paper has been partly written while the author visited the Department of Computer
Clence, Columbia University. This research was supported in part by the National Science
Oundation under Grant DCR-82-14322.

424 J. Kuczynski

matrix A is partially reduced to a tridiagonal form, i.e.

Ql’{-’rlAQk = lea

where @, is an (1 x k}-matrix with orthonormal columns and D, is a ((k+ 1) x k)-
tridiagonal matrix. We assume that coefficients of the matrix D, have been
already computed.

The implementation was tested for many matrices. We report results for
matrices with specifically chosen coefficients as well as for random matrices.
Numerical tests confirm the theoretical advantages of the gmr algorithm over
the Lanczos algorithm. For all matrices the computed residuals of the gmr
algorithm are never greater than the corresponding residuals of the Lanczos
algorithm and sometimes they are much smaller. The sequences of residuals
generated by the gmr algorithm are always nonincreasing, while the sequences
produced by the Lanczos algorithm do not enjoy this property. The Lanczos
algorithm often increases significantly the residuals from one step to the next
one.

For matrices with specifically chosen coefficients, the gmr algorithm is
significantly more efficient than the Lanczos algorithm. For random matrices
the gmr algorithm is only slightly better than the Lanczos algorithm.

2. The gmr algorithm. In this section we define the gmr algorithm and
introduce some of its properties which are useful for implementation.

Let 4 be an n x n real symmetric matrix. For a given vector beR", ||b|| = 1
(I = [I-Il,), consider the k-th Krylov subspace

K, = span(b, 4b, ..., AA7'b), k>0.
Let

E, = {(x,0): xeK,, |xl =1, geR}.
Define k+1 real numbers cs, c¥, ..., c¥_, and g* as
I(A—g*D(cEb+ctAb+ ... +c¥_ 1 A* " 1b)| = min{||(4—oDx|: (x, Q)E'Ek}.
The gmr algorithm produces a pair (x,, ¢,) given by
x,=c¢b+ctAb+... +cf A 'b, 9, =0*

In other words, the gmr algorithm finds the normalized vector x, from the
subspace K, and the real number g, for which the residual

re =min{[|Ax—gx||: (x, Q)€ E,} = |Ax,—0, %]

i1s as small as possible.

We now present the properties of the gmr algorithm which are useful for
its implementation. Without loss of generality, assume that the vectors b,
Ab, ..., A*b are linearly independent. Let gq,, g5, ..., gx+ be an orthonormal

The gmr algorithm 425

basis, the so-called Lanczos basis, of the subspace K, such that
A‘L‘=ﬁi‘1i+1+°‘i;51i+ﬁi~1qz'—1a i=1,2,...,k,

% =(A9;,9), Bi=IllAgi—oq;—Pi—1qi—1f, i=1,2,...,k, Bo =0.

Let .= (91,92, .--» 4] and ¢ =[0,...,0,1]". Then the ((k+1)xk)-
Matrix D,, '

r-dl Bl . 0 |]
B a, .
. .] H
(1) D, =0, 40, = R W [ﬁ ekf]
. k
Pr-1 &y
0

L Be
IS tridiagonal. '
For xeK,, we thus have
k

x=) ¢4, cER.
i=t
Setting Co=Crt+1 =Cry2 = 0 we get
k+1 '
@ 7= min{) (ci-1fi-1+c;0—c;0+Pici1)*: @R, cER, Y ci=1}
i= i

1 =1
= min {min{[D,()c|*: [l = 1}: ¢eR}

= min {4a(Df (@) Dy(0): 0 € R},

Where D, (g) = D, —¢l, D, is defined by (1), and i, (X) denotes the smallest
Sigenvalue of the matrix X. Hence at the k-step of the gmr algorithm we want
FO find a number g* for which the smallest eigenvalue of the matrix D{ (e) D, (o)
8 minimal. Let ¢* =[c},...,c¥]” be the corresponding eigenvector of
b (e*)D,(0*). Then the vector : :

k

x* = _Z ctq;

i=1

IS a unit vector from K, for which the minimum in .(2) is attained.
In order to find the smallest eigenvalue of Df(g)D, (o) we proceed as
follows,

Let H,(¢) = H,—¢l, where H, is defined by (1). Then
G) Di(0)Dy(0) = Hi(o)+ i exef.

7 ~ Zastos. Mat, 203

426 J. Kuczynski

Thus we want to find the smallest eigenvalue of the matrix H2 (¢) modified
by the very special rank one perturbation Bie,ef. We shall use Golub’s
theorem about the eigenvalues of a matrix which is perturbed by a rank one
matrix.

THEOREM ([1]). Let

G =diag(g), i=1,2,...,n,
and
z={[z,...,z,]", Izl = 1, G = G+oazzT.

If the g, are distinct, a is nonzero and all components of the vector z are nonzero,
then the eigenvalues of G are the zeros of

n

x(®) =1+a) zZ/(g;—1).
i=1
Let H,(0) = U,(4,—el) UT be the spectral decomposition of the matrix
H(0), 4, = diag(4,)), where A, are eigenvalues of H,. From (3) we have

DI (@)Dy(e) = U,[(4,~ol)* + B} U e,el U,1UT.

Let z = [z,, ..., 2,]" = UFe,. Then z is the last row of the matrix U,.Ttis
well known (see [4], pp. 129 and 124) that if §; #0, i =1, ..., k—1, then all
elements of the vector z are nonzero and all the A, i=1,...,k, are distinct.
Assume also that B, # 0 and ¢ is chosen is such a way that

(h—0) # (4;—0)* for i#j.

Applying Golub’s theorem to the matrix (4, —oI)? and to the vector z we se€
that the eigenvalues of the matrix D{(0)D,(g) are the zeros of the function Ao’

k

re® =1+ 8¢ ¥ 22 /[(4—e)*—1].

i=1

If we denote by {(g) the smallest zero of the function X,» then (2) yields
re =min{{(g): geR}.

Thus in order to find the minimal residual it is sufficient to compute the
global minimum of the function {. The implementation of the gmr algorithm
presented in the next section is based on this property.

3. Implementation of the gmr algorithm. The implementation of the gmr
algorithm is described as follows.

Having the matrix D, defined by (1) we compute the global minimum of
the function { by performing the following steps:

(a) Compute all eigenvalues A1s Agy ..., A of the tridiagonal matrix H;

and the last components z,, Z35 ..., 2, of all its eigenvectors. Order them so
that 2, <4, <... < 4,.

The gmr algorithm 427

(b) Define k intervals I,:
= (=00, Ay +22), 1, = (A4 +4)/2, (A, +23)/2), ...,
Loy = ((Ak—2+ A= y)/2, (-1+4)/2), I, = (A= 1+ 4)/2, +).

(¢) Calculate the limits of the function { at the endpoints of I,,

lim (o) =(4,—Ais1)?/4, i= L. k—1.
e (it Ai+1)f2
(d) For each interval I;, find the infimum of the function { fori =1, ..., k.
(e)Take as the global minimum of { the smallest value among numbers
Obtained in (c) and (d); take g, as the argument of the global minimum.
We now briefly discuss the steps of the above algorithm.
. To perform step (a) we can use technique described in [2]. Since we are
Interested in eigenvalues and only in the last components of the eigenvectors,
We can calculate them in cost proportional to k2.
Steps (b), (c) and (e) are simple and they do not require explanation. The
Cost of performing each of them is proportional to k.
Let us now discuss step (d). In order to find the minimum of the function
(in I; we propose using the iterative parabola method. It is known that
satisfies a Lipschitz condition with constant 4]|A| and is analytic in
4 neighbourhood of a minimum point. Having computed values (g%~ ?),
{ei-1y ¢ ("), construct an interpolating polynomial w of the second degree
(Parabola) such that

w(eY) = {(e¥) for j=i-2,i—1,i.
Assume that w’ is not a constant. Then take ¢“* ! as the unique zero of w’,
w1 =0, i=0,1,2,...

It is well known that if starting points ¢!~ %, o= 1, 0@ are sufficiently close
to the point g, at which the function { attains its minimum and {"(e,) # 0, then
the sequence {0} produced by the parabola method converges with order 1.32
0 the point g,.

Consider now the i-th interval

I;= ((/1;'~1+/1a)/25 (4i+4i+1)/2)

and let g€ 1;. Then it is easy to see that the smallest zero of the function %, lies
0 the interval J,. Here

‘Il = ((/11 —9)2’ ('12“0)2)3
Ji= ((Af_e)z’ min((4; -, —e)?, (’L’H‘Q)Z)), i=2,..., k-1,
T = (=00 (A4 —0)?).

428 J. Kuczynski

Note that the end points of the intervals J,,i =1, 2, ..., k, are the smallest two
arguments for which the function y, has poles. In order to find the smal st
zero of the function y, we use bisection to the equation x,(¢) = 0. One can also
use other methods safeguarded with bisection. To find the minimum of the
function { in the interval I, we perform a few (up to 6) steps of the parabola
iterative method starting from 4, and two other points chosen close to 4,. If at
any step of the parabola method we obtain the point outside I,, then we
terminate and take as the minimum the smallest computed value of {(g) in the
I,. It is easy to see that the cost of this step is proportional to k2. Thus the cost
of performing all the steps (a)(e) is of order k2.

Having values g, and Am.(Di (e Dy(0,) we can perform one step of the
Wielandt algorithm to get the corresponding eigenvector c* = [c¥, ..., c¥]” of
Di(g,)D,(0,). Some technical tricks for performing one step of Wielandt’s
method without computing D] (g,) D, (0,) effectively are given in the Appendix.
Using this technique we can calculate the corresponding eigenvector c*
performing O(k) arithmetic operations. The cost of computing the vector

k
— *
X, = Z ¢i q;
i=1

is of order nk operations.

We end this section by the following remark. We have assumed that we
were given the coefficients of the matrix D, and we dealt only with this matrix.
If the coefficients o, ..., ®, and B,,..., B, are not known, they and the
orthonormal basis q,, ¢,, ..., ¢x+1 can be found using the Lanczos process
applied to the Krylov subspace, i.e., to the vectors b, 4b, ..., A*b. Formulas
for o;, B; and g; given in the previous section are, in general, very sensitive to
roundoff errors and some reorthogonalization process is necessary. We will not
discuss this subject here. The reader is referred to [4], where the detailed
description of the selective reorthogonalization technique can be found. We
stress that the cost of constructing the basis q,, ¢,, ..., gi+; and coefficients ¢;
and f; is proportional to nk, which is much more than k? for k < n.

4. Numerical results and comparison with the Lanczos algorithm. In this
section we present some numerical resuits for the gmr algorithm and compare
them with the results obtained for the Lanczos algorithm. This algorithm (see
[4], p. 257) also uses the Krylov information

N,(4, b) = [b, 4b, ..., A*b].

The Lanczos algorithm, in fact, disregards the last codiagonal element f,
in (1) since B, is only used to estimate the accuracy of the approximations. It
deals with the resulting (k x k)-matrix H .- The algorithm produces pairs
Qv 4),i=1,2,..., k, where (u,, 1), i=1, 2, ..., k, are all eigenpairs of the
matrix H,, as approximations of eigenpairs of 4. The cost of the Lanczos

The gmr algorithm 429

algorithm is essentially the same as the cost of the gmr algorithm. It is known
that the smallest residual ri of the Lanczos algorithm satisfies

ri = min{|AQ,u;— 4,Qu|l: 1 <i<k}
= 'ﬁk'min{’uki’: 1<i< k} < B,

Where u; is the last, k-th, component of the vector u,. It is also known that

re = min{./| Ax||*—(4x, x)*: xeK,|x|| =1, (A—(Ax, x)I)x L K,}.
The residual of the k-th step of the gmr algorithm is given by

r¢ = min{\/||Ax|?—(Ax, x)*: xeKy, x| =1}.

. It is easy to see that r¢ <rf. Moreover, it is known that »§ = r} and
i B = ry = 0. This and similarity of the formulas for residuals might suggest that
"« should be close to r¢ for k =1, 2, ..., n. This intuition is incorrect. As
shown in [3] the small difference in the formulas leads to completely different
Values for the residuals of the two algorithms (see Example 1).
For all examples, both the gmr and Lanczos algorithms are tested for
=1,2,..., nand their residuals are compared. Without loss of generality we
Confine ourselves to tridiagonal matrices. For simplicity we set the vector
b =[1,0,..., 0]". Numerical tests were performed on a DEC-20 computer
With 8 decimal accuracy at the Computer Science Department of Columbia
UniVersity. Some tests were also performed on a DEC-20 computer at the
Co_mputer Science Department of the University of Utah in Salt Lake City and
on VAX 750 computer at AT & T Bell Laboratory in Murray Hill. We first
Teport the results for the following matrix.

ExaMPLE 1. Let
o, =0, i=1,2,...,101,

B:=05, i=1,2,...,100,i#1,11,21,...,91,
and

By =By =By =...= By =005.

The sequence of residuals of the gmr algorithm is strictly decreasing, while the
Sequence of residuals of the Lanczos algorithm does not have this property. In
fact, only the subsequence {r% i}, for k > 10, of the Lanczos residuals is
Donincreasing. The gmr residuals r§,_, are 2 or 3 times smaller than 75, _,.
Both algorithms terminate at the 71-st step by reaching residuals smaller than
10~8. For even indices larger than 16, the Lanczos algorithm does not take full
f‘dVantage of the available information and produced large residuals. For
lnStance, REFIECF I W

rea=42,0—4, rke=139,0—4, 1k =50,0—4, rh=12,,-3,

430 J. Kuczynski

while

ré3 =Trés =gy =rgo = 4.9,,—8.

This means that at the 69-th step the Lanczos algorithm guarantees 7 correct
decimal digits, while at the next step only 3. The Lanczos algorithm increases
the residual more than 24000 times at the 70-th step. By contrast, we stress that
the residuals of the gmr algorithm are

G G G G
rés =28,0—-82r8=2ré, 2rés 21é5 = 1§, =20,,-8.

ExamMpPLE 2. Let ;=0 and ,=1/2fori=1,2,..., n for n > 800. For
this matrix both algorithms produce decreasing sequences of residuals. Table
1 shows how many steps one has to perform using the gmr (G) and Lanczos (L)
algorithms to get residuals not greater than ¢. The gmr algorithm uses
significantly fewer steps.

TABLE 1

g Si0—=1 | lio=1 | 5,0=2 | 1,0=2 | 5.0=3 | 1,0-3 | 5,0—4| 1,0—4

%L] 7 12 36 58 170 270 | 780
#G | 1 6 9 21 30 69 98 21

ExaMpLE 3. The increase of the Lanczos residuals observed in Example
1 occurs quite often. For instance, for a tridiagonal matrix of dimension 100
defined as follows:

oc1=oc2=1/3, o:3=a4—_—-—1/3, a5=a6:1/3, veen oc99=a100=1/3
and '
Bi=(—1y"1(1/3), i=1,2,...,99,

the Lanczos algorithm increases the residual error at every fourth step and the
increase is very large. For instance,

rko = 18,0—3, rky=16,,—3, rlg=14,,-3, rk=13,,-3,

while all other residuals from the step 49 to 61 vary between 4.5,,—7 and
EXAMPLE 4. One of the goals of testing is to establlsh empmcally how fast
residuals of the gmr and Lanczos algorithms converge for symmetric matrices. .

For the gmr algorithm it has been proved in [3] that for any symmetric matrix
Aand k<n

v < | All/k,
and for any k < n there exists a real symmetric matrix A for which

¢ > | All/2k.

The gmr algorithm 431

Similarly, for the Lanczos algorithm the bounds are

re < | Al /k,

and for any k < n there exists a symmetric matrix A for which

rk > 141//k+1).
We want to find out how sharp these bounds are for specific matrices with
lorm bounded by unity. In order to measure the speed of convergence define
the sequences {pS}, {pF} as

r§= k)L, b=k, k=2,3,..,n—1.

From theory we know that pf > 1 and pf > 1/2. We computed p¢ and pf for
Many tridiagonal matrices with norm bounded by unity. The smallest values of
p{ and pr were obtained for matrices with zeros on the main diagonal and with
Slightly increasing codiagonal elements. We report three examples of such
Mmatrices,

(1) For the matrix of dimension 501 with codiagonal elements f; equal to
i{2(n—1)), the gmr residuals decrease at every second step, while the Lanczos
residuals do not decrease at all. Both algorithms begin at the same residuals
®qual to 1,,—3 and at the 500-th step they reach

The sequences py and p¢ decrease very slowly for k > 50. For the Lanczos
algorithm we obtain

P50 =079, piso =074, pkoo =0.72.
For the gmr algorithm we get
pSo =133, pSs0 =129, pSoo = 1.27.
(i) We also tested the (201 x 201)-matrix with codiagonal elements
B, =Jiln—1p2, i=1,2,...,200.
The gmr residuals decrease very slowly at every step. For instance,
rf=350-2, ré%=177,0—3, 1§00=255,0—3,
r$so =4.50—3, 1§00 =3.9,0—3.
The Lanczos residuals are constant for all 200 steps:

L _ L __ R _ —
rl—rz—...—r200—3.510 2.

432 J. Kuczynski

The sequences pF and p¢ are both decreasing. For the Lanczos algorithm we
obtain

P30 = 1.12, p5o =085, ploo =0.73,
Piso =067, pi,s =0.65, P3o0 = 0.631;
while for the gmr algorithm we have
pSo =148, p% =124, p$oo =113,
P?so =1.08, pf,5s =106, PSo0 = 1.046.

(iii) The small values of pf and pf are also obtained for the
(200 x 200)-matrix with

B: =log(i+1)/(2log(m), i=1,2,...,199,
on the codiagonal. A few results for both algorithms are shown in Table 2.

TABLE 2

k| 25 50 75 100 | 125 | 150 | 175 | 180 | 190 | 199
rE 15.0,0—2(39,0—2(3.3,0—2(3.0,0—2|2.7,6—2(2.5,0—2|2.3,0-2[23,0—2[2.3,0—2[2.2,, 2
76 12,110 —2|1.3,0—2/9.5,0—3(74,0—3[6.2,0—3(5.3,0— 3|4:6,0— 3[4.5, 0 3|4.3,,— 3]4.1,,— 3
pt| 093 | 083 | 079 | 076 | 075 | 074 | 0726 | 0.725 | 0721 | 0719
pel 121 | L1t | 108 | 106 | 105 | 1.05 | 1042 | 1.041 | 1.039 | 1.038

For large k, the sequence pf is quite close to 1. We believe that for a larger
dimension n the sequence py would be even closer to 1. Observe that for the
last two matrices the Lanczos sequence pf is relatively close to 1/2. We believe
that there exists a symmetric matrix for which the sequence p} approaches 1/2.

For the same matrix as before, Table 3 shows how many steps are needed
to reduce the first residual

rf =k =65,,—2
by a factor of g using the Lanczos or gmr algorithms.

TABLE 3

q 2 (3145|6789 10|11]|12]13)/14]15]16

L | 78 1200|200 {200 | 200 | 200 { 200 | 200 | 200 | 200 | 200 { 200 | 200 | 200 | 200
#G | 10| 23| 38 51| 63| 77| 89104117 [130|144 156|172 |186 200

EXAMPLE 5. Random matrices. We tested many tridiagonal matrices with
coefficients generated pseudo-randomly with uniform distribution in the
interval [—1/3, 1/3]. We do not observe large differences between residuals of
both algorithms. However, very often the sequence of Lanczos residuals is not
strictly decreasing, though the increase is rather small. In general, the k-th

residual rf does not exceed the (k— 1)-st residual multiplied by 3 or 4. However,
for a few matrices, rf = 20rL_, for some k.

The gmr algorithm 433

Both algorithms were efficient. For random matrices of dimension 201
they computed the residuals smaller than 4,,—8 after about 25 steps. Fast
onvergence of both algorithms for random matrices can be easily explained.
_Indeed, the sequences of numbers generated pseudo-randomly from the
Interval [—1/3, 1/3] are unlikely to be increasing, and almost surely some
Codiagonal elements are small. These two properties make the residuals of both
algorithms small.

Both algorithms were tested for 80 random (201 x 201)-matrices. For each
Matrix the gmr residuals are smaller than the corresponding Lanczos residuals.
The differences between them are usually insignificant. For each of eighty
Tatrices we compute the number of steps needed to make the residual less than
& Table 4 presents the average number of steps needed by the Lanczos and gmr
algorithms for a few values of ¢. These tests suggest that for random matrices
the efficiency of both algorithms is nearly the same.

TABLE 4

€ Lo—=1}10=2|1,4=3]|1,,=4]|1,,—5|1,,—6|1,,~7

Average num-| L | 2.1 5.94 10.09 | 15.1 18.23 | 2096 | 24.04
ber of steps|] G | 2.06 5.44 9.16 | 13.88 | 1795 | 20.79 | 236

. Appendix. We describe how to perform one step of the Wielandt algorithm
10 order to find the eigenvector of the matrix D] (¢)D, (¢) corresponding to the
Smallest eigenvalue. Assume that we have a sufficiently good approximation 4,
A >0, of the smallest eigenvalue of the matrix DJ(0)D,(¢). We must solve the
System of linear equations

(Di (@D (@—Au=w for given we R,

Which appears in the Wielandt algorithm,
Assume that the matrices H7(¢)— I and Dy (¢)D,(0)—AI are nonsingular.
Then from the formula of Sherman, Morrison and Woodbury

A+u) ' = A" —1/1+0TA ' WA w4,
applied to the matrix 4 = HZ(g)—Al and the vectors u = v = ¢,, we obtain
(DY (@Dilo)~41)~" = (Hi(o)— I + BReel) !
= [1=1/(1 +) B2 (HE @)~ A1)~ epef | (HE(@)— A1),
Where w, = Bief(HE(e)—Al) e,
Let
s = (H} (@)~ Al)"'w = (Hy(9)— /A1) ™ (Hi(0) + /A1) *w.
Then
Buel(Hi(@—AI)"'w = el s = Bs,, where s=(s,, ..., s)7.

434 J. Kuczynski

Thus we have
(Di (@D (@—Al)"'w = s—Bis /(1 + w)Hi(@—A) "' e,.

Put t =(ty, ..., t,)" = (H¢(e)—Al) 'e,. It is easy to calculate that w, = B2,
and :

u = (D{ (@)D (0)—Al) ™ 'w = s— B s, /(1 + BEt)e,
where

s = (Hu(@)—/Al) " (H(@)+ /A1)~ 'w,
t= (Hk(Q)_ﬂI)— I(Hk(Q)'*‘ﬁI)- ‘e,

To solve systems of equations with matrices H k(g)+ﬁl and H k(g)—ﬂl we
can use any numerically stable method (we use Gaussian elimination with
partial pivoting) for solving systems of linear equations.

Acknowledgement. I am very pleased to acknowledge Professor Henryk
Wozniakowski for his many helpful discussions concerning the subject of this
paper. Without his comments and suggestions it would have been impossible
to write this paper. I would like to thank Professor Joseph Traub, who
carefully read earlier versions of this paper and suggested some improvements.
Many thanks are due to Professors Frank Stenger and Kris Sikorski and Dr.
David Lee for their cooperation in performing numerical tests.

References

[1] G. H. Golub, Some modified matrix eigenvalue problems, SIAM Rev. 15 (1973), pp. 318-334.

[2] — and J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969),
pp- 221-230.

[3]1 J. Kuczynski, On the optimal solution of large eigenpair problems, J. Complexity 2 (1986),
pp. 131-162.

[4] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Inc., Englewood Cliffs,
N. 1., 1980.

JACEK KUCZYNSKI

INSTITUTE OF COMPUTER SCIENCE
POLISH ACADEMY OF SCIENCES
P.O. BOX 22

00-901 WARSAW

Received on 1987.12.01

