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PARTIALLY ORDERED GROUPS
WITH TWO DISJOINT ELEMENTS

BY

J. JAKUBIK (KOSICE)

Two elements # > 0 and y > 0 of a lattice ordered group G are said
to be disjoint, if x Ay = 0. A set X of strictly positive elements of G is
digjoint if any two elements x,, x,¢ X, x, #* x,, are disjoint. Conrad and
Clifford [3] studied the structure of lattice ordered groups G satisfying
the following condition:

(¢;) If A = @ is a disjoint set, then card A < 2.

A generalization of the results of [3] is given in Conrad’s papers
[4]-[6] (cf. also Fuchs [7], Chap. V, § 6).

Note that there does not exist a lattice ordered group containing
exactly one pair of disjoint elements (since, if # y and {z, y} is a disjoint
set, then the set {2z, 2y} is also disjoint and {2z, 2y} +# {x, y}).

We can generalize the concept of disjointness for partially ordered
groups as follows. Let P be a partially ordered set, «, y « P and let U (x, y)
< P be the set of all upper bounds of {z, y}. The set of all minimal ele-
ments of U(x, y) will be denoted by =V y; the set A y is defined dually
(any of the sets # V ¥ and « A ¥ may happen to be void). If for any =, y ¢ P
and any veU(x,y) there exists zex \/ y such that z <o and if the dual
condition also holds, then P is a multilattice (Benado [1]). A partially
ordered group @ for which the corresponding partially ordered set (@; <)
is a multilattice is called a multilattice group; such groups were consider-
ed by McAllister [8]. Now let G be any partially ordered group. A subset
of strictly positive elements of G will be called disjoint, if Ocw A y for
any two elements z, ye X, # 7# y; such elements x and y are called disjoint.
If #,yeX and neither # <y nor y <, we call # and y incomparable
and write x|y.

In this note there are studied partially ordered groups containing
exactly one pair of disjoint elements. In other words, we will consider
partially ordered groups G having the property

 (qe) There exist disjoint elemets w, y< G such that if 4 < @ is a dis-
joint subset and card A >1, then 4 = {z, y}.
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In statements 1-15 we assume that G satisfies (q,). Let a, beG, a < b.
The interval [a, b] is the set of all ce G such that a < ¢ < b. The interval
[a, b] is prime if [a, b] = {a, b} +#* {a}.

1. Intervals [0, 2] and [0, y] are prime.

Proof. Let 0 +# x,¢[0, x] and 0 # y,¢[0, y]. Then Oex, A ¥,, Whence
{wly ?/1} = {CD, y} according to '(qs)- If T =Y, then y<z, x Ny = {y}y
a contradiction. Therefore x, = # and analogously vy, = v.

2. Interval [nx, (n+1)x] is prime for any integer m.

Proof. From the definition of a partially ordered group it follows
that [0, ] ~ [nz, (n+1)x], where the symbol ~ denotes an isomorphism
with regard to the partial order; our assertion is now implied by statement 1.

3. Interval [z, x4 y] ¢s prime and x+yex V y.

Proof. Since [0,y] ~ [z, x+y], the first assertion follows from
statement 1. This, in turn, implies z}yex V v.

4. 2xex \ v.

Proof. Since 0 < 2z and [0, y] is a prime interval, we have either
0e2x A y or 20 >y. But 22 > and 22 # y (since 2z = y implies A ¥
= {x}, a contradiction), whence {2z, y} # {z, y} and therefore, by (q,),
0¢2x A y; thus 22 >y. Moreover, since the interval [z,2x] is prime,
we get 2zex V vy.

4.1. Remark. Obviously, we can interchange x and y in statements
2, 3 and 4.

The mapping ¢ (f) = — 1 (te @) is a dual automorphism of a partially
ordered set G; hence and from (q,) it follows that

3. Oe(—2)V (—y).

Indeed, if a,b¢G@,a<0,0<0,0caV b, then {a,d}={—x, —y}

6. 22 = 2y.

Proof. According to 4 we have y < 2x. Moreover, again from 4,
we get Oec(—a) V (y—22), and since —x <0 and y—2x < 0, by 5 we
have {—x,y—22} = {—, —y}. Consequently, y—2z = —y, whence
2y = 2ux.

7. Intervals [y—x,x] and [y—x,y] are prime and y—zxex A y.

Proof. We have [y—ux,x] ~[y,22] = [y, 2y] and the last in-
terval is prime in view of 2. Furthermore, [y — 2, y] ~ [—x, 0] and the
interval [ —, 0] is dually isomorphic to [0, ], whence by 1 the interval
[—x,0] is prime. The last assertion is an immediate consequence of
the preceding.

8. y+ox=a+y.

Proof. By statement 3 and remark 4.1 intervals [z, y+«] and
[y, y+ «] are prime and y 4 ze x V y. Hence and from 3 it follows (according
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to the definition of the set x \V y) that either x+vy = y+x or 24y |y+ .
If r4vy and y+ o are incomparable, then xe(z+y) A (¥4 ), whence
0ey A (—2+y—+x), and thus, by (q;), —2+y+o =2,y = =, a contra-
diction. Therefore z+vy = y+ .

Let H be the subgroup of G generated by the set {x, y}. From 8 we
get as a corollary:

9. The subgroup H is abelian.

From 6 and 9 it follows that

10. If y—x = t, then 2t = 0.
11. Any zeH can be uniquely expressed in the form z = mx-+ nt,
where m is an integer and ne{0, 1}.

Proof. Let zeH. According to 9 there exist integers s, and s, such
that 2 = s;x+ s,y. Thus 2z = mxr+s,t, where m = 8,+s,. If s, =2k
(8 = 2k+1), then, by 10, s, = nt with » = 0 (» = 1). Assume that
me+nt = 0. If n = 0, then mxr = 0, whence m = 0. Let n # 0; then
n = 1 and, consequently, mz = —1¢ = {. Elements mz and 0 are com-
parable and |0, a contradiction. Hence mx+ nt = 0 implies m = 0 and
n = 0, and the considered expression is unique.

12. mx+nt >0 < m > 0.

Proof. According to 10 we can suppose that ne{0, 1}. Let n = 0;
obviously, max > 0 if and only if m > 0. Further, let » = 1. Then mx -1
=mer—t=(m+1)oe—y. If m >0, then m+1>2, whence (m+1)x
=>2r =2y >y and (m+1)x—y >0, and, consequently, mx-t>0.
If m = 0, then mox+¢|0. In the case of m < 0, we have —mz+{ >0,
whence mz+4t < 0.

13. Let H, be the set of all pairs (m,n), where m is an integer and
ne{0, 1}. We define in H, the operation + componentwise, n,-+ n, being taken
mod 2. For (my, n,), (Mg, ny) e H; we put (m,, ny) < (mg, n,) if my < my. Then
H, is a partially ordered group isomorphic to the partially ordered group H.

This follows from 9, 10, 11 and 12. It is easy to see that H,
satisfies (q,).

13.1. A multilattice M is said to be transitive if it satisfies the fol-
lowing condition: for any a;, b;,cieM (¢ = 1,2) such that a,ea,V b,
byea, A by, bieby V ¢y, €yeb, A ¢, and ¢, <K a,, the relations a,ea, V ¢,
and cyea; A ¢; hold true. (H,;; <) is an example of a transitive multi-
lattice (cf. Benado [2]). The partially ordered group H, shows that there
exist transitive multilattice groups that are not lattice ordered (this
answers a question of Benado ([2], Problem 6)).

14. H 48 a convex subset of the partially ordered set (@, <).

Proof. Let 0 <v < 2,2e¢H,veG. Then there exists a positive inte-
ger m such that 0 < v < ma; let m be the minimal positive integer with
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this property. It follows from 1 that m >1. Assume that v¢H. Then
v|(m—1)x, since [(m—1)x, mx] is a prime interval. Moreover, ma
e(m—1)xVv, whence Oe(—2)V (v—mz). According to 5 this implies
v—mxz = —y, and thus veH, a contradiction.

15. If veG,v¢H, v >0, then v >z for each zeH.

Proof. Assume that there exists zeH such that v 3 2. Then there
exists a minimal positive integer m with the property mxz « v. By 14,
mx |v holds and thus by 2 we have (m—1)xemax A\ v, whence Oex A
A (v—(m—1)2) which implies v—(m—1)x =y, veH, a contradiction.

In the same way we can prove an analogical statement for » < 0.
The previous results can be summarized as follows:

16. THEOREM. Let G be a partially ordered group fulfilling (q,). Then
there exists a convex subgroup H of G isomorphic to the partially ordered
group H, from 13. For any veG\H,v >0 (v<0) and any ze<H the
relation z < v (v < 2) holds.

An element a e G is said to be archimedean, if the set {na} (n = 0, 4-1,
+2,...) i8 not bounded in G. Let us consider the following condition for G':

() G satisties (q.) and at least one of the elements x, y is archimedean.

17. Let G be a directed partially ordered group. Then G fulfils (q,)
if and only if @ is isomorphic to H,.

Proof. Obviously, H,, is directed and satisfies (q,). Assume that G
is directed and fulfils (q,). Let w @. Since G is directed, there exist elements
%,ve@G such that u < 0 <v and v < w < v. We can suppose that x is
archimedean. Then it follows from 15 that % and v belong to H; thus,
by 14, w belongs to H as well. Hence G = H and it follows from 13 that G
and H, are isomorphic.

18. Let G be a directed multilattice group satisfying (q,). If weG and
w|0, then weH.

Proof. Let weG and w|0. There exists then #e¢G such that v <0
and % < w. Since (@, <) is a multilattice, there exists u,e 0 A w with the
property u, > u. Hence Oe(—u,) A (w—wu,) and thus, according to (q,),
{—u,w—u}={w,y}. ¥ —u;, =2 and w—wu, =y, then weH; the
case —u, =Yy, w—u, = & i8 analogous.

19. If G satisfies (q3), then the subgroup H (cf. 9) is normal.

Proof. Let a<G. The mapping 2 - ¢(2) = —a-+2+a is an auto-
morphism of a partially ordered set (G; <) and ¢(0) = 0. Therefore,
Ocp(x) A ¢(y). By (qs), {9(2), 9(y)} = {=,y}. Since H is a subgroup
generated by {z, y}, ¢(H) is a subgroup of @G generated by ¢(x) and ¢(y);
hence ¢(H) = H. '

Let A be a normal convex subgroup of a partially group G. If for
each v¢@, v¢ A, either v >0 or v < 0 holds, then G is said to be a lex-
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extension of the partially ordered group A (cf. Conrad [4] and [5]). In
such a case G /A is linearly ordered. If ¢,de@, ¢+ A+ d+ A, ¢,ec+ A,
d,ed+A, and ¢ < d, then ¢, < d,. Indeed, ¢,—d, ¢4, and so the elements
¢,—d, and 0 are comparable. If ¢;—d, >0, then ¢, >d,, thus in the
partially ordered group G/A we have d+ A =d,+4<c¢,+4 =c+ A
< d+ A, a contradiction. Hence ¢,—d, < 0, i.e. ¢; < d,.

20. THEOREM. Let G be a directed multilattice group. Then G satisfies
(a2) 2f and only if G is a lex-extension of a partially ordered group isomorphic
to H,.

Proof. Assume that G is a lex-extension of a partially ordered group 4
isomorphic to H,. Let ¢, deG,¢c>0,d >0,0ec ANd. If c+A#d+ A4,
then either ¢—d >0 or ¢c—d < 0, whence ¢ A d = {d} or ¢ A d = {c},
a contradiction. If ¢+ 4 =d+ A4 # A, then a<¢ and a < d for each
aeA, whence O¢c A d. Therefore {¢,d} = A and thus, since A satisfies
(qp), the partially ordered group G does it. Conversely, let us suppose
that G satisfies (q,). According to 16 and 19, H is a normal convex sub-
group of G and by 18, for any ve@, v¢H, either v >0 or v < 0 holds.
Hence G is a lex-extension of H.

21. Let A be a subgroup of a partially ordered group G fulfllllng
the following conditions:

(a) 4 is a convex subset of (G; <);

(b) A is a normal subgroup of the group (G; +);

(¢) if ¢,deG,c+A #d+A4,c,ec+A,d,ed+ A, and ¢<d, then
¢ < d,.

Under these assumptions G will be said to be a generalized lex-ex-
tension of A.

Remark. It is easy to prove that a generalized lex-extension G
of A is a lex-extension of A if and only if G/A is linearly ordered.

22. Let G be a generalized lex-extension of a directed group A + {0}.
If ¢,de@G,y c|d and ¢ \ d# O, then ¢+ A = d-+ A.

Proof. Assume that ¢,de@, ¢|d, c+A+# d+ A and ecc A d. Then
e<cande<d. If et A = ¢+ A, we would have, by 21 (¢), ¢ < d, a con-
tradiction; hence e+ A # ¢+ A and, analogously, e+ A #d+A. By
21 (¢) we then have ¢, < ¢ and e, < d for each e¢,ee+.A. There exists aeA,
a > 0; if we put ¢, = ¢+ a, then e < ¢,e e+ A and this shows that e¢c A d,
a contradiction.

23. Let G be.a generalized lex-extension of a& directed group A + {0}.
Then G satisfies (q,) if and only if A does.

Proof. Let G satisfy (q,). Then Oex A y and z|y. According to 22,
x4+ A =y+A. If x4+ A # A, then by 21 (¢) we have z >a and y >a
for each aed, whence 0¢x Ay, a contradiction. Therefore x,yeA and
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thus A satisfies (q,). Conversely. assume that A fulfills (q,) and let ¢, de@,
¢c|ld,0ec A d. Then ¢,deA, whence {¢,d} = {r,y} and thus G also
satisfies (q,).

24. If G satisfies (q,), then G is a generalized lex-extension of H.

Proof. According to 14 and 19 it remains to verify condition 21(c)
only. Let ¢,de@, c+ H#*d+H, c<d, c,ec+ H, d,ed+ H. Since there
exist elements h,, hoe H such that ¢, = ¢+ h, and d, = d+ h,, it suffices
to prove that d > ¢+ h for any heH. For each heH there exists a posi-
tive integer m such that h < mx; thus we have to prove that d > ¢+ mx
for each positive integer m. Assume that there exists a positive integer m
satisfying d $ ¢+ mx and take the least m with this property. If d < ¢+ mz,
then by the convexity of the set ¢+ H we get dec+ H, a contradiction.
Hence d|c+mz, d > ¢+ (m—1)x. Since [¢+ (m—1)x, ¢+ mz] is a prime
interval, we have ¢+ (m— 1)z e d A(c+ ma). This implies Oe(d—(m—l)w—
—¢) A (¢+2—¢), thus d—(m—1)z—c is by (q,) equal to # or y and
therefore d+ H = ¢+ H, a contradiction. This completes the proof.

25. THEOREM. A partially ordered group G satisfies (qs) if and only
if it s a generalized lex-extension of a partially ordered group tsomorphic
to H,.

This follows from 13, 23 and 24.
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