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Trigonometric interpolation (0,2,3) case

by A. SHARMA and A. K. VArMA * (Edmonton, Canada)

Introduction. The object of this paper is to discuss the simple
case of (0, 2, 3) interpolation by trigonometric pclynomials at the points
T = %E, k=0,1,2,..,n—1. By (0,2, 3) interpolation we mean the
problem of finding a trigonometric polynomial whose values, second
and third derivatives are prescribed at some given points. In view of
our earlier work [5] on (0, M) interpolation it seems plausible to consider
the (0, M, N) case, M < N; however, a justification for considering the
very special case (0, 2, 3) lies in its simplicity and in the fact that the
method used in this paper can be applied to the general problem of (0, M, N)
case and that it brings out most of the salient feature of the general
(0, M, N) case.

An obvious difference between the (0, 2) case studied by Ki§ [4]
and (0, 2, 3) case studied here is that in our case we consider trigonometric
polynomials of higher order. Another special difference is that in the
(0, 2, 3) case interpolatory polynomials exist and are unique for both =
even or n odd, provided the polynomials are of the form given by (2.2)
and (2.3) according as n is even or odd, whereas in (0, 2) case existence
and uniqueness hold only for n odd. A still more interesting distinction
between these two cases is that the sequence of interpolatory polynomials
in our case converges uniformly to the given function only if f(x) is periodie,
continuous and f(x) € Lipa, a > 0, whereas Ki& [4] requires the Zygmund
condition in the (0, 2) case.

For earlier reference to (0, 2) interpolation, we refer to the works
of Balazs and Turén [1] and a survey paper by Balazs [2].

2. Statement of the main theorems. We are interested in the
trigonometric polynomial R,(x) of suitable order such that

(2.1) Ru(xx) = ax, Ru(xr) = by, R'(xx)= ¢k,

* The second author acknowledges support under N.R.C. grant M.C.A. 26
(1964).
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where z; = —2%’—0, k=0,1,2,..,n—1. We shall call this case (0,2, 3)

interpolation. When n is even (= 2m) we require the trigonometric poly-
nomial R,(z) to have the form

Im—1

(2.2) dy+ 2 (drcoskx + eysinkx) - dgm, cOs3ma

k=1
but when » is odd (= 2m +1) we require it to have the form

Im+1

(2.3) d,,-f—z (drcoskx+exsinkx) .
k=1

We shall prove the following

THEOREM 2.1. Let n be even (= 2m). The trigonometric polynomial Bn{(x)
satisfying (2.1) having form (2.2) is given by

n—1
(2.4)  Ra(@) = D ar Uz —ws) +Z bV (2 — a:k)+Zo,,W (@ —a%)
k=0
where
L[ \V4jsinje N7 (3n—2j)sinj
1 jsinja n—2j)sinjs
(2.5 W)= n3 2/ fnz—3j2+ Erd n2—3(n—j)2]’
m—1
1 s
26)  Vio)=o5[1+2 §n2_3j2cosp
1 N n?43(3n—2j) 1
1 N n*4-3(3n—2j 1 . ]
1 WE—3(n—j) cosya:—f—z(cosmw cos3ma)| ,
j=m+1
1 2 m— 1( . )
_ L “ n '—]
(2.7) U(x)_n[1+n2;( —soosjo—
3m—1
e 2‘ (n —))*(2n _J)‘cosjm-{-l(%osmx—cos3mm)].
n j=m+1 (n,2— n_] 2) 8

For n odd (= 2m +1) Ra(z) satisfying (2.1) and of form (2.3) is given by (2.4)
where
Im+1

1 S (3n — 2 sinjz
(2.8) W(z) = — [Z W3 —— = SinjT + Z — J _J;z] )

=1 j=m+1
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m

1 n? 4- 352 .
(2.9) V() = por [1-}—2 ;1 n— 37 cosjz
! L sm+1 : 1 3(3 0
1 §?n+ n—25)?% .
1 3 —j) cosyx] ,
j=m+1
1 2 fW (n*—j%) cosj
(2.10) Uz) = " [1+ﬁ ,~ m—3p
= 1 Im+1 ( )2(2 ')2 .
1 n—j3)%(2n —j)*cosjz
P |

Let us consider

n—1 n—1 n—1
(211)  Ra(@) = ) f(@) Ulw—az0) 4+ bV (@— @)+, exW (@ —aw)
k=0 k=0 k=1
where f(z) is a given 2=x-periodic continuous function and by, ¢, are
arbitrary numbers. We prove the following
THEOREM 2.2. Let f(x) be 2n-periodic conlinuous funcltion with
f(x) e Lipa, a > 0 and if

n? | n?

(2.12)  |bi] = o(logn) , k| = o(—) ) k=0,1,2,...,n—1,

then Rn(z) as given by (2.11) converges uniformly to f(z) on every closed
finite tnterval on the x-axis.

3. Proof of Theorem 2.1, To avoid repetition we shall give in
full the method for obtaining W (z); the proof for V(zx) and U(z) are
similar and so we omit the details. Further we shall prove the theorem
for n even. The proof when n is odd is similar.

Since W (x) satisfies the conditions

or k=0,

1’0 11 1 f
(31) W) = Wizw) =0, W' @)= {0 for 1<k]<n—1

we set W(z) = sinmzg(x), » = 2m, where g(z) is a trigonometric poly-
nomial of order < 2m. Then W (x;) = 0 gives ¢'(zx) =0, k=0,1,2, ...
...y n—1. Whence

(3.2) ¢'(x) = sinmazr(z) ,

where r(z) is a trigonometric polynomial of order < m. Also the last
condition given in (3.1) gives

: 1 for k=0
_1\k ’ _ = !
(3.3)  (—1)*m[3g"(xx) —m?g(zx)] {0 for 1<|kj<n—1.
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Hence

(3.4) m[3g"'(x) —m?g(x)] = % sin mz cot g + sinmah(x) ,

where h(x) is a trlgonometnc polynomial of order < m. Applying the
operator D to (3.4) and m (3.D? —m?) to (3.2) (here D denotes differentiation
with respeet to z), we have

5) . L sin 2 piz) - P cos E
(3.5) 2mD(sm 5 cot2)-,-s1n 5 h'(x) {-2co.s 5 h(x)
= g [— n? sinf-":)—mr(m) +3{ncos/%mr'(x) +sin?r"(w)}] .
Since
m-1
: : )
(3.6) sinf-nzivcotg =142 Z cosjr+cosmr, n=2m

we have from (3.4) on putting x = x;

m—1
. 4
3nr'(xy) —h(xe) = — ﬁcomnxkz jsinjxy = ——2 (m —j)sinjz;
i=1
for Ic= 0,1,2,...,n—1.
Hence
m—1

j
Z (m —j)sinjr + asinmz ,

i=1

(3.7) 3nr'(r)—h(x) = -;—;

where a is arbitrary. Eliminating k(z) from (3.5) and (3.7) we have

m—1

3nr’(x)+n¥r(z) =1 +% 2 (m? —j2)cosjz + 2macosmz
j=1

so that

m—1

_1 \ m?—j? . 2acosmx
(3.8) T(.’E) — éﬁ—}_ Z mcos‘]w]—k——w .

Using (3.2) we now get from (3.8)

g’ (z) = sinmar(x)

m~1

1 [sinmz 1 _72
_:rﬁ[ 2n? +2m21 - {Sm(m+])m+sm(”’n—:})$}]+-—-sm2mﬂ'
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which gives

m—1
_L cosmxr 1 \) m?—j? [cos(m—+j)x cos(m—j)z\]
g(x) - C [ 8m3 +2m2}g{ n2_3j2l 7n+j m_] }

~ 2 cos2ma
2ms °08 !
]
whence W{(x) == sinmxg(x). Since W(z —z;) contains no term containing
sin3mx, we have a = 0. The constant C = —1/2m* follows from (3.3);

on rearranging the terms we get (2.5).

4. In this section we shall determine the estimates of the fundamental
polynomials. :

LEMMA 4.1. The following estimate is valid

n—1

(4.1) D W (@ —zi)) < Cyn-Slogn
k=0

where C, is a numerical constant.

In order to prove (4.1) we need the following known inequality
(Jackson [3], page 120):

n--1 v
(4.2) Z max’Zsinj(w—wk) < Anlogmn .
k=0 P =0

4j
_332
1 <j <m, we have by Abel’s inequality

Sinee 0 < < ;'7— for 0 <j < m and is increasing function of j for

»
I j
IZ P ----s1n3 x —xy) <i max | \ sinj(m—wk)!-

| M ai<p<m I:i=l

Sy - . 3‘"/—2.7. 4: .

\‘ b b < < —_ y {; \/ 1 —— 9.

Similarly, since 0 < Eo3m—JE ~m for m+1<j<3m—1 and
B2 g decreasing function of j for m+1 <j <3m—1 we can

nr—3(n—j)*

again use Abel’s inequality. Then using (4.2) we get (4.1).
LEMMA 4.2. For the estimates of V(x —xi) we have the following in-
equality

n—1

(4.3) Z |V (x—xzk)| < Cyn—2logn ,
k=0

where C, is a numcerical constant.
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Proof. As above we take n to be even. We can rewrite (2.6) in the

form
2m—1

(4.4) Viz) = Sinma [Z a;sinjz -I—%sm“’mw]
where =
243(n—j)*
4.5 .m_+—
(4:9) Y W3 m g
Since
2m—1 ﬁ 2m—1
Z a;sinj (v —xy) = Z -+ 2 = 8;+8,
f=1 j=1 je=m+1

we observe that a; is decreasing for 1 <j < m and so we have by Abel’s
inequality

|8;] <3 max IZsm;)(w—wk)

1<p<sm =1
It is easy to see that

m2+3< —j)2  6m(j—m)

Y= AmE—3(j—m): AmE—3(j—m) "
We have
2m—14 "4 3(m i)t
m*+3(m—)
18, < . 3= )sm)(w —x) |+
J=m+1
2m—1
% m(j—m ) s

Now we use again Abel’s inequality on each of the above series on
the right which is possible, as the coefficients in the above sums are in-
creasing function of j for m+1 <j < 2m —1. Thus :

P
[8;] <3 max l Z sin j(z —x)| .

mi-1<p<em—1 j=m+1
Now combining the estimates for S, and §, and using (4.2) we have
Lemma 4.2.

LeMMA 4.3. For the fundamental polynomial U (x—x)) the following

estimate 18 valid

n—1
(4.6) D U(@—a)| < Cslogn,

k=0

where C; 1s a positive numerical constant.
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Proof. Another representation of U(x) for n even (= 2m) is given by

2m—1

(4.7) U(m)_snnmm[ otZ _|_ Z ﬁ,s1n]m+sm2mw]
i=1
where
_ (m—7)*(3m —j)?

(4'8) ﬂ7_ m2—3(m—j)2 ¢
Since

2m—1 2m—1

D) Bisinj(z— wk)—2+ D,

i=1 j=1 f=m+1

from (4.8) it is easy to see that f;, as a function of j is decreasing for
1 <j < m while for m+1 <j < 2m —1, f; increases as j increases. There-

fore using Abel’s inequality in each part and using (4.2) we get the required
result.

9. In order to prove our main theorem we require a lemma on ap-
proximating polynomials.

LEMMA 5.1. If f(x) is a continuous 2x - periodic function and satisfying
f(z) e Lipa, 0 < a <1, then there exists a trigonometric polyniomal T,(x)
of order <mn such that

(5.1) |[f(@) —Ta(x)| = O(n~°),
(5.2) TP@) = 0", p=2,3,..

The formula (3.1) is due to Jackson and is well-known. The proof
of (5.2) is exactly similar to a corresponding lemma of Ki§ ([4], (p. 270-271).

6. Proof of Theorem 2.2. By Lemma 5.1 there exists a tri-
gonometric polynomial T,(x) of order n which satisfies (5.1) and (5.2).
By the uniqueness theorem we have

Ta(@) —Ba(@) = ) (Talzr) —flaw) U@ —aw) + D) Tilan)V (x —ax)—
i k=0 k=0

-1

—2 biV (@ —x) + ’T“'(a:k W (2 —az) — 2 e W (@ —ax)

k=

O

By (5.1) and (4.6) we have

I, = Cilogno(n=2)=0(1) as O0<a< +1.
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On using (5.2), (4.3) and (2.12) we have

I, = Cyn2logno(n®~°) = o(1), 0<a< t1,
and

la=0(1

‘r@—) C,n—%logn = o(1) .

Lastly using (2.12), (4.1) and (5.2) we get

logn

I, = Cin*logno(n® ) = C, o

o(1), a>0,

and

I, = Cyn1 "
; = Cin~*logno (logn) = 0(1).

Therefore {T,(x) —ERa(x)| = 0(1). Now using (5.1) again we have
[f(@) — Ba(®)| = | f(2) —Tu(x) +Tn(x) — Ra(x)] = 0(1) .

This completes the proof of our main theorem.
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