ANNALES
POLONICI MATHEMATICI
XXI (1969)

Regular solutions of a linear functional equation
in the indeterminate case

by B. CHoczEWSKI (Krakéw)

§ 1. Introduction. In the present note we continue the investiga-
tion of the regular solutions ¢(x) of the linear functional equation

1 - olf(#)] = g(@)p(z)+ h(x)

started in our previous paper [1]. The functions occurring in equation (1)
are real-valued functions of a real variable, defined and continuous in
an interval I = (0,a), 0 < a < +oco; the function f(z) is strictly in-
creasing, 0 < f(z) <« in (0, a), f(0) = 0.

The phrase ‘‘regular solution’” will be used throughout this paper
in the following sense (cf. [1]):

DEFINITION 1. A funection ¢(z) will be called a regular solution of
equation (1) in the interval I if it satisfies equation (1) in I, is continuous
in I and has the right-sided derivative at the point z = 0.

A study of regular solutions makes thus a starting point for the
investigation of C' solutions of equation (1) in I.

We shall also explain the exact meaning of the notion of a ‘“solution
depending on an arbitrary funection”.

DEFINITION 2. We say that equation (1) has in I a regular (resp.
continuous) solution depending on an arbitrary function if there exists an
interval J C I such that every continuous function on J can be extended
to a regular (resp. continuous) solution of equation (1) in I.

In the present paper we deal with the case where there exists a con-
tinuous solution of the equation

(2) ef(2)] = g(2)p(z)

depending on an arbitrary function (Theorem 1), and we prove a theorem
on the existence of a one-parameter family of regular solutions of equa-
tion (2) in this case (Theorem 2). Theorem 3 shows that a small change
of the assumptions of Theorem 2 implies that equation (2) has a regular
solution depending on an arbitrary function or only the trivial solution
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¢(z) = 0. In Theorem 4 we investigate the non-homogeneous equation (1)
and we obtain results like those of Theorems 1 and 2. These theorems
complete the results of our previous paper [1], where we have found
some conditions for every continuous solution of equation (1) or (2} in I
to be regular.

Equation (1) or (2) may have a continuous solution depending on
a parameter only in the indeterminate case where g(0) = 1; similarly,
a regular solution depending on 2 parameter may occur only in the in-
determinate case ¢(0) = f'(0). In the present paper we shall assume that

9(0) = f(0) = 1;

thus we have the indeterminate case for continuous as well as for regular
solutions. We shall make use of the results of paper [2] by Kuczma and
the present author, which gives a theory of continuous solutions of equa-
tions (1) and (2) in the indeterminate case.

§ 2. Preliminaries. We shall make the following assumptions:

(i) The function f(x) is continuous and strictly increasing in an interval
I=10,a), 0<f(z) <z in (0,a), f(0)=0.

(ii) The function g(x) is continuous and positive in I, g(0) = 1.

(iii) The function h(x) is continuous in I, h(0) = 0 (1).

(iv) The function f(z) has at the point x = O the right-sided derivative
f'(0) and f'(0) = 1.

(v) The function h(z) has at the point x = 0 the right-sided deriva-
tive h'(0).

Let f*(x) be the sequence of iterates of the function f(x):

@)=z, a)=fM=)], n=0,1,2,.., svel.

It is not difficult to prove the following

LEMMA 1. If the function f(x) fulfils hypothesis (i), then for every
zel, # 0 the sequence f*(x) is strictly decreasing and lim f"(z) = 0.

n—o0

Now we write
n—1
3) Gn(@) = [ [ glf' ).

The family of continuous solutions of equation (2) in I depends on
the behaviour of sequence (3). Three cases are possible (cf. [2]):

(*) Setting £ = 0 in (1) we obtain in view of (i) and (ii): @(0) = @(0)-+%(0); it
follows that in the case where k(0) # 0 equation (1) cannot have any solution in the
whole interval I.
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(A) The limit G(z) = limG,(z) exists and G(x) is continuous in I,
G(z) #0 in 1. . -

(B) There exists an interval J C I such that limG,(z) = 0 uniformly
in J. o

(C) Neither (A) nor (B) occurs.

Levma 2 (ef. [2], [3]). Let hypotheses (i) and (ii) be fulfilled. In
case (A) the functions ¢.(x) = ¢/G(x), where ¢ is an arb%tmry real number,
are the only continuous solutions of equation (2) in 1. In case (B) equation (2)
has in I a continuous solution depending on an arbitrary function, and
all continuous solutions fulfil the condition ¢(0) = 0. In case (C) the function
@(x) = 0 is the only continuous solution of equation (2) in I.

We also introduce the auxiliary equation

(“’) h(z)
f) YT Fa)

where for x = 0 the function z-g(z)/f(x) is defined as 1, and the function
h(z)/f(z) is defined as A'(0). In virtue of hypotheses (i)-(v) these functions
are continuous in the whole of I. The following evident lemma allows
us to replace the investigation of the regular solutions of equation (1)
by the investigation of continuous solutions of equation (4).

LeEMMA 3 (cf. [1]). Let hypotheses (i)-(v) be fulfilled. If y(x) is a con-
tinuous solution of equation (4) in I, then the function ¢ (x) = xy(x) is a regular
solution of equation (1) taking on the value 0 for x = 0. Conversely, if the
function @(x) is a regular solution of equation (1) and @(0) = 0, then the
function

(4) yLf(@)] =

(d_et(p(a?)/w for xel,zxz+#0,
220 for e

18 @ continuous solution of equation (4) in I.

Since equation (4) is of form (1), we can also calculate sequence (3)
for it. We denote the sequence obtained by I7(z), i.e. we put

(5) 11 (‘”,fi[f @1 (for s 0), In0)=1.

i=0

Sequences (3) and (5) are linked by the formula
(6) Iy(@) = 2Gu(z)/f"(x), for wel

(for # = 0 the right-hand side of (6) is defined as the limit if z—>0-10
and is equal to 1).

We shall also make use of estimates due to Thron [4] and concerning
the behaviour of the sequence f"(x)
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LEMMA 4 (cf. [4], Theorem 3.1). Let the fumction f(x) fulfil hypo-
thesis (i) and suppose that there exist a mumber k > 0 (not necessarily an
integer!) and a function p(x) continuous and positive in the interval I and
such that

(7) fl@)y=z—p(z)z*+t for zel.

Then for every xye I, z, + 0 there exist positive constants K and M
such that for an arbitrary x € (0, x,) one can find an index N (x) such that

(8) (En) " < f(@) < (Mn)™  for n>N(z).
§ 3. Results. The results of the present paper are contained in

the following four theorems:

THEOREM 1. Let hypotheses (i) and (ii) be fulfilled and suppose that
there exist fumctions R,(x) and R,(x) and positive constants a,, a,, k, u, »,
such that for x ¢ I we have

(9) f(z) = 2 —a, 2"+ Ry(x) ,

(10) g(z) = 1 —a, %+ Ey(2) ,

and, moreover,

(11) E\(z) = O(gk*1+r) ,  Ry(z) = O(z*t"), =2—-0+0.

Then equation (2) has in I a continuous solution depending on an
arbitrary function and every continuous solution f(x) of equation (2) fulfils
the condition '

(12) p(0)=0.

THEOREM 2. Suppose that the functions f(x) and g(x) fulfil the hypo-
theses of Theorem 1 and, besides, that hypothesis (iv) is fulfilled and that we
have
(13) a,=a, .

Then 1° sequence (5) uniformly converges in I to a positive limit, and 2°
equation (2) has in I a one-parameter family of reqular solutions given by
the formula

(14) @e(®) = ¢-lim f*(x)/Gn(z) ,

n—>00
where ¢ 18 an arbitrary real number.
THEOREM 3. Suppose that the functions f(x) and g(x) fulfil the hypo-
theses of Theorem 1 and that hypothesis (iv) is fulfilled and that we have
(15) a, # a; .

If a,> ay, then equation (2) has in I a regular solution depending
on an arbitrary function; if a, < a,, then the function ¢ (x) = 0 is the only
reqular solution of equation (2) in I,
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THEOREM 4. Suppose that the functions f(x) and g(x) fulfil the hypo-
theses of Theorem 2 and the function h(x) fulfils hypotheses (iii) and (v).
Suppose further that there exists a positive number A such that

(16) h(z) = O(zk+1+3) |  2-504+0.

Then equation (1) has in I a one-parameter family of regular solutions
given by the formula

17 ¢(z) = ¢*(@) + gcl2) ,

where g, (x) are given by formula (14) and

det

(18) (2) = — 2 RS (@) Gna(@)

On the other hand, the continuous solution of equation (1) depends on an.
arbitrary function.

Remark. The number & postulated above need not be an integer.

§ 4. Proofs. Now we are going to supply proofs of Theorems 1-4.
We shall use the following notation

I,=<{0,z)>, where wyel, z,#0.

Proof of Theorem 1. According to Lemma 2 it is enough to show
that for the sequence Gy(z) (ci. (3)) case (B) occurs.

It follows from (i), (9) and (11) that we can choose an «, € I, z, # 0,
and an r > 0 such that for z ¢ I,, x #+ 0, we have

(19) (a, —7r)z*tt < Ry(x) < a,zF+?,

Assume that the z, has been chosen in such a manner that for & e I,
z # 0, we have

(20) g(x) <1—M,z*,

where M, is a positive constant (cf. (10) and (11)). We consider sequence (3)
in the interval J o {f(x,), Tx). In virtue of (20) we have for every z edJ’

(21) gL (@] < 1 =ML ")) < 1 =M " (201",

since f™(x) > f**'(x,) for z eJ (cf. Lemma 1). The function f(x) fulfils.
the hypotheses of Lemma 4 (we put p(x) = a,—R,(z)z~ %1, for z # 0;,
and p(0) = a,); consequently we have for n > N = N (z,)

(22) @) > (Em)™%,
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We get by (21) and (22) for n > N and zeJ

(23) 0 < Gu(2) < Gyale) || (1—M/E(i41)).

t=N+1

The function Gyi.(x) is continuous, and thus bounded in J, and the
other factor in (23) tends to zero, since the series Y M /K (n+1) diverges.
Consequently lim G,(z) = 0 uniformly in J, i.e. for sequence (3) case (B)

00

occurs, which was to be proved.

Proof of Theorem 2. In virtue of Theorem 1 (relation (12)) and
of Lemma 3 it is enough to determine all the continuous solutions of the
-equation

(24) vIf(@)] = %w(w)

in I. For this purpose we are going to investigate the behaviour of se-
quence (5). Let us write

@) oafe) @I @] (@)

for 2#0; ¢(0)=0

fﬂ'i'l(w)
so that
n—1
(26) Tu@) = [ [ 1+ 0ia)) .
i=0
We shall prove that the series
(27) 2 |ea(w)|
n=0,

is uniformly convergent in every interval I, C I. In the sequel z, is regarded
a8 fixed.

We have by (9), (10), (11) and (13)
xg(x) —f(®) = oRy(x) —Ry(®) = O(a*+1+*), 2->0+0,

where » = min(u, ») > 0. Thus we have for z e I,, z # 0

28 enl@)] < 2

( ) ] 7‘( )I fn+1 (:Z})

with a certain constant M, > 0. It follows from Lemma 1 that for every
positive z € I, the value f*() can be made arbitrarily small, provided n
is sufficiently large. Thus inequality (19) is fulfilled at the point f"(z) and,
by (9), we infer that the inequalities

@) = [l @)] > @) {1 —r[[M(@)]°} > 1 "(@)
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are valid for » sufficiently large. We make use of it in (28) and, owing
to Lemma 1, we get the estimate

len(@)] < 201" (@) < 2M,[f (@) ] (%)
for z € I,, provided n is sufficiently large. In virtue of Lemma 4 we have
(29) (o) < (Mm)™"

for large n. Consequently series (27) has in I, the convergent majorant

[= o]
D eMy(Mn) T, k>0, x>0,
n=0
and thus uniformly converges in I,. Hence it follows that also the se-
quence I(z) (cf. (26)) uniformly converges in I, and its limit

(30) I'(z) = im I'x(2)

is different from zero (and thus positive) in Z,. Since z, has been arbitrary,
function (30) is continuous and positive in the whole interval I. Asser-
tion 1° of the theorem is proved. Consequently for sequence (5) case (A)
occurs and, according to Lemma 2, the functions y.(z) = ¢/I'(x) are the
only continuous solutions of equation (24) in I. By Lemma 3, in view
of relation (12), the functions

(31) oc(z) = xy(x) = cx[I(x)

are the only regular solutions of equation (2) in I. Formula (14) results
from (31), (30) and (6).

Proof of Theorem 3. Theorem 1 remains valid also in the present
cage. Consequently, all the continuous solutions of equation (2) fulfil
relation (12) and we may confine ourselves to the study of the continuous
solutions of equation (24). Those are determined by the behaviour of the
sequence I%(x), which, in turn, depends on the behaviour of the series
P ca(z), where cy(x) are given by (25).

We have assumed (15); thus, to begin with, let a, < a,. Then

ag () —f(z) = (@, —a)a**1 4 O (a*+24%),  2—>0+0, x»=min(u,v).

Hence it follows that there exist a constant P >0 and an z,¢1,

xy # 0, such that for x ¢ I, we have xg(x)—f(x) > Px*+', whence
2g(0)—f(@) _ _Pak+
flz) =z —rpkt

> Pgk  for =xely,, o #0

(ef. (19)), provided z, has been chosen small enough.

(%) 'This inequality is also valid for z = 0, though this is hot 1mphed by formula (28)
since the right-hand side of (28) is defined only for x # 0.
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Now let us fix an €I, # # 0 and let N(z) be such that f*(z) <.z,
for n > N(r) (Lemma 1). Then, for n > N(z), A

en(@) > PLfM(2)])* .

We may assume that N (z) has been chosen so large that we may
apply Lemma 4. Consequently, for n > N(x),

en(z) > Pyfn

with a certain constant P, > 0. This shows that the series ), ¢,(z) diverges
for every # ¢ I, # # 0, and the same is true for the sequence I'x(z). The
corresponding assertion of our Theorem now follows immediately from
Lemma 2.

Let a; > a,. Then, for »n sufficiently large, we have e;(z) < 0, and
by an argument similar to the preceding one we get the estimation

—cn(@) = Q"))  for mel,

with a certain constant @, > 0. Let us fix an z,¢ I, z, # 0. Then for
x € {f(x,), ;> and n sufficiently large, say » > N = N(z,), we have

—on(@) = Q" (@)]* > Q[(n+1),
whence

[] t+ei) < [] @—@ri+1)),

i=N+1 i=N+1

where @ > 0 is a certain constant and we may assume that N > @. The
last inequality proves that the sequence I'n(z) tends to zero uniformly
in the interval (f(z,), x,>. The corresponding assertion of our Theorem
now follows immediately from Lemma 2.

Proof of Theorem 4. Let us consider equation (4). On. account
of 1° of Theorem 2, case (A) occurs for the sequence I';(x). As has been

proved in [2], Theorem 5, equation (4) has a continuous solution in I
if and only if the series

o0
(32) — D R @Y (" (@) Tasal@) (%)
n=0
converges in I to a continuous function y*(z). The function y*(x) is then
itself a continuous solution of equation (4) in I.

Let us fix an xye I, , # 0. In virtue of (16) and (iii) we have for
zel,
|h(z)] < K ak+its

(?) As the value of the n-th term of series (32) for £ = 0 we take the limit of this
term when z tends to zero from the right.
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with a certain constant K, > 0. By a similar argument as those in the
proof of Theorem 2 (inequality (27)) we obtain the estimate

hf"(@)]
f‘n+1(m)

valid for large n. Estimate (29) is also valid for large n. From 1° of Theo-

rem 2 we infer that there exists a positive constant K, such that for large n
and for x ¢ I, we have

(34) Ipya(x) > K, .

Relations (33), (29) and (34) yield in I, the majorant D K*n—* for
series (32), where K* = 2K,K; ‘M ” and § = 1+ A/k > 1. This proves that
series (32) uniformly converges in every interval I,C I. Thus its sum
y*(x) is a continuous solution of equation (4) in I, and the funection ¢*(z)
= zp*(x) is a regular solution of equation (1) in I (Lemma 3). Inserting
in (32) expression (6) in place of I'y(x) we obtain relation (18).

It follows from Theorem 2 that the general regular solution of equa-
tion (1) in I is given by formula (17). .

Equation (1) has in I a continuous solution depending on an arbitrary
funection, since it has a continuous solution in I (viz. any of the regular
solutions, e.g. ¢*(r)), and the corresponding homogeneous equation (2)
has in I a continuous solution depending on an arbitrary function (Theo-
rem 1). This completes the proof.

(33) < 2K [f"x)]*** for wel,
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