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ESTIMATION OF RELIABILITY IN THE EXPONENTIAL CASE (I)

1. Introduction and summary. One of the most important character-
istics in the reliability theory is the reliability function, i.e. the probability
that the life-time of element is not less than a given time {. If the element
has the one-parameter exponential life-time distribution with probability
density funection (pdf)

le= for x>0,

) J@) = 0 for x < 0,

then the reliability function is of the form
(2) R(t) =P{X >t} =¢*.

There are many papers concerning the statistical estimation of this
function for various designs of life test. The most often applied life designs
are the following:

(a) with replacement of the failed items and with duration of the.
observation until the moment of the r-th failure (r < N, where N is the
number of all tested items);

(b) with replacement — until the fixed moment T
(e) without replacement — until the moment of the r-th failure;
(d) without replacement — until the fixed moment 7.

These designs are described in detail in the book [2].

The most popular estimation in the reliability theory is the classical
minimum variance unbiased estimation based on the sufficient and com-
Plete statistics. Many authors have given minimum variance unbiased esti-
mators of the function R(t) in cases (a), (b) (see, for example, Gnedenko
et al. [2]) and (¢) (see Basu [1], Laurant [5], Pugh [6] and Tate [7]). These
estimators have usually been obtained in two ways: using the Rao-
Blackwell- Lehmann-Scheffe theorem and using the method of integral
transforms. In the present note we derive the unbiased estimator of the
function R(¢) based on the sufficient statistic in case (d).
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Let N identical items having the life-time distribution with pdf (1)
be placed simultaneously on life test according to case (d). Let D(t) denote
the number of failures until the moment ¢ and let z,, @,, ..., zp ) be the
moments of failures until the moment 7. The joint pdf of the vector
(X1, Xy ..oy Xpryy D(T)) is of the form

P(Zyy ooy Zgy d) = d'(lf’v exp{—l[Zw 4+ (N — d)T]}

d=0,1,..,N,0<5,<T,i=1,2,...,4d
The factorization theorem implies that the sufficient statistic for
the parameter i is the vector (D(T), S(T)), where

D(T)
8(T) = ) X;+(N—D(T))T
i=1

is the accumulated observed life-time of all items.
The estimator

(3)
D(?)

1 =7 for 0<t<T,
~ N
B = D(T) D(T) D(1—pT)
—p
11— |1 - R B f T<t< nr,
(-2 wop) - Py ) erer<isoen
where p =1,2,..., N—1, is an unbiased estimator of R(¢) based on

the observations which have been obtained in life design (d), but it is not

a sufficient statistic function. (The unbiasedness of é(t) will be proved
in the next section.)

Taking the conditional expectation
(4) E{R(t)|D(T), 8¢T)} = R(1),

we obtain a new unbiased estimator of R(¢). By virtue of the Rao-Blackwell
theorem, this estimator has a variance smaller than R(t), more generally,

it is even better than E(t) under the assumption of a strictly convex loss
function. Unfortunately, we cannot state that this estimator is unbiased
and of minimum variance since the statistic (D(T), S(T)), as it will be
proved in section 4, is not complete.

2. Unbiasedness of the estimator I%(t).

THEOREM 1. lé(t) given by (3) is an unbiased estimator for the fumc-
tion R(t).

The proof of this theorem is based on the following lemmas which
are easy to verify:
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LEMMA 1. The random variable D(T) has the binomial distribution
b(N,d; p,) with py = 1—e L.

LemMA 2. If t < T, then the joint distribution of (D(t), D(T)) is of
the form

(5) P{D@) =k, D(T) =&

N —M\k[,—M _ ,—AT\d—k ,—AT(N—d)
=k!(d—k_)!(N_d)!(1—6 yiemm—e ™) e , 0<k<d<N.

LemmA 3. If t< T, then the conditional distribution of D(t), given
D(T) = d, is the binomial b(d, k; p,) with
Po = (1—e7)/(1—e™™).

Proof of theorem 1. If ¢ < T, then the theorem follows immediately
from lemma 1.
Let us write

6 . (D) = (1 D(T) 1 D(T) (1 D(T)

(6) 5s (D) = (1= 22 1= o) (1= oy 1)
If pT'<t<(p+1)T, p =1,2,..., N—1, we have

7 R @, (D E{¢ D D(t*)}

(7) ER(t) = E @y ,(D)— Nl )ﬂ J

where t* = t—pTe (0, T]. It is easy to see that

1
N(N—1)...(N—p+1) ‘v

EQ;N’p(D) =

where u;, denotes the p-th factorial moment of the random variable
V(T) = N —D(T). The random variable V(T) has a binomial distribution
b(N,k; e*T), and whence (see Kendall and Stuart [4], p. 99)

fip) = N(N—1) ... (N—p+1)e ™7,
This yields
(8) E®y (D) = e 7.

Now we evaluate the second expectation in (7). From lemmas 1-3
we obtain

b)) D(t*)
E{%pw) N_p} - E{qu,p(D)E[N_p D(T)]}
1— e_”. D(T) l
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Since, according to (6),

D(T
O = 80y,(0)- B Oy, D),

{@v »(D)
we get
~ 1 » .
BR() = T — =7 (e — e By, (D) +(1—¢)E By p,1(D)]
— e~ MPTHE) _ M

3. Main result.
THEOREM 2. The estimator
E(t) = E[R() | D(T), 8(T)]
has the form

(9)

f R(d,s; t

1—(—1’\78’—) for 0<t<T,
R(t) = 1_1 1_ d )...(1— d )(I_R(d,s;t—p.’l')

N N-1 N—p+1 N—-»p
for pT<ti<(p+1)T,p=1,2,...,N-1,
where
(10)  R(d,s; t)
0 for d =0,

d—k
: _2_ ( 1’“(?)('1216)[3—(1 k+j—i)t— (N —d+4)T1E

d
“= (1) ( )[s—(N d+4)T1
j=0
for d >0,
and
a’ = [max (0, a)J" for m >0
and
0 for a<o,
a’ =

1 for a>0.

Before the proof of this theorem we state the following lemmas.
LEMMA 4. The conditional pdf of 8(T), given D(T) = d, is of the form

(11)  fF(s—(N—a)T)

2%exp[—Als —(N—a)T .
o (d[—l)(!(l —zT)d )] 2 ( ) —(N— d—l—])T]‘_i,__1 for d >0
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and
w(8—NT) = dyp(8) for d =0,

where dyp(s) stands for pdf of the random variable values NT with proba-
bileity 1.

Proof. It is easy to see that the conditional distribution of random
variable 8(T')— [N —D(T)]1T, given D(T) = d, is the same as the un-
conditional distribution of the sum of d independent identically, expo-
nentially distributed random variables truncated at the point 7. Pdf of
this sum is of the form f% (s) and has been derived by Hoem [3].

LEMMA 5. The joint pdf of the sufficient statistic (D(T), 8 (T)) is of the

form
ld(g)e—ls d
_ . .‘id _ . s a—1
(12 gl d) = 3= ;’( 1) (j)[s (N —d+j) T
ford =1,2,..., N
and

—ATN

g(8,0) = dyr(s)e
Proof. This Jemma follows immediately from lemmas 1 and 4.

LemMA 6. If Y,,..., Y

m are independent, identically distributed
random variables with pdf

Y

fen(¥) = [m—_T fori<y<T
¢.7) -
0 otherwise,
then the random variable U = Y,+ Y, +...+ Y, has pdf of the form
Y & [m . )
13) FEin®) = o D, (~17 () r—(m—jye—jzre-".
j=0

We set, in addition,
fan (W) = d(y).

Proof. The probability density function (13) can be obtained from
the density f7°,(s) (see lemma 4) by the translation y = s—mi.

LEMMA 7. The conditional pdf of 8(T), given D(t) = k and D(T) = d
Jor t< T, is of the form

13— s—(N-a)T)
(14)  h(s|k,d) = °

(d _ 1)!(1 _e~lt)k(6—1t . 6-—)-1')(1-16

d~k k
X ;;(—1)“"(?) (d;k) [s—(@—k+j—i)t— (N —d+4i) T]

for 0 <k<d and d > 0,

X
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and
(15) h(s10,0) = dyp(s).

Proof. If D(t) = kand D(T) = d(t< T, 0 < k < d), then the random
variable S(T)— (N —d)T is the sum of life-times of those & elements which
failed in the interval (0, ¢) and the life-times of d — k elements which failed
in the interval [t,T). Hence, the conditional pdf of ¥(T) = S(T)—
— (N —a)T, given D(t) = k and D(T) = 4, is of the form

(16) Pk, d) f E @ —o)fin (v)dv,

where the functions ff and f{’z;" are defined by (11) and (13). Substi-
tuting into (16) expressions (1]) and (13), ‘'we obtain

(17) p(ylk,d)=0(y22( 1'*5()(d ")

f [y —v— it [0 — (d — k—4)t —iT 1% dw,

where
e~

B T s P

Next, we evaluate the integral
[ ly—v—jth [o—(d—k—d)t—3T]{ * dv.

It is easy to verify that
max(a,b)
I= [ (b—of'(v—a)y* " do,
where a = (d—k)t-+4(T —t) and b = y —jt. After the change of variables
2 =v—a and substituting b —a = ¢ we have

€y

2 \k=1[ g \d—k-1
I —j (¢, —2)f 120k 1dy = % f (1—- ——) (——-—) dz
c, c,
0

=¥ f (1—w)f tut*1qy = "Bk, d— k),

0

where B(k,d—k) is the beta-function.
Returning to the previous notations and substitutingy = s — (N —d) T,
we obtain, from (17), pdf (14).
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It is easy to see that formula (14) is also valid in cases k¥ = 0 and
d =k (d>0). In case d = 0 it is obvious that 8(7) = NT, and whence
(15) is true.

LEMMA 8. If t < T, then the conditional distribution D (t), given D(T) = d
and S(T) = s, is of the form

(18) P{D({) =k |D(T) =d,8(T) = s

-f

and

!

—k
(- 1'+1(’°)(d k)[—(d k+j—i)t—(N —d+i) TP

0 j=0 ‘7

3 (—1y (%) ts - @ —a+ipms
j=0
’ for d >0 and 0 <k <d,

P{D(#) =0 |D(T) =0, S(T) =NT} =1.
Proof. This lemma follows from the fact that
h(s|k,d)P{D(t) =k, D(T) = d}

P{D(t)=k|D(T) =d,8(T) =s} = g(s, d)

and from lemmas 2, 5 and 7.
Proof of theorem 2. In order to derive the estimator IAZ(t) it is
sufficient to calculate the conditional expectation
E[D() | D(T), S(T)] = R(d,s;t) for t<T.
Taking the expectation of distribution (18), we obtain R(d, s; t),
and whence I%(t).

4. Uncompleteness of the sufficient statistic (D(T), 8(T)).

THEOREM 3. The statistic (D(T), 8(T)) is not complete except for the
trivial case N = 1.

Proof. In order to prove the completeness of the statistic (D (T), 8(T))
it is necessary to show that, for any function ¢(d, s), the condition
(19) E¢o(D,8) =0 for every 1 >0
implies ¢(d, 8) = 0 with probability one.
Expression (19) is of the form
d NT

9 -3t et

d=1 (’V T

d
>”\;_?(—]-)j (?)[8—(N—d+j)T]i_l+(p(0,NT) AT = 0 for every 1> 0.

F=0
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After easy modifications we get

N
N ( ) a—1
2’ a E' i@ -3
(20) 2. Wzd 2 (—1) (3) MA-IT o

@a-jr
x f o(d, s+ (N —d+j)T)s% '™ = ¢ = —p(0, NT).

0

If N =1, then from (20) we have

T
le“’fqa(l,s)e‘“ds =0,
0

and whence

P C
(21) [ #1,8)e7as = — 77,
0
where
. p(l,8) for 0<s< T,
p(1,s) = .
0 otherwise.

The right-hand side of (21) is the Laplace transform of the function

0 for 0<s<T,

1,8) =
v{L;9) C fors>T.

It follows from the uniqueness of the Laplace transform that ¢(1, s)
= 0 almost everywhere (a.e.) for 0 < s< T, and also 0 = —¢(0,T) = 0.
This proves the completeness for the case N = 1.

For clarity reasons, we prove the uncompleteness of the statistic
(D(T), 8(T)) only in the case N = 2. In generality, the proof can be done
similarly.

For N = 2, expression (20) has the form

T
2267 [ o(1, s+ T)e ™ ds +
0 2T T
+12[e”""f @(2, s)se“sds—2e‘Tf<p(2, s+T)86'“d8] =C.
0 0
By easy transformations we get

1 2T 1 2T 27
7[ w(l,s)e"""‘ds+§f<p(2,s)se—‘8ds—j ®(2, 8)se *ds +
0 0 T

2T

. _ C

+Tf 9(2,8)e " ds 52—226_“11, where ¢(1,8) =0 for s¢(T,2T].
-'l'
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By elementary properties of Laplace transforms this can be written
in the form
[>2] . C _
(22) f(P(s)e_lsds 5—2?6 2/'IT,

(=

where the function ¢(s) is defined as

®(2,8)

5 s for 0<s< T,
@(8) = f(;o(l t)dt + 1}7(2, ) 2T —s) for T<s< 2T,
27
lf o(1,t)dt for s >2T.

0
The right-hand side of (22) is the Laplace transform of the function
(0 for 0 <s< 2T,

pis) = g(s—ZT) for s >27T.

Hence we obtain ¢(2,s8) = 0 a.e. for 0 <s < T, but also

8
fga(l,t)dt for T<s<?2T

2 =
®(2,s) 8—2T0
and
cis—21) ¥
e =Tf (1, t)dt.

This proves that the statistic (D(T), S(T)) is not complete in the case
N =2.

If N > 2, in (20) we can set ¢ (d, s) = 0 for d > 2 and the proof runs
similarly.
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J. BARTOSZE WICZ (Wroclaw)

ESTYMACJA NIEZAWODNOSCI W PRZYPADKU WYKLADNICZYM (1)

STRESZCZENIE

W okreflaniu niezawodnosci stosuje sie najezefciej cztery plany badania

(a) z odnowa uszkodzonych elementéw i czasem trwania obserwacji do momentu r-tej
awarii, (b) z odnowa — do ustalonego momentu 7', (¢) bez odnowy — do momentu
r-tej awarii, (d) bez odnowy — do ustalonego momentu 7. W literaturze znane sg
liczne prace po§wigcone nieobeigzonej estymacji z minimalng wariancja funkeji wyklad-
niczej niezawodnoéci E(t) = e—* dla trzech pierwszych planéw badania. Estymatory
te s3 funkcjami statystyk dostatecznych i zupelnych. W tej pracy podano nieobciazony
estymator funkeji R (t), oparty na statystyce dostatecznej dla czwartego z wymienio-
nych planéw badania. Nie mozna jednak twierdzié, ze jest to estymator o minimalnej
wariancji, poniewai statystyka dostateczna nie jest zupelna.



