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1. Introduction. The genéralized form of a well-known theorem of
Hurewicz (see [4], p. 91) states that

If f: X - Y is a continuous closed mapping of a metric separable
space X onto a metric separable space Y, then

(1) dimX < dim Y + dimf,

where dimf = sup{dimf~'(y);yeY} and dimA is the dimension of A.

This result, which has a simple geometrical character, became a source
of similar theorems in which the spaces X and Y are more general (see,
e.g., [8], [9], and [10], p. 129). Some results related to (1) were obtained
in [7] and [11].

“Purely geometrical” directions in which (1) can be generalized were
given, e.g., in [5] and in [15]. To see one of these directions let us con-
sider the following

Example 1. Let X = {(x,y,2);2*+y%>+22<1} be the unit ball
and Y = {(z,y,0); 224+ y2<< 1} be the circular region in the 3-dimen-
sional Euclidean space E°. Let f(x,v,z) = (x,¥,0) be the projection
of X onto Y. Then, for the 1-dimensional closed subset 4 = {(«, 0, 0);
—1<z<1} of Y, the set f~'(4) is 2-dimensional and we have

dimX < dim Y —1+ dimf~(4).

Thus replacing in (1) the point inverses f~'(y) by inverses f~'(4),
where A is 1-dimensional, one can replace dimY in (1) by dim Y —1.

In Section 3 of this paper (') we note first that, for closed mappings
f: X — Y, we have dim,f = dimf, where dim,f = sup {dimf~'(4); dimA
< 0,4 < Y and 4 closed}.

(!) Supported by an NSF Senior Foreign Scientist Fellowship.
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Thus the right-hand side in formula (1) is equal to the right-hand
side of the following formula:

(2) dim X < dim Y + dim,f.

We then define a class P larger than the class of closed and continuous
mappings (for example, each local homeomorphism with ecompact point
inverses belongs to P) for which the following result holds (see Theorem 1):

If f: X - Y is a continuous mapping of X onto Y, where X and Y
are metric separable spaces, and if feP, then, for every k satisfying
—1<k<dimY, one has

(3) - dimX < dim Y — k + dim,f,

where dim,f = sup{dimf~'(4); dimA <%k, A< Y and A closed} for
k>0 and dim_,f = dim X.

Let us note that we do not assume that dim Y < dim X. Thus, for
example, if feP, dimX = 3 and dim Y = 4, then not all closed subsets A
of Y with dimA4 < 2 can be images of 0-dimensional subsets of X. Let
us also note that, for closed mappings f: X — Y of metric spaces X and Y,
inequality (3) was stated in [5], p. 240 (?).

In Section 4 generalizations of some results of [7] are given. At
the end of this paper two problems are posed.

In the sequel the spaces under. consideration are metric separable
(unless otherwise stated) and all mappings are assumed to be continuous.

2. Notation. We denote by (X*, k) a metric compactification of X
(i.e., h: X - X* is a homeomorphism of X onto a dense subset of a com-
pact metric space X* — thus X is necessarily a metric separable space)
and by def X the deficiency of X (i.e., def X = min dim (X*\h(X)), where
(X*, h) varies over all compactifications of X, see [3], p. 50). For a given
mapping f: X - Y of X onto Y and for a compactification (X*, h) of X
we put G = {(x, y); xeh(X) and y = f(h~*(x))}, G is the closure of @ in
X*x Y, f =f(f, X*,h) — the projection of G onto ¥, and dim,f
= min(dim,f), where the minimum is taken over all compactifications
(X*, h) of X.

3. We begin this section by showing that dim,f = dimf.

We then prove inequality (3).

Let f: X — Y be a closed mapping of X onto Y. Since dimf < dim,f,
it suffices to show that, for every closed 0-dimensional subset A of Y,
one has dimf~'(4) < dimf. This last inequality, however, follows imme-

' (%) For this reference and for the necessity of a particular definition of dim_,f,
I am indebted to A. Lelek.
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diately by applying inequality (1) to the mapping f|X,: X, — A, where
X, =f _I(A)-

We introduce now the following

Definition 1. Let f: X - Y be a mapping of a topological space X
onto a topological space Y. We say that f has property P(feP) iff

(*) For every open neighbourhood U of f~!(y) and every sufficiently
small open neighbourhood V of y there exists an open neighbourhood W
of f7'(y) such that W =« U and f(BdW) < BdV, where Bd denotes the
boundary.

We note first that if A is a closed subset of X and f: X — Y has prop-
erty P, then the partial mapping f|A: A — f(A) has property P.

Indeed, let U = U, N A be an arbitrary neighbourhood of f~!(y) N4
and V = V,nf(4) be a neighbourhood of ye¢f(4), where U, is open
in X and V,is a sufficiently small open (in Y) neighbourhood of y. Since
A 18 closed, the set U,u (X\A4) is an open neighbourhood of f~!(y). By
feP there exists an open neighbourhood W, « U,u (X\4) with f(BdW,)
c BdV,. Put W = W,nA. Then f'(y)nAd c W, Wc U and f(BAW)
< BdV.

We prove now that

(4) If f: X > Y is a closed mapping of X onto Y, where X and Y are
topological spaces, then feP.

Indeed, let yeY and let U be an arbitrary open neighbourhood of
f~'(y). Since X\ U is closed and f is a closed mapping, the set f(X\U)
is closed. Since y ¢f(X\U), the set Y\f(X\U) is an open neighbourhood
of y. Let V be an arbitrary neighbourhood of y such that V <« Y\f(X\U).
Then, by the continuity of f, one infersfor W = f~!(V) that f(BAW) =« BdV
and evidently W < U.

We show also that

(6) If f: X - Y is a local homeomorphism of X onto Y, where X and Y
are topological spaces, and if for every ye Y the set f~'(y) is compact, then
feP.

Indeed, let U be an arbitrary open neighbourhood of f~!(y). For
every point ze¢f '(y) let U, be an open neighbourhood of # such that
U, = U and such that f| U, is a homeomorphism of U, onto some open
neighbourhood V,(x) of y. Since f~'(y) is compact, the covering {U,;
xzef '(y)} contains a finite subcovering Uegys Uggy oovy Ug . The set

V= Q Vy(wi)7

where V,(z;) = f(U,,) is an open neighbourhood of y and W = f~Y(V)n U
satisfies (*).
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Remark 1. Let X = {(z,3});0<2<}}u{(z,1);0<xr<1} and
Y = {(x,0); 0 <z <1} be subspaces of the Euclidean plane and let
f: X — Y be the projection of X onto Y. Then fis a local homeomorphism
and f~'(y) is compact for every y e Y. Hence feP. However f is not a closed
mapping.

THEOREM 1. If f: X — Y is a mapping of X onto Y, where X and Y
are metric separable spaces, and if feP, then, for every k satisfying —1 < k
<dimY, one has dimX < dim Y —k+ dim,f (i.e., inequality (3) holds).

Proof. The proof is by induction on the dimension of Y and is
similar to the proof of inequality (1) given by Hurewicz. For dimY = —1
the theorem is obvious. Suppose that the theorem is proved for all Y
with dimY <7 and all k< n and let dimY = n+1. For ¥ = n+1 the
theorem is again obvious, since one can take 4 = Y in the definition
of dim,f. So, we can assume that k¥ < n. Now take ye¢Y and let U be
an arbitrary open neighbourhood of f~!(y). Since feP and dimY < n -1,
one can find arbitrarily small neighbourhoods V of y with dimBd(V) < n
and neighbourhoods W of f~'(y), W < U, such that f(BAW) = BdV. By
the inductive assumption applied to Y = f(BAW) (note that BAW is
a closed subset of X), one has

dimBAW < dimBd V — k + dim, f < n — k + dim,f.

Thus, for every open set U containing f~'(y), there exists an open
set W< U with dimBdW < n—Fk+ dim,f and the theorem follows by
Proposition G of [4], p. 90.

Remark 2. Note that for ¥ = 0 Theorem 1 follows by (1) (for
closed mappings) from dimf < dim,f. Note also that the separability
of X was used only in application of Proposition G of [4], p. 90 (which
is proved there for metric separable spaces).

4. In this section two theorems generalizing some results obtained
in [7] are proved. First, we introduce — similarly to the notion of an
“inductive invariant” in [7], p. 223 (also in [1] and [12]) — the following

Definition 2. Let § and 7 be two classes of sets and let X be
a topological space. We put Ig,(X) = I(X) = —1 iff XeT and define
I(X) < n+1 iff, for every subset A of X such that A4 eS8, there exist arbi-
trarily small neighbourhoods U of A with I(Bd U) < =.

Let us note that if 7 is the empty set and S is the set of all one-point
subsets of X, then I(X) is the weak inductive dimension of X. If 8 is
as above and T is the class of all topologically complete spaces or T = P
is a topologically closed family of spaces, then I(X) = IcdX (see [1])
or I(X) = inPX (see [12]), respectively. If S is the set of all closed sub-
sets of X and T = O, then I(X) is the large inductive dimension of X.
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Let us consider the class 7 of all metric separable spaces Z such
that Z contains a compact subset C with dimZ = dimC and let S be
the set of all one-point subsets of a metric separable space X. Then, as
in [7], we write subcom X for I(X). The proof of the following theorem
is similar to that of 3.1 in [7]:

THEOREM 2. For every mapping f: X — Y of X onto Y and for every
k satisfying —1< k< dimY one has
(6) dimX < dim Y — %+ sup{dim,f|C; C =« X and C compact}+
+subcom X +1.

Proof. Let C be an arbitrary compact subset of X. By Theorem 1,
we have dimC < dimf(C)—k+ dim,f|C. Since, as easily seen (see [7],
p. 224), dimX < sup{dim(C; ¢ < X and C compact}+subcom X 41, we
infer (6). ‘

Remark 3. Let us note that, for every compact subset C of X,
we have (see the proof of the formula dim,f < dimf) dim,f|C < dimf.
Thus, putting ¥ = 0 in (6), we infer that

dim X < dim Y 4 dimf+ subcom X +1.

This is the inequality proved in 3.1 of [7].
Let us also note that, for every subset C of X, one has dim,f|C < dim,f.
Hence, by (6),

dimX < dim Y — ¥+ dim,f+ subcom X +1.

THEOREM 3. For every mapping f: X — Y and every k satisfying
—1<k<dimY, one has

(7) dim X < dim ¥ — k + dim, f.

Proof. Let (X*, h) be an arbitrary metric compactification of X.
Since, as easily seen (see [6], p. 4), the projection f of G onto Y (see nota-
tion) is.a closed mapping, it follows by Theorem 1 that dimX = dim@
< dimG < dim Y — & + dim,f.

Remark 4. A mapping f: X - Y is called locally compact iff, for

every ye Y, the set f~'(y) is locally compact. It was proved in [7], p. 225,
that for a locally compact mapping f: X — Y one has

(8) dim X < dim Y + max {dimf, def X}.

We give now an example showing that inequality (7) is much stronger
than inequality (8).

Example 2. Consider the subset X = (a,)u|[UJ (a;)x J]| of the
i=1

plane, where a, =0 and a; = 277*,j =1,2,..., are real numbers on
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the real axis and J = [0, 1] and put f(#) = «. Evidently, f is a locally
compact mapping. Taking

X* = O [(¢;)xJ] and h(z) =z,
i=0

one infers that (X*, k) is a compactification of X. As easily seen, one
has (for ¥ = 0) dim,f = 0 and inequality (7) gives dimX < 1. On the
other hand, one has def X = 1 (see [14], p. 71, Example 1) and inequality
(8) gives dim X < 2.

A similar example can be obtained by using the set constructed
in [13], p. 806. Using Theorem 4 of [14], p. 72, one could also construct
for every m > 1 examples of spaces X and locally compact mappings f
(even identity mappings) such that dimX = »n and such that (7) gives
dim X < n whereas inequality (8) gives dim X < 2n.

The set X in Example 2 is not semicompact. Using a result of Freu-
denthal (see [2]) which (for semicompact spaces X for which the space
of quasicomponents is compact) implies def X < 0, one can show that
in some cases (8) gives the same result as (7) used for ¥ = 0.

We conclude this paper with the two problems:

PrOBLEM 1. Find classes § and 7 for which inequality (3) holds
with “dim” replaced by “Igp = I” (see Definition 2). Characterize
these classes. (P 809) '

PrOBLEM 2. Let I(X) and I,(X) be given by Definition 2. Prove
theorems similar to Theorem 2 with “dim” replaced by “I” and “sub
com” replaced by “I,”. (P 810)
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