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ON FILLING AN IRREDUCIBLE CONTINUUM
WITH ONE POINT UNION OF 2-CELLS

BY
J. W. HINRICHSEN (AUBURN, ALABAMA)

In this paper, a conlinuum means a compact connected metric space.

Let X" denote the class of all continua K such that there exists an
upper semi-continuous decomposition @G of an irreducible continuum M
with each element G homeomorphic to K and with decomposition space M /G
a8 an arc. It is shown (1) that the n-cell is in . In this paper it is shown
that if K is the sum of two 2-cells joined at a single point, then K is in X".
The construction can be modified to include other continua.

THEOREM 1. There ewvisis a continuum M in the plane satisfying the
Jollowing conditions:

(1) M 18 trreducible.

(2) There ewists an upper semi-conlinuous collection @G of arcs filling
up M such that M |G 18 an arc.

(3) There emists a countable subcollection H of G such that

(a) if b i8 ¢n H, then h contains an arc z, such that each point of z, t8
a separating point of M in h;

(b) ¢f 8 denotes the set of all poinis P such that P i3 an endpoint of 2,
for some h in H, then 8 is dense in M — |_) 2,;

heH

(¢) ¢f e > 0, then only finitely many members h of H have diameter
d(2) > ¢;
(d) U 2, contains all separating points of M ;
heH

(e) there exists a line | such that ¢f h 48 in H, then z, 8 & subset of 1 or
does mot intersect 1;

(£) of b 48 in H and 2z, does not intersect 1, then the endpoinis of h are
on 1, and if 8 denotes the set of all endpoints of elements of H that are on 1,

then § is a Cantor set on 1;

(1) See J. W. Hinrichsen, Ooncerning irreducible continua of higher dimension,
Colloquium Mathematicum 28 (1973), p. 227-230.
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(8) if Z; denotes the set of all 2’8 on 1, then Z, is infinite and M —2Z;
18 a closed point set each component of which is an arc.

Remark. The continuum M described above is a modification of the
continuum described in Theorem 1 of Hinrichsen (op. cit.). Much of the
notation used in the present construction is used throughout this paper.
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Let

0,(2) = max{gy(w) —1, —2), O<ao< %

Denote by g, and g, the graphs of the defined functions and let g,
denote the closure of the set of all points of g, above the line y = —2.
Let g, = g,—g3. Liet A denote the vertical interval from (0, —2) to (0, 1)
and let B denote the vertical interval from (4/x, —2) to (4/=, 1). Let H,
denote A UBUg,Ug, and let I, denote the bounded domain of the comple-
ment of AUBUg,Ug,. Let a;, denote a countable sequence of mutually
exclusive arcs such that if » is in a,, then

(1) » lies in H,VI,.

(2) The endpoints of % both lie on g, or on a component of g,.

(3) u intersects g, and g, and uN(g,Ug,) is the set consisting of the
endpoints of % together with an are z,.

(4) The diameter of each component of u—wun(g,Vg,) is greater
than 1.
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(b) If d(2,) denotes the diameter of 2, for each « in a,, then

i<y
uea;
(6) If 8, denotes the set of all points P such that P is an endpoint
of 2, for some # in a,, then the limiting set of 8, is A UB.
(7) The closure of the set of all components of g, which contains z,
for some u in @, contains the points (0, —2) and (4/x, —2).
For an element % of a,, let D, denote the component of (H,VI,)—wu
that does not contain A or B. Let L, denote
(HvI1,)—- U D,.
ueal
Let O, denote the family of the components of IL,—(a}UAUB).
Let ¢4y, ¢34 €13, ... denote the elements of C,. For an element ¢ of C,,
let A, and B, denote the components of ¢Nna}, and let g,, and g,, stand
for the components of ¢n(g,ug,). Let » and y denote the intervals
[0, 1), (4/m,1)] and [(0, 2), (4/m, —2)], respectively.
Let fo s feryr Jerss -+ denote a sequence such that, for each i, f,, is
a homeomorphism from the square disec bounded by AuBuUzUy onto ¢,
which satisfies the following conditions:
1) fe, (AUB) =A4, UB, ;

14 cy3?
(2)  fo ,(8UY) = g1c,Ysc,5

(3) if » is in the sequence a,, then the diameter of each component of
oo (6 —un(g,Lg,)) is greater than 1;

(4) fcu(zu) < ¢, for each 4 in a, such that z, is a subset of g,, and if
the endpoints of an element % in a, belong to a component of g,,
then the endpoints of f, (u) both belong to some component of ¢,;

() the area of
L2 =5 AUBUa:U Ufcli(Ll)
i>0

is less than one half the area of L,;
6 3 Yalf, ()<t

>0 Uea)

Continuing inductively, let a, denote the collection of arcs to which v
belongs if and only if, for some element ¢, , ; of C,_,, v is Jen_14(w) for
some element w of a,. Let C, denote the family of the components of

L,—(ajvaiUaiU... UatUAUB).
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For an element ¢ of C,, let 4, and B, denote the components of ¢Na,
and let ¢g,, and g,. stand for the closures of the components of B(c) — (4,VB,),
where B(c) is the boundary of ¢.

L&t fe,19 Jengs feuyr - denote a sequence such that, for each 4, f, , is
a homeomorphism from the square disc bounded by AUBUxrUy onto ¢,,,
which satisfies the following conditions:

(1) f,(AUB) = A4, UB

.
Cni?

(2)  fo,(@8VY) = 91, Ysc,5

(3) if » is in the sequence a,, then the diameter of each component of
fe,q(0—un(g,Ug,)) is greater than 1;

(4) fe,,(2,) < g, for each u in a, such that z, is a subset of g,, and if
the endpoints of an element u of a; belong to a component of g,,
then the endpoints of f,,”i(u) both belong to g,;

(b) the area of '
L,y = AVUBUJf, (L))Vajva;Udiu ... Ua,
>0

is less than A (L,)/(n+1), where A (L,) is the area of L,;

©) 3 3l )<
1>0 uea; n

Ly, Ly, Lg, ... is a monotone sequence of compact continua and the
common part L of all of them is an irreducible continuum, since the set
of all points of L which separate A from B in L is dense in L. The collec-
tion to which & belongs if and only if, for some % of a,, some 7, and some ¢,
h i8 f...(2,), i8 & countable collection of mutually exclusive arcs satisfying
the condition of the conclusion of Theorem 1.

Let K denote the collection to which g belongs if and only if ¢ is a point
of (AUBUGa]Ua; Va3V ... ) or, for some component ¢ of

L—(4AVBU {Jq))
n=1
and for some horizontal line ! intersecting ¢, g is the set of all points of ¢
on l. K is an upper semi-continuous collection of mutually exclusive closed
point sets filling up L. Let M denote L/K. Let G denote the collection to
which g belongs if and only if g is 4, B, or an element of a, for some »,
or g is a component of

M—(AUBuU O ay).
ne=1

M is an irreducible continuum from 4 to B, and M /@& is an arc. Further-
more, each element of G is an arc. Also, M is chainable and, therefore,
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embeddable in the plane. It can be seen that M satisfies all the conditions
of the conclusion of Theorem 1 by letting

H=Uam

n=1
and if 4 is in a,, then 2, =f, _, (%), where u is in e, and i is a positive
integer such that h = f,,n_l.i(u).

OBSERVATION 1. Let M denote a Cantor set on [0,1]. Then there
exists a compact point set M’ satisfying the following conditions:

(1) M’ is a subset of [0,1]x M.

(2) Each component of M’ is an arc or a point.

(3) There are only countably many non-degenerate components of M.

(4) If U is the collection of all non-degenerate components of M,
then M’ — U* is dense in M’ and U" is dense in M.

() If w is in U, then U*—wu contains u.

(6) If the components of M’ are regarded as points, and the com-
ponents of M’ are denoted by the collection @, then M’ /@ is a Cantor set.

(7) Let F be the set to which P belongs if and only if P is a point
of M which is the left endpoint of the closure of some component of [0, 1] —
— M. Then there is one and only one non-degenerate component of M’
lying on {P} x [0, 1] and U" is a subset of E x [0, 1].

Outline of the proof. Let P,, P,, P, ... denote the points of E
and let I,, denote a subinterval of [0, 1] of length 1/2. Let 8, = {P,,, Pa,
Pis, ...} stand for a subset of E such that P,;, = P, and P,, is the only
limit point of 8,. Let I,,, I,5, I,5,... denote a sequence of subintervals
of I,, such that the length of I,, is 1/2", and

o0

U(PlnXIln)_ U(‘PlnXIln) = Py, X Iy;.

Nne=2 n=2

Let P,, denote the first element of F not in 8, and let 8, = {Py,,
Pyqy Pyg, ...} denote a subset of £ — 8, such that §,UP,, is the set of all
limit points of S,. Let Iy, I,,, I,5,... denote a sequence of intervals
such that

for each n, I,, is of length less than 1/3";

if, for each n, P, is the left most point of the set of all points of §,
to the right of P,,, then I,, is a subset of I,,, ;

U Pan X L) = U (Pan X Inn) = UJ (Pra X L)

n=2 n=2 n=1

Continuing inductively, let

(= S <}

M = UIL,.

i=1 n=1
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THEOREM 2. If O, and O, are two 2-cells in the plane having only
one point tn common, then 0,U0, i8 in X .

Proof. Let M denote a compact continuum in the plane satisfying
the conditions of Theorem 1 and let @, 8,1, H = hy, hy, ..., and 2,, 2, 25, ...
be as described in Theorem 1. Let K denote the collection to which %k
belongs if and only if, for some positive integer ¢, k is the closure of a com-
ponent of h;,—z;. We know that

(G—H)*VK* = M—J 7
i=1
and (G — H) UK is an upper semi-continuous collection of mutually exclusive
arcs filling up the set
M—z.
i=1

Let 2z, , 2y, %,, ... denote the arcs of 2,,2,,2,,... which do not

lie on 1 and let 2, , 2,y Zmy, - denote the elements of 2y, 2, 23, ... Which

lie on 1.
Let 2,y %nyy Zngy - -+ A0 2, 2y 2., - - denote two mutually exclusive

subsequences of 2, ,2,, 2,,... such that (Jz, and U 7, are
dense in M. i=1 =1

Let g,, g3, g5, ... denote a countable collection of subintervals of [0, 1]
such that

limd(g) = 0,
(U gix2,) x {0} is dense in
M, = [{O (g x 4} v (10, 11X (G — E)UETY x 0},
and {Ug,x #;) x {1} is dense in
M, =[{U) (g x )} 0410, 11 x [@— H) KT x {1}.

Let M’ be a set on 8’ x [0, 1] that satisfies the conditions of Obser-
vation 1. Let U denote the collection to which % belongs if and only if
one of the following conditions is satisfied :

(1) » is a point of

M, [(My p (9, % 2} % {0}]

or % is a point of

M, [{M'U‘Q (9% %)} x {1}
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(2) for some positive integer n and some point P of g,,, w is P X z, or
wis Px2,;
(3) for some point P of M’, u is the pair P x {0} and P x {1}.
U is an upper semi-continuous decomposition of M,uM,, since
limd(g; X#,) =0, limd(g;x2,) =0,
i—00 i—o00
and for each positive number ¢ there are only finitely many components

of M’ of diameter greater than e.
(M, M,)UU is irreducible from

[{[0,1]1x 4} x {0}u{[0,1]x 4} x {1}]/T
to

[{f0, 11x B} x {0}u {[0, 1] x B} x {1}]/T,
since if P is a point of (M,UM,)/U, and R is a domain containing P, then
there exists a positive integer 4 such that R contains

[(g: X 2,) X {0}1/T  or  [(g;X %) X {1}1/T.

Let U’ be the collection to which «’ belongs if and only if, for some
element g of G—H, v’ is

{{f0,11x g] x {03 [[0, 11 x g] x {1}}/T
or, for some 4, ' is
[{[0, 11 X (hy, —2,) U (g; X 2,.)} X {0}V

U {[0, 1] X (hp, —2) U (g: X 2,)} X {1}]/ T .

U’ is an upper semi-continuous collection of mutually exclusive
continua each homeomorphic to that described in the hypothesis, filling
up (M,VM,)/U so that U’ is an arc with respect to its elements.

OBSERVATION 2. If the elements of U that are obtained by taking
points of M’ and crossing them with {0} and {1}, respectively, are
exploded into intervals, then it can be seen that two mutually exclusive
2-cells A and B joined together by an arc intersecting A and B only with
its endpoints belongs to .

OBSERVATION 3. If M is the sum of a finite chain of 2-cells, i.e., the
sum of any finite collection of mutually exclusive 2-cells which are joined
together by arcs and there is no decomposition U of M such that M|/U
is a simple closed curve, then M belongs to X .

Regu par la Rédaction le 14. 10. 1976;
en version modifide le 14. 3. 1977

7 — Colloquium Mathematicum XL.1



