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RANDOM LINEAR FUNCTIONALS AND RANDOM INTEGRALS

BY

KAZIMIERZ URBANIK (WROCLAW)

I have attempted to survey what is called the Riesz representation
of random linear functionals. Let X be a separable, complete locally
convex linear metric space over the real field R and let x4 be & Borel prob-
ability measure on X. We say that f is a random linear functional or,
more precisely, f is a u-measurable linear functional on X whenever f is
defined and u-measurable on & u-measurable linear manifold D, with
#(D;) =1 and, for any pair a, e R and =, ye Dy, the equality

floaw+By) = af (@) +Bf(y)

holds. It is evident that each continuous linear functional on X is u-meas-
urable for every Borel probability measure x. In other words, denoting
by X* the dual space, and by X}, the space of all p-measurable linear
functionals on X, we have the inclusion X* c X}. The space X} is
equipped with the convergence in the measure x and, moreover, functionals
equal u-almost everywhere are treated here as identical. It is evident
that the space X, is separable and complete. Moreover, a non-homogeneous

norm ||-|| can be defined on X} by means of the formula
1—&(if)
= dt
I£1l 110 )

where feX), ® being the characteristic functional of u (cf. [6], p. 614)
such that

O(f) = [ @ p(dn).
X

Cameron and Graves (see [3] and [7]) seem to have been the first
authors to discuss measurable linear functionals and, more generally,
measurable additive functionals in the case of the Wiener measure on
the space of continuous functions. A few additional sidelights on this
theory are mentioned in [21] and [5]. The case of product measures u
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has also been treated by Smolyanov in [20]. The theory of random linear
functionals on separable Hilbert spaces has been presented in [6], Chapter 8.

It is well known that each Borel probability measure x4 on X is tight
(see [2], Theorem 1.4). Applying Lusin Theorem (see [11], p. 159) to
a u-measurable linear functional f we infer that for every ¢ > 0 there
exists a compact subset A of D, with u(A4) > 1 — ¢ such that the restriction
flA is continuous. Stowikowski considered in [19] a slightly strength-
ened property. Namely, he called an element f of X,",' a Lusin functional
provided for every & > 0 there exists a convex compact subset B of D,
with x(B) > 1—¢ such that the restriction f|B is continuous.

Let XL denote the subset of X} consisting of all Lusin functionals.
It is clear that X* < XL. Moreover, denoting by u-clX* the closure
of X* in the topology of the convergence in the measure u, we have the
following statement:

THEOREM 1. XL = 4-clX".

Proof. The inclusion XL < u-clX* is a simple consequence of
Corollary 1.1.5 in [1] which states that every linear functional continuous
on a convex compact subset of X is a uniform limit on this subset of
a sequence of linear functionals continuous on the whole space X, i.e.
belonging to X*.

To prove the converse let us suppose that fe u-clX*. Without
loss of generality we may assume that

f =1lmf, u-almost everywhere, f,eX* (n =1,2,...),
n—»00

and that D, coincides with the set of all points # in X for which the se-
quence {f,(z)} has a limit. Given ¢ > 0, by Egorov Theorem (see [11],
p. 157) there exists a compact subset A .of D, with u(A4)>1—¢ such
that the sequence {f,} is on 4 uniformly convergent to f. Let B be the
closed convex hull of A. Obviously, each element y of B is the limit of
a sequence of elements

3

ykzzaj,k‘pj,k (k =1,2,...),

i=1
e

where x;,eA, 0;,>0 and D a;, =1 (j=1,2,...,m; k=1,2,...).
j=1

From the inequality

|fon (9) — Fu (9] =;im fm (Y1) — Fu (9|

—_— nk
<Hm ' a1 fn (25,0) — fu(@5,0)] < o |f, (7) — fo ()]

k—o0 j=1
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it follows that {f,} is a Cauchy sequence on B with respect to the uni-
form convergence. Thus f being & uniform limit of {f,} on B is continuous
on B which implies that f is a Lusin functional. The theorem is thus
proved.

The following statement will be frequently used in the sequel:

ProposITION 1. For every u- measurable linear functional f there exists
a Borel linear submanifold D, of Dy such that y(D,) = 1 and the resiriction
f |D, is Borel measurable.

Proof. We know, by virtue of Lusin Theorem, that for every integer n

there exists a compact subset K, of D, such that u(K,)>1—1/n and
the restriction f|K, is continuous. The set

k
Ly ={ Y a5 a5¢ Ky, ¢ B,y g <k (j =1,2,...,B)},

j=1

being the continuous image

{Cry Cay evvy Cpy Tyy Loy onny Ty “’Ecjwj
of the compact set
[k, E]x[—Fk,kE]X... X[k, k]xX K, XK, ,X...xK,,

is compact and the restriction f|L,, is continuous. Put

~ -]

-Dj= UULkn
=1

It is clear that 1~), is a linear submanifold of D, being F,-set, the
restriction f|D, is Borel measurable and D, > K, (n =1, 2,...). Hence
it follows that u(D;) = 1 which completes the proof.

We say that the probability measure u has the Riesz property whenever
X, = p-clX*. In other words, u has the Riesz property if and only
if u-measurable linear functionals are Lusin. It is obvious that each prob-
ability measure on a finite-dimensional linear space X has the Riesz
property. The first non-trivial result is due to Cameron and Graves [3]
who proved that the Wiener measure considered on the space of contin-
uous functions has the Riesz property. This theorem was strengthened
by Kanter ([9], p. 448) who proved that each Gaussian measure with
zero mean has the Riesz property. He established also this property
for symmetric stable measures of index p satisfying the inequality
1 < p < 2. The case of product measures y = », X », X... on R*, where
v; are equivalent to the Lebesgue measure, was considered by Smolyanov
in [18]. At a first glance it might seem that each probability measure on
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X has the Riesz property. In particular, it was claimed in [6] (Chapter 8,
Theorem 1) that each non-degenerate measure x on a separable Hilbert
space, i.e. each measure vanishing on every proper subspace, has the
Riesz property. Unfortunately, this is not true. A simple counterexample
is due to Kanter ([9], p. 447). '

The aim of the present note is to investigate the Riesz property for
probability measures on the L’-space over the unit interval induced by
symmetric, homogeneous, separable and continuous in probability sto-
chastic process with independent increments. It should be mentioned
that the probability measure induced by such a process is, in fact, con-
centrated on the subset of L’ consisting of bounded functions having
no discontinuities of the second kind ([4], Theorem 7.2).

We review here a few facts about the random integral. Suppose
we have a symmetric, homogeneous and separable stochastic process
{x(t): 0 <t<1} with independent increments satisfying the initial con-
dition X (0) = 0. This process defines & random measure M with inde-
pendent values by means of the formula ,u((a, b)) = x(b) —z(a). For
the definition of an integral with respect to the random measure M we
refer to papers [13]-[17] and [22]. In the sequel we shall use the notation

1 1
[o)da(t) = [ p(t)M ().
0 0
It is clear that for every M-integrable function ¢ the formula

1
(1) ¢ (@) = [ g(t)da(t)
0

defines a random functional on the space L. Moreover, it follows from
the definition of the random integral that the functional ¢ is the limit
in probability of a sequence of continuous functionals. Consequently,
@ is a Lusin functional. Since each continuous linear functional can be
treated as a random one, we infer that formula (1) establishes a one-to-one
correspondence between M-integrable functions and Lusin functionals.
This formula can be also regarded as an analogue of the Riesz integral
representation of continuous linear functionals on classical function spaces.
The algebraic and topological structure of the space of all M-integrable
functions was determined in [22]. Namely, this space is linearly isomorphiec
and homeomorphic to the Orlicz space L(¥) of all Borel functions ¢
satisfying the condition

f W(|p(t))dt < co, where W(i) = f G;?) du,
0

1/¢
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and @ is the Lévy-Khinchine function of the process in question deter-
mined by means of the formula for the characteristic function y of the
increment z(b) —xz(a),

14 u?
aG (u),

ul

(2) y(t) = exp(b—a)f (cosiu —1)

and the condition G(0) = 0. Consequently, we have the following state-
ment:

THEOREM 2. If u i8 a probability measure on the L*-space over the
unit interval induced by a symmelric, homogeneous, separable and continuous
in probability stochastic process with independent increments, then each
Lusin functional f on L*? is of the form

f(@) = [e(t)dz(),
0

where ¢ belongs to the Orlicz space L(¥) im'th_

oo

w(l) = f G;“) du,

8
1/¢

G being the Lévy-Khinchine function corresponding to the process in question.
Consequenily, (I*)L = u-clI’

Another proof of this theorem was given by Nguyen Chi Bao in [12].

Now consider the case of compound Poisson processes, i.e. processes
whose sample functions are step functions with a finite number of jumps.
A necessary and sufficient condition for a process to be compound
Poisson can be expressed in terms of its Lévy-Khinchine function G as
follows (see [18], p. 90): :

00

f 144 d6(u) < oo.

u2
0

Following Ito ([8], Section 17) we associate with every compound
Poisson process {z(f): 0 <¢< 1} a random measure N, defined on Borel
subsets § of the product [0,1] x (R\{0}) as follows: N,(8) is the cardi-
nality of the set

8N{{, 2(t+0)—z(t—0)>: 0 << 1),

The random variable N_(8) has a Poisson probability distribution
with the parameter A(8) given by the formula

2
A(8) =f 1;;,“ G (w)dt.
S
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Moreover, for any collection of disjoint Borel sets 8;, 8s,..., 8,
the random variables N_(S,), N.(S;), ..., N,(8;) are mutually independ-
ent (see [8], Section 17). Further, it is very easy to verify that each
Borel function is integrable with respect to any compound Poisson process.

THEOREM 3. Probability measures on L* induced by compound Poisson
processes have the Riesz property.

Proof. Let x4 be such a measure and let f be an arbitrary u-measurable
linear functional on L?. By Proposition 1, we may assume, without loss
of generality, that the functional f is Borel measurable and the domain D,
is a Borel set. For every se [0, 1] we put ,(¢) =0 if # <8 and y,(¢) =1
otherwise. It is clear that the mapping h: 8 -y, is @ homeomorphism
from the unit interval [0, 1] into L?. Consequently, E is a Borel subset
of [0,1] if and only if h(E) is that of L?. Put

_ Eo = {8: ysG Df} .
Obviously, .
h(E,) = h([0,1])NDy,

which shows that E, is a Borel set. Further, since D, is a linear manifold,
we infer that the sets D, and

A = {z: N, (([0,11NE,) x (R\{0})) =1, N (E,x (R\{0})) = 0}

are disjoint. Thus 0 = u(A4) = ¢(1—|E,|)e”°, where ¢ is a non-negative
constant. Of course, we may assume that ¢ > 0, since in the opposite
case the measure u is concentrated at the origin and our statement is
trivial. Hence we infer that |E,] = 1. Consequently, the linear manifold
D} spanned by E, consisting of all step functions with jumps at the set K,
has the property u(D$) = 1. Thus we may consider f on the domain Dj.
Setting ¢(s) = f(y,) for se B, and ¢(8) = 0 otherwise, we get a Borel
function which, of course, is integrable with respeect to the process in
question. Since each element z from D} can be represented in the form

x = chysj, where c;e B, s;e E, (j =1,2,...,n),

i=1

we have the integral representation

f@) = D o) = [eM)da().

Thus, by Theorem 2, the measure x4 has the Riesz property which
completes the proof.

We say that the process in question has a Gaussian component whenever
its Lévy-Khinchine function G appearing in formula (2) satisfies the
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inequality G'(0+) > 0. We note that this inequality, together with the
condition that the function G is constant on the open hali-line (0, o0),
characterizes the Brownian motion process. It is well known that each
symmetrie, homogeneous, separable and continuous in probability sto-
chastic process with independent increments is the sum of two independ-
ent processes of the same type: one the Brownian motion process and
the other without a Gaussian component (see [8], Section 17, and [18],
p. 85). We already mentioned the result due to Cameron and Graves [3]
that the measure induced by the Brownian motion, i.e. the Wiener measure,
has the Riesz property. Using an idea due to Kanter ([9], p. 447) we
prove the following theorem:

THEOREM 4. Suppose that u is induced on L* by a symmetrie, homo-
geneous, separable and continuous in probability process with independent
increments and having a Gaussian component. Further, suppose that u
18 not the Wiener measure. Then u has mot the Riesz property.

Proof. Contrary to this, let us assume that each u-measurable linear
functional is thg limit in the measure u of a sequence of continuous linear
functionals on L?. Further, consider the decomposition of the process
in question into independent components

(3) z(t) = x,(8) +4(¢),

where the equality is taken is the sense of the L*-space, x, is the Brownian
motion process, and z, has no Gaussian component. Since

z,(1) = ) (a(s+0)—a(s—0)),
s<it
the correspondence x —x, is u-measurable and linear (see [18], p. 85).
Consequently, the linear functional f defined by the formula f(z)
= x4(1 —0) is u-measurable. Consequently, we can find a sequence {f,} of
continuous linear functionals on L? which converges to f in the measure u.
Taking into account the classical Riesz representation

(4) f2(@) = [euWa®dt  (n =1,2,...),

we infer, by (3), that the sequence {f,(x;)+f,(x;)} is convergent in the
measure . Since the random variables f, (z,) and f,(x,) are stochastically
independent and, in view of linearity of f,, symmetrically distributed,
we infer that both sequences {f,(z,)} and {f,(x;)} are convergent in the
measure x to u-measurable linear functionals, say ¢,(z,) and g,(x,), re-
spectively. Put

Ya(®) = [ga(w)du  (n =1,2,...).
¢
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Then (4) can be rewritten in the form of the random integral

1
fal@) = [ pa(®)da(®) (0 =1,2,...).

Hence and from Theorem 2 it follows that the sequence {y,} of
functions on [0, 1] converges in the sense of both Orlicz spaces L(¥,)
and L(Y,) corresponding to processes x; and x3, respectively. Thus there
exists a function y belonging to L(¥,)NnL(¥,) and such that

1
(5) g1(@)) = [ p(t)de, (1)
and
(6) Cga(@s) = [ (t)day(t)

u-almost everywhere.

Hence, in particular, it follows that the random variable g,(z;) has
a Gaussian or degenerate probability distribution and the random variable
g2(%,) has an infinitely divisible probability distribution without a Gaussian
component. Moreover, both random variables g,(z,) and g,(x,) are inde-
pendently and symmetrically distributed. Since the functional z,(1 —0)
has no Gaussian component, we infer, in view of the equality

(7) Zy(1 —0) = g,(2;) +g2(25),

that g, (z,) vanishes u-everywhere. Thus, by (5), v vanishes almost every-
where in the sense of the Lebesgue measure on [0, 1]. Consequently, by
(6), ga(x;) = 0 p-almost everywhere which, by (7), implies the equality
23(1 —0) = 0 u-almost everywhere. Thus, by (3), (1 —0) has a Gaussian
distribution. Applying well-known Cramer’s Theorem ([10], Section 19),
we infer that for every te [0, 1) the random variable 2(f) has a Gaussian
probability distribution. Hence it follows immediately that {z(¢): 0 < < 1}
is the Brownian motion process which contradicts the assumption. The
theorem is thus proved.

It is not known whether each measure induced on I? by a sym-
metric, homogeneous, separable and continuous in probability stochastic
process with independent increments having no Gaussian component has
the Riesz property (P 949). Theorem 3 gives an affirmative answer to
this problem only in the case of compound Poisson processes.
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