EXISTENCE OF BOREL LIFTING

BY

K. MUSIAŁ (WROCŁAW)

It is the purpose of this note to give a short proof of the theorem of von Neumann and Stone [2] on the existence of a Borel lifting in the case of a separable metric space with a measure. The continuum hypothesis is assumed.

Let \mathscr{A} be a σ -ring of subsets of a set $X \neq \emptyset$ and let $\mathscr{I} \subset \mathscr{A}$ be a σ -ideal. $A \sim B$ means that $A \triangle B \in \mathscr{I}$, $A^0 = X - A$, and $\alpha(\mathscr{F})$ is the smallest algebra of sets containing the family $\mathscr{F} \subset 2^X$.

Definition. Let $\mathscr{D} \subset \mathscr{A}$ be an arbitrary ring (algebra). A mapping $\varrho \colon \mathscr{D} \to \mathscr{A}$ is called a $(\mathscr{D}, \mathscr{A})$ -lifting with respect to \mathscr{I} if it has the following properties:

- (i) $\varrho(A) \sim A$,
- (ii) if $A \sim B$, then $\varrho(A) = \varrho(B)$,
- (iii) $\varrho(\emptyset) = \emptyset$ (and $\varrho(X) = X$),
- (iv) $\varrho(A \cap B) = \varrho(A) \cap \varrho(B)$,
- (v) $\varrho(A \cup B) = \varrho(A) \cup \varrho(B)$.

An $(\mathscr{A}, \mathscr{A})$ -lifting with respect to \mathscr{I} will be called a *lifting of* \mathscr{A} with respect to \mathscr{I} .

LEMMA. Let $\mathscr{D} \subset \mathscr{A}$ be at most countable algebra and let $H \in \mathscr{A} - \mathscr{D}$ be an arbitrary set. For every $(\mathscr{D}, \mathscr{A})$ -lifting $\overline{\varrho}$ with respect to \mathscr{I} , there exists an $(a(\mathscr{D} \cup \{H\}), \mathscr{A})$ -lifting ϱ with respect to \mathscr{I} which is an extension of $\overline{\varrho}$.

Proof. For every $M \in \mathcal{A}$, let $\mathcal{F}_1(M)$ be the family of all sets $A \in \mathcal{D}$ such that $A \cap M \sim \emptyset$, and let $\mathcal{F}_2(M)$ be the σ -ring of all sets $A \in \mathcal{A}$ with the same property. It is obvious that $A \in \mathcal{F}_1(M)$ implies $\overline{\varrho}(A) \in \mathcal{F}_2(M)$.

Let us put $M_{\infty} = \bigcup \{\overline{\varrho}(A) \colon A \in \mathcal{F}_1(M)\}$. Of course, $M_{\infty} \in \mathcal{F}_2(M)$. Now we shall prove that $M_{\infty} \cap (M^0)_{\infty} = \emptyset$. Suppose it is false; then there exist $A \in \mathcal{F}_1(M)$ and $B \in \mathcal{F}_1(M^0)$ such that $\overline{\varrho}(A) \cap \overline{\varrho}(B) \neq \emptyset$. Hence $A \cap B \nsim \emptyset$. On the other hand, $A \cap M \sim \emptyset$ and $B \cap M^0 \sim \emptyset$, so that we have $A \cap B \sim \emptyset$.

Let us put

$$\rho(H) = H \cap (H_{\infty})^0 \cup H^0 \cap (H^0)_{\infty}$$

and

$$\varrho(H^0) = H^0 \cap [(H^0)_\infty]^0 \cup H \cap H_\infty.$$

It follows that $\varrho(H^0) = X - \varrho(H)$.

It is also easy to see that, for every $C \in \mathcal{F}_1(H)$, we have $\overline{\varrho}(C) \cap \varrho(H) = \emptyset$ and, for every $C \in \mathcal{F}_1(H^0)$, $\overline{\varrho}(C) \cap \varrho(H^0) = \emptyset$.

If $E \in a(\mathcal{D} \cup \{H\})$ is an arbitrary set, then there exist A and B from \mathcal{D} such that $E = (A \cap H) \cup (B \cap H^0)$.

Let us put

$$\varrho(E) = [\overline{\varrho}(A) \cap \varrho(H)] \cup [\overline{\varrho}(B) \cap \varrho(H^0)].$$

If A_1 and B_1 are any other sets from \mathcal{D} such that $E = (A_1 \cap H) \cup \cup (B_1 \cap H^0)$, then $A \triangle A_1 \in \mathcal{F}_1(H)$ and $B \triangle B_1 \in \mathcal{F}_1(H^0)$. Hence

$$\overline{\varrho}(A\Delta A_1)\cap\varrho(H)=\emptyset$$

and $\overline{\varrho}(B\Delta B_1)\cap\varrho(H^0)=\emptyset$, so that the definition of $\underline{\varrho}(E)$ is correct. It is easy to see that, for every $A\in\mathcal{D}$, we have $\varrho(A)=\overline{\varrho}(A)$.

From now on we assume the continuum hypothesis.

THEOREM 1. If \mathscr{A} is a σ -algebra and $\operatorname{card} \mathscr{A}/\mathscr{I} \leqslant \mathfrak{c}$ (continuum), then there exists a lifting of \mathscr{A} with respect to \mathscr{I} .

Proof. Take from each of the equivalence classes (mod \mathscr{I}) one set. Let $\{A_{\gamma}\}_{\gamma<\omega_1}$ be the family of all such sets ordered by ordinals $\gamma<\omega_1$. We can assume that they are taken in such a way that, for every A_{γ} and every $B \in \mathscr{D}_{\gamma} = \alpha(\{A_{\beta}\}_{\beta<\gamma})$, we have either $A_{\gamma} \sim B$ or $A_{\gamma} \in D_{\gamma}$.

Let us make the inductive assumption that, for a certain $\gamma < \omega_1$, a family of consistent $(\mathcal{D}_{\xi}, \mathcal{A})$ -liftings ϱ_{ξ} with respect to \mathcal{I} for all $\xi < \gamma$ is already constructed (i.e., for $\xi_1 < \xi_2$, ϱ_{ξ_1} is the restriction of ϱ_{ξ_2} to \mathcal{D}_{ξ_1}).

It is our aim to define a $(\mathcal{D}_{\gamma}, \mathcal{A})$ -lifting ϱ_{γ} with respect to \mathcal{I} being an extension of all ϱ_{ξ} for $\xi < \gamma$.

If $\gamma = \gamma_1 + 1$, then the existence of ϱ_{γ} follows from the Lemma.

If γ is a limit ordinal, then we take as ϱ_{γ} the common extension of all ϱ_{ξ} for $\xi < \gamma$; obviously, $\varrho_{0}(\emptyset) = \emptyset$ and $\varrho_{0}(X) = X$.

We can see that the mapping $\varrho \colon \mathscr{A} \to \mathscr{A}$, defined by $\varrho(A) = \varrho_{\gamma}(A_{\gamma})$ for $A \sim A_{\gamma}$, is the required lifting of \mathscr{A} with respect to \mathscr{I} .

THEOREM 2. Let \mathscr{A} be a σ -ring. If $\operatorname{card} \mathscr{A}/\mathscr{I} \leqslant \mathfrak{c}$ and \mathscr{A}/\mathscr{I} satisfies the countable chain condition, then there exists a lifting of \mathscr{A} with respect to \mathscr{I} .

Proof. The properties of \mathscr{A}/\mathscr{I} imply that there exists a set $Y \in \mathscr{A}$ such that, for each $A \in \mathscr{A}$, we have $A - Y \sim \emptyset$. In view of Theorem 1, there exists a lifting ϱ of $\mathscr{A} \cap Y$ with respect to $\mathscr{I} \cap Y$.

Putting $\tilde{\varrho}(A) = \varrho(A \cap Y)$ for every $A \in \mathscr{A}$, we get a lifting of \mathscr{A} with respect to \mathscr{I} .

COROLLARY 1. Let \mathcal{B}_0 be the σ -algebra of all subsets of a separable metric space X with the Baire property and let $\mathcal{I} \subset \mathcal{B}_0$ be the σ -ideal of all sets of the first category. Then there exists a lifting of \mathcal{B}_0 with respect to \mathcal{I} .

COROLLARY 2. Let \mathscr{B} be the σ -algebra of Borel subsets of a separable metric space X and let $\mu \colon \mathscr{B} \to G$ be a measure with values in a topological abelian group G. If $\mathscr{I} = \{B \in \mathscr{B} \colon \text{for every } D \in \mathscr{B} \cap B \text{ we have } \mu(D) = 0\}$, then there exists a lifting of \mathscr{B} with respect to \mathscr{I} (so called Borel lifting, cf. [1]).

Added in proof. Professor C. Ryll-Nardzewski has informed us that Theorem 2 remains true without the assumption that \mathcal{A}/\mathcal{I} satisfies the countable chain condition.

REFERENCES

- [1] A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the theory of lifting, Berlin, Heidelberg and New York 1969.
- [2] J. von Neumann and M. H. Stone, The determination of representative elements in the residual classes of a Boolean algebra, Fundamenta Mathematicae 25 (1935), p. 353-378.

INSTITUTE OF MATHEMATICS UNIVERSITY OF WROCŁAW

Reçu par la Rédaction le 16. 3. 1972