ON PREPONDERANT MAXIMA

BY

L. ZAJÍČEK (PRAGUE)

Let \(\lambda_n \) (respectively, \(\lambda^*_n \)) stand for Lebesgue (respectively, outer Lebesgue) measure on the Euclidean space \(E_n \). We denote by \(B(x, r) \) the closed ball of centre \(x \) and radius \(r \). Let \(A \subseteq E_n \) be an arbitrary set. The number

\[
\overline{D}_x(A) = \lim_{h \to 0^+} \frac{\lambda^*_n(A \cap B(x, h))}{\lambda_n(B(x, h))}
\]

is called the outer upper symmetric density of \(A \) at \(x \).

Let \(f \) be an arbitrary (possibly infinite-valued) function on \(E_n \) and let \(0 < a \leq 1 \). Following Foran [2] put

\[
\overline{M}_a(f) = \{ x : \overline{D}_x(\{ t : f(t) \geq f(x) \}) < a \}.
\]

Foran [2] proved that \(\overline{M}_a(f) \) is a set of measure zero for \(a = 2^{-n} \) and any \(f \). He raised the problem (P 1019) whether \(a = 2^{-n} \) can be improved.

It is natural to say that \(f \) has a preponderant maximum at \(x \) if \(x \in \overline{M}_{1/2}(f) \) and we will use this terminology. Since for any linear non-constant function \(f \) on \(E_n \) and \(1/2 < a \leq 1 \) we have obviously \(\overline{M}_a(f) = E_n \), the following theorem solves completely the Foran problem.

Theorem. Let \(f \) be an arbitrary function on \(E_n \). Then the set \(\overline{M}_{1/2}(f) \) of all points at which \(f \) has a preponderant maximum is of Lebesgue measure zero.

Proof. Let \(u(x) \) be the upper measurable boundary of \(f \) defined by Blumberg in [1]. The upper boundary

\[
u(x) = \inf \{ t : \overline{D}_x(\{ y : f(y) > t \}) = 0 \}
\]

is a measurable (possibly infinite-valued) function. Modifying slightly the proof in [3], p. 504, it is easy to show that \(\lambda_n(\overline{M}_{1/2}(u)) = 0 \) implies \(\lambda_n(\overline{M}_{1/2}(f)) = 0 \). Thus it is sufficient to prove the Theorem only for an arbitrary measurable (possibly infinite-valued) function \(f \).
For integers \(m > 0 \) and \(k > 0 \) define
\[
A_{m,k} = \{ x : \lambda_n(\{ y : f(y) \geq f(x) \} \cap B(x, r)) < (2^{-1}m^{-1})\lambda_n(B(x, r)) \text{ for any } 0 < r < k^{-1} \}.
\]

Since obviously
\[
\mathcal{M}_{1/2}(f) = \bigcup_{m,k=1}^{\infty} A_{m,k},
\]
it is sufficient to show that all sets \(A_{m,k} \) are of measure zero. Suppose on the contrary that for some \(m, k \) we have \(\lambda_n^*(A_{m,k}) > 0 \). Then we can choose \(a \in A_{m,k} \) which is a point of the outer density for \(A_{m,k} \). Choose \(\varepsilon > 0 \) such that
\[
(1) \quad (1 - \varepsilon)(1/2 + 1/m) > 1/2.
\]

Further choose \(\delta > 0 \) such that
\[
(2) \quad \frac{\lambda_n^{*}(A_{m,k} \cap B(a, \delta))}{\lambda_n(B(a, \delta))} > 1 - \varepsilon \quad \text{for } 0 < \Delta < \delta.
\]

Finally, it follows from (1) that we can choose \(r > 0 \) such that
\[
(3) \quad r < \min(\delta, 1/k) \quad \text{and} \quad (1 - \varepsilon)(1/2 + 1/m)(\delta^n + (\delta - r)^n) > \delta^n.
\]

Define the subset \(C \) of \(E_{2n} = E_n \times E_n \) as
\[
C = \{ (x, y) : x \in B(a, \delta), y \in B(x, r) \}
\]
and put \(S = C \cap \{ (x, y) : f(x) > f(y) \} \). The sets \(C \) and \(S \) are obviously measurable and by the Fubini theorem we have
\[
\lambda_{2n}(S) = \int_{B(a, \delta)} g(x) d\lambda_n(x),
\]
where \(g(x) = \lambda_n(\{ y \in B(x, r) : f(x) > f(y) \}) \). Let \(V_n \) denote the volume of the unit ball in \(E_n \). By the definition of \(A_{m,k} \), for \(x \in A_{m,k} \cap B(a, \delta) \) we have \(g(x) \geq (1/2 + 1/m)V_n^{1/n}\delta^n \). Therefore, using (2) we obtain
\[
(4) \quad \lambda_{2n}(S) \geq (1/2 + 1/m)(1 - \varepsilon)V_n^{1/n}\delta^n.
\]

Further, put
\[
T = \{ (x, y) : y \in B(a, \delta - r), x \in B(y, r), f(x) < f(y) \}.
\]

Obviously, \(T \subset C \), \(T \cap S = \emptyset \), and \(T \) is measurable. By the Fubini theorem we have
\[
\lambda_{2n}(T) = \int_{B(a, \delta - r)} h(y) d\lambda_n(y),
\]
where \(h(y) = \lambda_n(\{ x \in B(y, r) : f(x) < f(y) \}) \).
Similarly as above we obtain

\begin{equation}
\lambda_{2n}(T) \geq (1/2 + 1/m)(1 - \varepsilon) V_n^2 (\delta - r)^n.
\end{equation}

Using (4) and (5) we get

\begin{align*}
V_n^2 \delta^n r^n &= \lambda_{2n}(C) \geq \lambda_{2n}(S) + \lambda_{2n}(T) \\
&\geq V_n^2 r^n (1/2 + 1/m)(1 - \varepsilon)(\delta^n + (\delta - r)^n),
\end{align*}

which contradicts (3).

REFERENCES

\textit{Reçu par la Rédaction le 15.7.1979}